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Evolution of discrete populations

and the canonical diffusion of adaptive dynamics

By Nicolas Champagnat∗and Amaury Lambert†

Abstract

The biological theory of adaptive dynamics proposes a description of the long-term evolution

of a structured asexual population. It is based on the assumptions of large population, rare

mutations and small mutation steps, that lead to a deterministic ODE describing the evolution

of the dominant type, called the ‘canonical equation of adaptive dynamics’. Here, in order to

include the effect of stochasticity (genetic drift), we consider self-regulated randomly fluctuating

populations subject to mutation, so that the number of coexisting types may fluctuate. We apply

a limit of rare mutations to these populations, while keeping the population size finite. This

leads to a jump process, the so-called ‘trait substitution sequence’, where evolution proceeds by

successive invasions and fixations of mutant types. Then we apply a limit of small mutation

steps (weak selection) to this jump process, that leads to a diffusion process that we call the

‘canonical diffusion of adaptive dynamics’, in which genetic drift is combined with directional

selection driven by the gradient of the fixation probability, also interpreted as an invasion fitness.

Finally, we study in detail the particular case of multitype logistic branching populations and

seek explicit formulae for the invasion fitness of a mutant deviating slightly from the resident

type. In particular, second-order terms of the fixation probability are products of functions of the

initial mutant frequency, times functions of the initial total population size, called the invasibility

coefficients of the resident by increased fertility, defence, aggressiveness, isolation, or survival.

Running head. Adaptive dynamics for finite populations.1

1 Introduction

Consider a multitype population where each individual of type x gives birth independently at rate

b(x) to an individual of type x (clonal reproduction) and dies either naturally at rate d(x) or by com-

petition. Deaths by competition are distributed as follows. Each individual of type y points to each
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individual of type x an independent exponential clock of parameter c(x, y). Death by competition of

an individual of type x occurs as soon as a clock pointing to her rings. The vector of subpopulation

sizes is distributed as the so-called multitype logistic branching process [25].

In this model, the population size cannot go to infinity and eternal coexistence of two or more

types is impossible, so the number of types decreases until it reaches 1 at some random time T called

the fixation time. For a two-type population starting with n individuals of type x and m individuals

of type y, we denote by un,m(x, y) the probability that y fixes, i.e. that y is the surviving type at

time T . We refer to neutrality as the case when x = y. After time T the population is said to be

monomorphic. If the natural death rate d of the surviving type is not zero, the population eventually

becomes extinct, otherwise the size process is positive-recurrent.

The previous observations also apply to the population dynamics considered in this paper, that

generalize the logistic branching process to a multitype setting with mutation and more general in-

teractions, and that we call GL-populations. Types live in a subset X of R
k and, in a pure x-type

population of size n, any individual gives birth to a new individual at rate b(x, n) and dies at rate

d(x, n). We assume that d(·, 1) ≡ 0 (i.e. extinction is impossible) and that, uniformly in x, b(x, ·)

is bounded, and d(x, ·) bounded from below by some positive power of the total population size.

Then, when there is no mutation, the size of a pure x-type population is positive-recurrent, as for

the logistic branching process when natural death rates vanish, and converges in distribution to some

random variable ξ(x). However, in general, reproduction is not clonal. Specifically, each time an

individual of type x gives birth, the type of the newborn individual is x with probability 1 − µ(x)

and is x+ h with probability µ(x)M(x, dh), where µ(x) is the mutation probability and M(x, ·) is a

probability measure on X−x called the mutation kernel or mutation step law. In this setting, the loss

of diversity is counteracted by the occurrence of mutations, and the number of types can also increase.

The evolution of structured populations (with or without the presence of mutations) has long

been studied, and in numerous different models. The renowned field that takes into account the

complexity of the genetic structure — x is a genotype — is called population genetics [6, 23, 17, 13].

The emerging field where the emphasis is put on the structure of ecological interactions — x is a

phenotypic trait, such as body size — is called adaptive dynamics [19, 28, 30]. The link between both

is still unclear, but see [24, 33].

Let Tn denote the n-th time when the population becomes monomorphic, and Vn the then sur-

viving type. The (possibly finite) sequence (Vn) is of obvious interest to evolutionary biologists and

is called the trait substitution sequence. It can be defined in much more general contexts, as soon as

eternal coexistence of two or more types is not permitted by the model. It was in adaptive dynamics

that this sequence was invented and studied [31, 3], under two additional assumptions. First, the

biologically motivated assumption of rare mutations guarantees that, in the timescale of mutations

(speeding up time), the widths of time intervals during which the population is polymorphic vanish,

so that there is one and only one type surviving at any time t. To prevent the population from rapidly

becoming extinct in the new timescale, one also has to rescale population sizes, thereby making the

assumption of large populations.

Subsequently, the trait substitution sequence (TSS) is a Markov jump process on X whose semi-
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group is shown [3] to depend especially on the invasion fitnesses (as defined in [30]) f(x, y), x, y ∈ X ,

where f(x, y) is the expected growth rate of a single individual of type y — the mutant — entering a

monomorphic population of type x ‘at equilibrium’ — the residents. The evolution of the population

can be described by this fitness function because of the large population assumption, which implies

that deleterious mutants — those with negative invasion fitness — can never invade. Thus, evolution

proceeds by successive invasions of advantageous mutant types replacing the resident one (selective

sweeps [29, 10, 11]), which can be summarized by the jump process of fixed types (the TSS), also

called phenotypic traits, or simply traits, in the adaptive dynamics setting (e.g. size, age at maturity

or rate of food intake).

The TSS has been a powerful tool for understanding various evolutionary phenomena, such as

evolutionary branching (evolution from a monomorphic population to a stably polymorphic one [31]

that may lead to speciation [7]) and is the basis for other biological models, such as the ‘canonical

equation of adaptive dynamics’ [8, 4]. This last phrase refers to the following ODE, describing the

evolution of a one-dimensional trait x, obtained from the TSS in the limit of small mutations

dx

dt
=

1

2
σ(x)2µ(x)n̄(x)

∂

∂y
f(x, x), (1)

where σ(x)2 stands for the variance of the mutation step law, n̄(x) for the equilibrium size of a pure

x-type population, and f(x, y) for the aforementioned invasion fitness. Note how only advantageous

types get fixed (the trait follows the fitness gradient).

However, it is well-known that slightly deleterious types can be fixed in finite populations. This

phenomenon is known under the name of genetic drift (more generally, this term refers to allelic

fluctuations which have stochastic causes). Depending on the strength of genetic drift, selection is

said to be strong (genetic drift has negligible effects) or weak. Adaptive dynamics models usually

assume infinite populations subject to deterministic dynamics, where only strong selection can be

observed. As a consequence, the first goal of this paper is to consider population finiteness and

weak selection [22], and continue using the bottom-up approach of adaptive dynamics; that is, model

(macroscopic) evolution from (microscopic) populations [5]. In particular, we allow the population

sizes to fluctuate randomly through time, in contrast to classical works in both population genetics

(where the population size traditionally remains constant, see [26]) and adaptive dynamics (where

population sizes are infinite).

Thus, we consider GL-populations in which the mutation probabilities µ are replaced with γµ,

and time t with t/γ (mutation timescale). We prove the existence as γ vanishes (rare mutations) of

the limiting TSS and characterize its law (Theorem 3.2). Recall that un,m(x, y) denotes the fixation

probability of type y in a two-type population starting with n individuals of type x and m individuals

of type y.

Theorem 1.1 The process (Sγ
t ; t ≥ 0) defined as

Sγ
t =

∑

n≥0

Vn1{Tn≤t/γ<Tn+1}
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converges in law for the Skorohod topology on D(R+,X ) as γ → 0 to a pure-jump Markov process

(St; t ≥ 0), whose jumping rates q(x, dh) from x to x+ h are given by

q(x, dh) = β(x)χ(x, x + h)M(x, dh),

where

β(x) = µ(x)E(ξ(x)b(x, ξ(x))),

and

χ(x, y) =
∑

n≥1

nb(x, n)P(ξ(x) = n)

E(ξ(x)b(x, ξ(x)))
un,1(x, y). (2)

Observe that β(x) is the mean mutant production rate of a stationary x-type population and that

χ(x, y) is the probability of fixation of a single (mutant) y-type mutant entering a pure (resident) x-

type population with b(x, ·)-size-biased stationary size. In particular, χ(x, y) is the random analogue

of the usual invasion fitness. More precisely, with the notations of (1), β(x) is analogous to µ(x)b(x)n̄x

and χ(y, x) is the exact counterpart of the expression [f(y, x)]+/b(y) obtained in [3] for the probability

of fixation of a y-type mutant in an equilibrium x-type population.

The second goal of this paper is to take the limit of small mutations on the TSS defined in

the last theorem. Namely, assume for simplicity that X = R
k, and denote by Zǫ the process S

modified by replacing M(x, ·) with its image by the contraction ǫ Id and time t with t/ǫ2. Under

some technical assumptions which ensure that χ(x, ·) is differentiable, and assuming that mutation

steps have zero expectation (
∫

hM(x, dh) = 0), we get the following theorem (Theorem 4.2), where

σ(x) is the symmetric square root matrix of the covariance matrix of M(x, ·) and ∇2 denotes the

gradient taken w.r.t. the second variable.

Theorem 1.2 The process Zǫ converges in law for the Skorohod topology on D(R+,R
k) to the dif-

fusion process (Zt; t ≥ 0) unique solution to the stochastic differential equation

dZt = β(Zt)σ
2(Zt) · ∇2χ(Zt, Zt)dt +

√

β(Zt)χ(Zt, Zt)σ(Zt) · dBt (3)

where B is a standard k-dimensional Brownian motion.

In words, we obtain a diffusion model for the evolution of a trait grounded on microscopic realistic

population dynamics. The diffusion term embodies genetic drift. It is proportional to the mean mu-

tant production rate β(x), to the neutral fixation probability χ(x, x) and to the covariance matrix of

M(x, ·). The deterministic term embodies directional selection, and is the exact counterpart of the

ODE (1).

This equation, that we christen ‘canonical diffusion of adaptive dynamics’ involves the stochastic

invasion fitness χ and its gradient with respect to the second variable at neutrality. As seen in the

definition (2) of χ, the fitness gradient only depends on the behaviour of the fixation probabilities

near neutrality for two interacting types (see also [26]), and on the stationary distribution ξ(x). The

explicit computation of these quantities is possible in the multitype logistic branching case, which

we study in detail.
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First consider a pure x-type logistic branching population with dynamical parameters (b(x), c(x, x), d(x)).

When d = 0, the population size is positive-recurrent and the r.v. ξ distributed according to the

stationary probability is a Poisson variable of parameter θ := b/c conditioned on being nonzero. This

yields

E(ξ(x)) =
θ(x)

1 − e−θ(x)

and

χ(x, x) =
e−θ(x) − 1 + θ(x)

θ(x)2
.

Second, we characterize the two-type logistic branching process by a birth vector B, a competition

matrix C, and a death vector D

B = b1 +

(

0

λ

)

, C = c1 −

(

0 0

δ δ

)

+

(

0 α

0 α

)

−

(

0 ε

ε 0

)

, D = d1 −

(

0

σ

)

,

where 1 is a matrix full of ones with dimensions ad hoc and λ, δ, α, ε, σ are the selection coefficients

of the mutant respectively associated to fertility, defence, aggressiveness, isolation and survival. In

the following theorem (Theorem 5.1), we prove that each partial derivative of the fixation probability

w.r.t. any selection coefficient factorizes as a function of the initial mutant frequency p (either p(1−p)

or p(1−p)(1−2p)) times a function of the initial total population size, called the invasibility coefficient

of the resident population.

Theorem 1.3 As a function of the multidimensional selection coefficient s = (λ, δ, α, ε, σ)′ , the

probability u is differentiable, and in a neighbourhood of s = 0 (selective neutrality),

u = p+ v′.s+ o(s),

where the (weak) selection gradient v = (vλ, vδ, vα, vε, vσ)′ can be expressed as

vι
n,m = p (1 − p) gι

n+m ι 6= ε,

vε
n,m = p (1 − p) (1 − 2p) gε

n+m,

and the invasibility coefficients g depend solely on the resident’s characteristics b, c, d, and on the

total initial population size n+m.

As a result, we get

∇2χ(x, x) = e−θ(x)(aλ(x)∇b(x) − aδ(x)∇1c(x, x) + aα(x)∇2c(x, x)),

where aλ, aδ and aα are called adaptive slopes in terms of resp. fertility, defence and aggressiveness.

Explicit formulae are provided for the adaptive slopes as well, that can be plugged into (3). These

results allow to get deeper insight into the canonical diffusion of adaptive dynamics when the micro-

scopic interactions are those of multitype logistic branching processes.
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The paper is organized as follows. First, our stochastic individual-based model is described in

the next section (Section 2). Next, we state precisely the convergence results to the TSS in finite

populations (Section 3), and to the canonical diffusion of adaptive dynamics (Section 4). In Section 5,

we stick to the logistic branching case and obtain explicit formulae for the derivative of the fixation

probability, the invasibility coefficients and the adaptive slopes. Finally (Section 6), we give the

detailed proofs of the convergence results of Sections 3 and 4.

2 Model

2.1 Preliminaries

Recall from the Introduction that a monotype (binary) logistic branching process with dynamical

parameters (b, c, d) is a Markov chain in continuous time (Xt; t ≥ 0) with nonnegative integer values

and transition rates

qij =



















bi if j = i+ 1

ci(i − 1) + di if j = i− 1

−i(b+ c(i− 1) + d) if j = i

0 otherwise.

We know from [25] that ∞ is an entrance boundary for X and that E∞(τ) < ∞, for τ the hitting

time of, say, 1. If d 6= 0, then the process goes extinct a.s., and if d = 0, it is positive-recurrent and

converges in distribution to a r.v. ξ, where ξ is a Poisson variable of parameter θ := b/c conditioned

on being nonzero

P(ξ = i) =
e−θ

1 − e−θ

θi

i!
i ≥ 1. (4)

Notice that E(ξ) = θ/(1 − exp(−θ)).

For fixed α > 0, one can generalize the interaction in the previous model to obtain the so-called

α-logistic branching process with dynamical parameters (b, c, d) by modifying the transition rates as

qα
ij =



















bi if j = i+ 1

ci(i− 1)α + di if j = i− 1

−i(b+ c(i− 1)α + d) if j = i

0 otherwise.

As before, it is easy to check that, when d 6= 0, the process goes extinct a.s., and when d = 0, it is

positive-recurrent and converges in distribution to a r.v. ξ(α) which law can be explicitly computed

as

P(ξ(α) = i) = C
θi

i((i − 1)!)α
i ≥ 1, (5)

where θ = b/c and C scales the sum of these terms to 1.
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2.2 GL-populations

In this subsection, we define the general populations considered in this paper, that we call GL-

populations, and give their basic properties. These populations are structured (multitype) popula-

tions with mutation. Their dynamics are those of eternal birth-and-death processes with birth rates

at most linear and death rates of order at least 1 + α in the total population size, hence their name

(generalized logistic).

2.2.1 Definition

At any time t, the population is composed of a finite numberN(t) of individuals characterized by their

phenotypic traits, or simply traits, x1(t), . . . , xN(t)(t) belonging to a given trait space X , assumed to

be a closed subset of R
k for some k ≥ 1. The population state at time t will be represented by the

counting measure on X

νt =

N(t)
∑

i=1

δxi(t).

Let us denote by M the set of finite counting measures on X , endowed with the σ-field induced by

the Borel σ-field on X ⊂ R
k as follows: let ϕ denote the application mapping any element

∑k
i=1 δxi

of M to the k-tuple (xπ(1), . . . , xπ(k)) where the permutation π of {1, . . . , k} is chosen such that this

vector is ranked in, say, the lexicographical order. Then, this function ϕ is a bijection from M to

the set of lexicographically ordered vectors of ∪k
i=0X

k. The Lebesgue σ-field on this set therefore

provides a σ-field on M.

For any ν ∈ M and any measurable function f : X → R, we will use the notation 〈ν, f〉 for
∫

f(x)ν(dx). Observe that N(t) = 〈νt,1〉 and that 〈νt,1Γ〉 is the number of individuals at time t

with trait value in Γ ⊂ X .

Let us consider a general structured birth-and-death process with mutation whose present state

is given by the point measure ν.

• b(x, ν) is the rate of birth from an individual of type x in a population in state ν

• d(x, ν) is the rate of death of an individual of type x in a population in state ν

• γµ(x) is the probability that a birth from an individual with trait x produces a mutant individ-

ual, where µ(x) ∈ [0, 1] and where γ ∈ (0, 1) is a parameter scaling the frequence of mutations.

In Section 3, we will be interested in the limit of rare mutations (γ → 0).

• M(x, dh) is the law of the trait difference h = y − x between a mutant individual with trait y

born from an individual with trait x. Since the mutant trait y = x+ h must belong to X , this

measure has its support in X − x := {y − x : y ∈ X} ⊂ R
k. We assume that M(x, dh) has a

density on R
k which is uniformly bounded in x ∈ X by some integrable function M̄(h).
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In other words, the infinitesimal generator of the M-valued Markov jump process (νγ
t )t≥0 is given

by

Lγϕ(ν) =

∫

X
[ϕ(ν + δx) − ϕ(ν)] (1 − γµ(x)) b(x, ν)ν(dx)

+

∫

X

∫

Rk

[ϕ(ν + δx+h) − ϕ(ν)]γµ(x)b(x, ν)M(x, dh)ν(dx)

+

∫

X
[ϕ(ν − δx) − ϕ(ν)]d(x, ν)ν(dx). (6)

We will denote by P
γ the law of this process (or P

γ
ν0 when the initial condition has to be specified).

When necessary, we will denote the dependence of νt on the parameter γ with the notation νγ
t .

Definition 2.1 We say that the structured birth-and-death process with mutation defined previously

is a GL-population, if

• there is b̄ such that for any ν and x, 0 < b(x, ν) ≤ b̄

• there are c and α > 0 such that for any ν and x, c (〈ν,1〉 − 1)α ≤ d(x, ν)

• if ν = δx, then d(x, ν) = 0.

The classical structured logistic branching process [9, 15, 25, 5] is a GL-population with

b(x, ν) = b(x)

and

d(x, ν) =

∫

X
c(x, y)(ν − δx)(dy).

Then, the assumption above translates as b(·) ≤ b̄, α = 1 and c(·, ·) ≥ c.

2.2.2 Basic properties

First, the total population size Nt = 〈νt,1〉 of a GL-population is dominated by a scalar α-logistic

branching process with parameters (b̄, c, 0), so (νt; t ≥ 0) has infinite lifetime.

Second, when there is only one individual in the population (νt = δx for some x ∈ X ), the death

rate equals 0, so that extinction is impossible.

Third, for a GL-population with two types x and y and no mutation (µ ≡ 0), νt = Xtδx + Ytδy,

where (Xt, Yt : t ≥ 0) is a bivariate Markov chain. We refer to (selective) neutrality as the case when

x = y. Because of the previous domination, for the Markov chain (X,Y ), the union of the axes

Ω1 := N × {0} and Ω2 := {0} × N

is accessible and absorbing, and its complementary set is transient. So P(T < ∞) = 1, where

T := TΩ1 ∧ TΩ2 , and for any subset Γ of N
2, TΓ denotes the first hitting time of Γ by (X,Y ). Also
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notice that for any (n,m) 6= (0, 0), Pn,m(TΩ1 = TΩ2) = 0. Then we call fixation (of the mutant y)

the event {TΩ2 < TΩ1}. The probability of fixation will be denoted by un,m(x, y)

un,m(x, y) := P(TΩ2 < TΩ1 |X0 = n, Y0 = m).

More generally, we have the following result.

Proposition 2.2 Consider a GL-population (νt; t ≥ 0) with no mutation. For any initial condition,

the fixation time T

T := inf{t ≥ 0 : |Supp(ν)| = 1}

is finite a.s. and from time T , the population remains monomorphic with type, say, x. Then con-

ditional on T and x, the post-T size process (N(t); t ≥ T ) is positive-recurrent and converges in

distribution to a random integer ξ(x) such that supx E(ξ(x)n) <∞ for any n.

Proof. This result follows from the domination of the total population size by a α-logistic branching

process (Zt; t ≥ 0) with dynamical parameters (b̄, c, 0), and from the fact that such a process is

positive recurrent with stationary distribution given by (5). Then, the total population size hits

1 in a.s. finite time (greater than or equal to T ), and the population size returns then to 1 in a

time bounded by the time of return to 1 of Z, which has finite expectation as a consequence of

its positive-recurrence. So the post-T size process N is positive-recurrent as well and its stationary

distribution is dominated by the law (5), which has finite moments. 2

More generally, the domination of the population size 〈νγ
t ,1〉 by a monotype α-logistic branching

process with dynamical parameters (b̄, c, 0) for any γ ∈ (0, 1), allows us to prove the following long

time bound for the moments of νγ .

Proposition 2.3 Fix p ≥ 1 and pick a positive C. There is a constant C ′ such that, for any

γ ∈ (0, 1),

E(〈νγ
0 ,1〉

p) ≤ C ⇒ sup
t≥0

E(〈νγ
t ,1〉

p) ≤ C ′.

Proof. With the notation of the previous proof, it suffices to show that supt≥0 E(Zp
t ) < +∞. Let

us define pk
t = P(Zt = k). The backward Kolmogorov equation reads

d

dt
E(Zp

t ) =
∑

k≥1

kp dp
k
t

dt
=
∑

k≥1

kp[b̄(k − 1)pk−1
t + c(k + 1)kαpk+1

t − k(b̄+ c(k − 1)α)pk
t ]

=
∑

k≥1

[

b̄

((

1 +
1

k

)p

− 1

)

+ c(k − 1)α
((

1 −
1

k

)p

− 1

)]

kp+1pk
t .

Now, for any k > k0, where k0 := [(2b̄/c)1/α] + 1, c(k − 1)α ≥ 2b̄. Therefore, for k > k0,

b̄((1 + 1/k)p − 1) + c(k − 1)α((1 − 1/k)p − 1) ≤ −b̄[3 − 2(1 − 1/k)p − (1 + 1/k)p]
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which is equivalent to −b̄p/k. Then, enlarging k0 if necessary, we obtain

d

dt
E(Zp

t ) ≤

k0
∑

k=1

b̄(2p − 1)kp
0 −

∑

k≥k0+1

b̄p

2
kppk

t

≤ K −
b̄p

2
E(Zp

t ),

where the constant K depends solely on k0. This differential inequality yields

E(Zp
t ) ≤

2K

b̄p
+

(

E(Zp
0 ) −

2K

b̄p

)

e−b̄pt/2,

which gives the required uniform bound. 2

3 The trait substitution sequence in finite populations

In this section, we consider the GL-population νγ of Section 2. Our goal is to apply to this process

a limit of rare mutations (γ → 0) while keeping the population size finite, in order to describe the

evolutionary process on the mutation timescale t/γ as a ‘trait substitution sequence’ (TSS, [31, 3])

where evolution proceeds by successive fixations of mutant types.

Let us introduce the following strong form of convergence in law. We will say that a sequence of

random variables (Xn) converges strongly in law to a r.v. Y if and only if E(f(Xn)) → E(f(Y ))

as n → ∞ for any bounded measurable real function f . Let us also make a slight abuse of notation

by writing b(x, n) instead of b(x, nδx) for the birth rate in a monomorphic population (as in the

Introduction).

Fix x ∈ X . For γ ∈ (0, 1), let the population start at νγ
0 = Nγ

0 δx where the N
∗-valued random

variables Nγ
0 satisfy supγ∈(0,1) E((Nγ

0 )p) <∞ for some p > 1.

Theorem 3.1 For any 0 < t1 < . . . < tn, the n-tuple (νγ
t1/γ , . . . , ν

γ
tn/γ) converges strongly in law to

(ζt1 , . . . , ζtn) where ζti = NtiδSti
and

(1) (St; t ≥ 0) is a Markov jump process on X with initial value S0 = x and whose jumping rates

q(x, dh) from x to x+ h are given by

q(x, dh) = β(x)χ(x, x+ h)M(x, dh), (7)

where

β(x) = µ(x)E(ξ(x)b(x, ξ(x))), (8)

and

χ(x, y) =
∑

n≥1

nb(x, n)P(ξ(x) = n)

E(ξ(x)b(x, ξ(x)))
un,1(x, y). (9)

(2) Conditional on (St1 , . . . , Stn) = (x1, . . . , xn), the Nti are independent and respectively distributed

as ξ(xi).
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Observe that β(x) in (8) can be seen as the mean mutant production rate of a stationary x-type

population, and that χ(x, y) is the probability of fixation of a single y-type mutant entering a pure x-

type population with b(x, ·)-size-biased stationary size. In particular, χ(x, y) is the random analogue

of the traditional invasion fitness, in the sense proposed by Metz et al. [30].

This result shows that, in the limit of rare mutations, on the mutation timescale, the population

is always monomorphic and that the dominant trait of the population evolves as a jump process over

the trait space, where a jump corresponds to the appearance and fixation of a mutant type.

Let us denote by τn the n-th mutation time (τ0 = 0), by ρn the first time after time τn when the

population becomes monomorphic, and by Vn the single trait value surviving at time ρn (ρ0 = 0 if the

initial population is monomorphic). With this notation, we can state the following result, adressing

the main biological issue of Theorem 3.1, namely the convergence of the support of the measure νγ
·/γ

to the process S.

Theorem 3.2 The process (Sγ
t ; t ≥ 0) defined as

Sγ
t =

∞
∑

n=0

Vn1{ρn≤t/γ<ρn+1}

converges in law for the Skorohod topology on D(R+,X ) as γ → 0 to the process (St; t ≥ 0) with

initial state S0 = x characterized by (7).

Observe that such a convergence for the measure νγ
·/γ cannot hold because the population size

Nt in Theorem 3.1 is not a càdlàg process.

The proofs of the two preceding theorems are put to Section 6.2.

4 The canonical diffusion of adaptive dynamics

4.1 Notation and assumptions

For any integer r, we denote by Cr
b the set of r times differentiable functions with (image space ad

hoc and) all derivatives bounded.

For a two-type GL-population, we will make a slight abuse of notation by writing b(x, y, n(x), n(y))

instead of b(x, n(x)δx + n(y)δy) and the analogue notation for the death rate.

If ‖ · ‖ is the L1 norm, for any i = (n,m) and j such that ‖j − i‖ = 1, then let πij stand for

the transition probability of the embedded Markov chain associated to the two-type GL-population

without mutation. For example if j − i = (1, 0),

πij(x, y) =
nb(x, y, n,m)

nb(x, y, n,m) +mb(y, x,m, n) + nd(x, y, n,m) +md(y, x,m, n)
. (10)

From now on, we make the following additional assumptions.

• X = R
k for simplicity
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• for all n,m the functions b(·, ·, n,m) and d(·, ·, n,m) are in C2
b

• there are constants C1, C2 such that for any x, y ∈ X , for any i = (n,m) and j such that

‖j − i‖ = 1,

‖∇2πij(x, y)‖ ≤ C1, ‖H2πij(x, y)‖ ≤ C2, (11)

where ∇2 is the gradient and H2 the Hessian matrix taken w.r.t. the second variable

• the mutation kernels M(x, ·) satisfy

– for any x ∈ R
k, M(x, ·) has 0 expectation, i.e.

∫

Rk hM(x, dh) = 0

– the covariance matrix of M(x, ·) has Lipschitz entries and is uniformly elliptic in x, i.e.

there is a positive constant C such that
∫

Rk(s′h)2M(x, dh) ≥ C‖s‖2 for any s ∈ R
k.

– the third order moments of M(x, ·) are uniformly bounded in x.

Recall that there is a symmetric matrix σ(x) such that σ(x)σ(x)′ = σ(x)2 is the covariance

matrix of M(x, ·) which is called its square root. Then its uniform ellipticity ensures that σ(x) has

also Lipschitz entries in x.

4.2 Differentiability of the probability of fixation

In the following theorem, we state the existence of the partial derivatives of un,m(x, y), and show

that these derivatives are always sublinear in the initial condition. We also give a uniform bound for

the second-order derivatives of the fixation probability.

Theorem 4.1 (a) The fixation probability y 7→ un,m(x, y) is differentiable and its derivative vn,m(x, y)

satisfies

sup
n,m,x,y

‖vn,m(x, y)‖

n+m
< +∞. (12)

(b) In addition, y 7→ un,m(x, y) is in C2, and its second-order derivatives are bounded by c(n+m)2,

where c does not depend on x and y.

This theorem will be proved in Subsection 6.3.

It is easy to see from the last theorem and from the fact that ξ(x) is stochastically dominated by

a random variable with law (5) (with b = b̄ and c = c) that the function χ defined in (9) is in C2
b .

4.3 The canonical diffusion of adaptive dynamics

Here, we want to apply a limit of small mutation steps (weak selection) to the TSS S defined in the

previous section, in order to obtain the equivalent of the canonical equation of adaptive dynamics,

but in finite populations [8, 4].

The limit of small jumps is obtained by introducing a parameter ǫ > 0 and replacing the mutation

kernels M(x, ·) with their image by the application h 7→ ǫh. Of course, this scaling of jumps’ sizes
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has to be combined with a scaling of time in order to observe a non-trivial limit. This leads to the

following generator for the rescaled TSS (Zǫ
t ; t ≥ 0) (as will appear futher below, the factor 1/ǫ2 is

the right timescaling)

Aǫϕ(x) =
1

ǫ2

∫

Rk

(ϕ(x+ ǫh) − ϕ(x))β(x)χ(x, x + ǫh)M(x, dh). (13)

Fix a function ϕ in C3
b . For any x, h ∈ R

k and ǫ > 0, there exists 0 ≤ ǫ1 ≤ ǫ such that

ϕ(x+ ǫh) − ϕ(x) = ǫh′∇ϕ(x) +
ǫ2

2
h′Hϕ(x+ ǫ1h)h

where Hϕ(y) denotes the Hessian matrix of ϕ at y, and there exists 0 ≤ ǫ2 ≤ ǫ such that

χ(x, x+ ǫh) = χ(x, x) + ǫh′∇2χ(x, x+ ǫ2h),

where ∇2χ is the gradient of χ w.r.t. the second variable. Therefore, using the fact that Hϕ and

∇2χ are bounded Lipschitz functions, it takes only elementary computations to prove that

(ϕ(x + ǫh) − ϕ(x))χ(x, x + ǫh) = ǫ(h′∇ϕ(x))χ(x, x) + ǫ2(h′∇ϕ(x))(h′∇2χ(x, x))

+
ǫ2

2
(h′Hϕ(x)h)χ(x, x) +O(ǫ3‖h‖3)

where the O(ǫ3‖h‖3) is uniform in x ∈ R
k. Now, since the mutation kernel has zero expectation,

∫

Rk

(h′∇ϕ(x))χ(x, x)M(x, dh) = 0.

Combining these results, thanks to boundedness of the third-order moments of the mutation kernel,

we easily obtain for any ϕ ∈ C3
b , that Aǫϕ converges uniformly to the function A0ϕ defined as

A0ϕ(x) =

∫

Rk

(h′∇ϕ(x))β(x)(h′∇2χ(x, x))M(x, dh) +
1

2

∫

Rk

(h′Hϕ(x)h)β(x)χ(x, x)M(x, dh). (14)

In view of this, the following theorem is natural. Recall that σ(x) is the symmetric square root

matrix of the covariance matrix of M(x, ·), which is Lipschitz in x.

Theorem 4.2 If the family (Zǫ
0)ǫ>0 has bounded first-order moments and converges in law as ǫ→ 0

to a random variable Z0, then the process Zǫ generated by (13) with initial state Zǫ
0 converges in

law for the Skorohod topology on D(R+,R
k) to the diffusion process (Zt; t ≥ 0) with initial state Z0

unique solution to the stochastic differential equation

dZt = β(Zt)σ
2(Zt) · ∇2χ(Zt, Zt)dt +

√

β(Zt)χ(Zt, Zt)σ(Zt) · dBt (15)

where B is a standard k-dimensional Brownian motion.

Theorem 4.2 will be proved in Subsection 6.4.

Note that, by an elementary martingale (or exchangeability) argument, the neutral fixation prob-

ability un,m(x, x) equals m/(n +m), so that

χ(x, x) =
∑

n≥1

nb(x, n)P(ξ(x) = n)

E(ξ(x)b(x, ξ(x)))

1

n+ 1
=

1

E(ξ(x)b(x, ξ(x)))
E

(

ξ(x)b(x, ξ(x))

1 + ξ(x)

)

.
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Remark 4.3 In the case where X 6= R
k, this result is still valid, apart from the following technical

difficulties. First, for the process Zǫ to be well-defined, one needs to assume that scaling the mutation

law M(x, dh) cannot drive Zǫ out of X . This is true for example, when ǫ ≤ 1, if X is convex, or

if Supp(M(x, dh)) is convex for any x ∈ X . Second, uniqueness in law has to hold for the diffusion

with generator A0. For example, one can ensure the existence of a Lipschitz factorization σ(x)σ(x)′

of the covariance matrix of M(x, ·) by assuming that the function from X to the set of nonnegative

symmetric matrices mapping x to the covariance matrix of M(x, ·) can be extended to R
k in a C2

fashion (see [16]).

Remark 4.4 In the case where the mutation step law M(x, ·) has non-zero expectation, the calcu-

lation above shows that the first-order term in Aǫ does not vanish, so that the correct timescaling

is 1/ǫ (instead of 1/ǫ2), and the TSS process Zǫ can be shown to converge to the solution of the

deterministic ODE
dz

dt
= β(z)χ(z, z)

∫

Rk

hM(z, dh).

In this case, the main force driving evolution is the mutation bias. The mutation rate β(x) and the

fixation probability χ(x, x) only affect the speed of evolution.

Theorem 4.2 gives the equivalent of the canonical equation of adaptive dynamics [8, 4] when the

population is finite. It is no longer a deterministic ODE, but a diffusion process, in which the genetic

drift remains present, as a consequence of the population finiteness and of the asymptotic of weak

selection (ǫ→ 0).

Diffusion processes have long been used as tools for evolutionary biology, but mainly to describe

the fluctuations of allelic frequencies (see, among many others, [14, 13, 21]). In sparser works

[27, 18], a diffusion can describe the evolution of the dominant or mean value of a quantitative trait

in a population. Our process provides such a model, but it is grounded on a microscopic precise

modelling of the population dynamics, in a realistic way. In particular, the population size is not

fixed and may fluctuate randomly through time but remains finite because of the density-dependence.

The diffusion part in (15) gives the strength of genetic drift: its square is proportional to the

mutation rate β(x), the neutral fixation probability χ(x, x), and the covariance matrix of the mutation

step law M(x, dh). As for the deterministic drift part, observe the similarity with the standard

canonical equation of adaptive dynamics (1). This term gives the expression of the deterministic

strength driving evolution, which is often related in macroscopic evolutionary models to a fitness

gradient. In our case, the fitness is given by the function χ, which appears in the deterministic part

of (15) in the shape of its gradient with respect to the second variable, in a similar way as in (1).

Therefore, the ‘hill-climbing’ process of evolution occurs here, as in the classical models of adaptive

dynamics, in a fitness landscape y 7→ χ(x, y) that depends on the current state x of the population.

5 The logistic branching case

In this section, we restrict our attention to the structured logistic branching process described in the

Introduction and in Section 2. Since we seek explicit expressions for the drift and diffusion parts of

the canonical diffusion, we are only concerned with two-type populations with no mutation.
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5.1 Preliminaries

Since mutations are absent, we will usually call the first type (1) resident (or wild type) and the

second type (2) mutant. Then for i, j ∈ {1, 2}, bi (resp. di) is the birth (resp. death) rate of type i,

and cij is the competition rate felt by an individual of type i from an individual of type j.

Formally, the two-type logistic branching process is a bivariate integer-valued continuous-time

Markov process (Xt, Yt; t ≥ 0) with rate matrix Q = (qij; i ∈ N
2, j ∈ N

2), where

qij =



































b1n if i = (n,m) and j = (n+ 1,m)

b2m if i = (n,m) and j = (n,m+ 1)

c11n(n− 1) + c12nm+ d1n if i = (n,m) and l = (n− 1,m)

c21mn+ c22m(m− 1) + d2m if i = (n,m) and j = (n,m− 1)

−rnm if i = (n,m) and j = (n,m)

0 otherwise,

and where the total jumping rate rnm is the sum of the four jumping rates from (n,m).

The law of this process conditioned on fixed initial state (n,m) will be denoted by Pn,m. Let B

denote the birth vector, C the competition matrix, and D the death vector

B =

(

b1
b2

)

, C =

(

c11 c12
c21 c22

)

, D =

(

d1

d2

)

.

To comply with the GL-population framework, we will always consider that c11c12c21c22 6= 0. As-

suming that the presence of a mutant form does not modify the dynamical characteristics (b, c, d)

of the resident, we may focus on deviations from the neutral case so as to express the dynamical

parameters as

B = b1 +

(

0

λ

)

, C = c1 −

(

0 0

δ δ

)

+

(

0 α

0 α

)

−

(

0 ε

ε 0

)

, D = d1 −

(

0

σ

)

.

In words, deviations from the neutral case are a linear combination of five fundamental (additive)

selection coefficients λ, δ, α, ε, σ, that are chosen to be positive when they confer an advantage to

the mutant. In the sequel, we will see that it is indeed convenient to assess deviations to the neutral

case with the help of selection coefficients in terms of

1. fertility (λ, as the usual letter standing for growth rate in discrete-time deterministic models)

: positive λ means increased mutant birth rate

2. defence capacity (δ, as in defence) : positive δ means reduced competition sensitivity of

mutant individuals w.r.t. the total population size

3. aggressiveness (α, as in aggressive, or attack) : positive α means raised competition pressure

exerted from any mutant individual onto the rest of the population

4. isolation (ε, as in exclusion) : positive ε means lighter cross-competition between different

morphs, that would lead, if harsher, to the exclusion of the less abundant one
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5. survival (σ, as in survival) : positive σ means reduced mutant death rate.

Under neutrality, an elementary martingale argument shows that the fixation probability equals the

initial mutant frequency p := m/(m+ n), that is,

u = p.

The goal of the following theorem is to unveil the dependence of u upon λ, δ, α, ε, σ, when they

slightly deviate from 0. It is proved in Subsections 5.3 and 5.4.

Theorem 5.1 As a function of the multidimensional selection coefficient s = (λ, δ, α, ε, σ)′ , the

probability u is differentiable, and in a neighbourhood of s = 0 (selective neutrality),

u = p+ v′.s+ o(s), (16)

where the (weak) selection gradient v = (vλ, vδ, vα, vε, vσ)′ can be expressed as

vι
n,m = p (1 − p) gι

n+m ι 6= ε,

vε
n,m = p (1 − p) (1 − 2p) gε

n+m

where the g’s depend solely on the resident’s characteristics b, c, d, and on the total initial population

size n+m. They are called the invasibility coefficients.

The invasibility coefficients of a pure resident population are interesting to study, as they provide

insight as to how the fixation probability deviates from p as the selection coefficients of the mutant

deviate from 0. Their name is due to the fact that they only depend on the resident’s characteristics

and are multipliers of the mutant’s selection coefficients [26]. In the next subsection, we apply this

result to the canonical diffusion of adaptive dynamics. The remainder of the section is then devoted

to the proof of the theorem and the study of the invasibility coefficients.

5.2 The canonical diffusion for logistic branching populations

Consider a logistic branching population satisfying the conditions given in Section 2.2.1. Recall

that b(x) is the birth rate of x-type individuals, and c(x, y) is the competition rate felt by x-type

individuals from y-type individuals. Assume as in Section 4.1 that b(·) and c(·, ·) are in C2
b . Since

c(·, ·) ≥ c, it is then elementary to check that (11) holds. By (4), the invasion fitness is given by

χ(x, y) =
∑

n≥1

nP(ξ(x) = n)

E(ξ(x))
un,1(x, y) =

∑

n≥1

e−θ(x) θ(x)
n−1

(n − 1)!
un,1(x, y),

where θ(x) = b(x)/c(x, x).

Observe that

d

dy
∣

∣

y=x

(

c(x, x) c(x, y)

c(y, x) c(y, y)

)

= ∇1c(x, x)

(

0 0

1 1

)

+ ∇2c(x, x)

(

0 1

0 1

)
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where, for bivariate f , ∇if is the gradient of f w.r.t. the i-th variable (i = 1, 2).

Recall Theorem 4.2 and the canonical diffusion of adaptive dynamics

dZt = β(Zt)σ
2(Zt) · ∇2χ(Zt, Zt)dt +

√

β(Zt)χ(Zt, Zt)σ(Zt) · dBt (17)

where B is a standard k-dimensional Brownian motion. From Theorem 5.1 and elementary compu-

tations, we get

χ(x, x) = e−θ(x)
∑

n≥1

θ(x)n−1

(n+ 1)(n − 1)!
=
e−θ(x) − 1 + θ(x)

θ(x)2

and

∇2χ(x, x) = e−θ(x)(aλ(x)∇b(x) − aδ(x)∇1c(x, x) + aα(x)∇2c(x, x)),

where for ι = λ, δ, α,

aι(x) =
∞
∑

n=1

vι
n,1(x)

θ(x)n−1

(n − 1)!
=

∞
∑

n=1

nθ(x)n−1

(n+ 1)2(n− 1)!
gι
n+1(x), (18)

and gλ, gδ, gα are the invasibility coefficients in terms of resp. fertility, defence, aggressiveness. Since

the coefficients aι appear as factors of the gradients of the microscopic parameters b and c in the

deterministic part of the canonical diffusion (17), we call them the adaptive slopes. Explicit formulae

for invasibility coefficients and adaptive slopes are given in Subsection 5.4.

Remark 5.2 Observe that ε-invasibilities do not appear in this computation, because of the symme-

try between resident and mutant types in the competition kernel. One could include ε-invasibilities

in the formula of ∇2χ(x, x) by assuming a competition matrix of the form
(

c1(x, x) c1(x, y)

c2(y, x) c2(y, y)

)

for some functions c1 and c2 coinciding on the diagonal. Such an asymmetry between resident and

mutant would not be unrealistic biologically and could be explained by the resident constructing its

own niche. This ecological adaptation of the resident to its medium would then result in a difference

in the competition felt by x from y according to whether x is the resident or not.

Example. Let us consider a one-dimensional trait x ∈ R in a population undergoing symmetric

competition c(x, y) = c(|x − y|). This type of competition kernel has been considered in numerous

earlier works, see e.g. [7]. As a consequence, ∂c/∂x(x, x) = ∂c/∂y(x, x) = 0. We may and will

assume that c(0) = 1. We still denote by σ(x) the standard deviation of the mutation step law

M(x, ·). Then, thanks to forthcoming Proposition 5.14 about adaptive slopes (18), the canonical

diffusion of adaptive dynamics is given by

dZt = r(Zt)dt + σ(Zt)µ(Zt)
1/2

(

b(Zt)

1 − e−b(Zt)
− 1

)1/2

dBt

where

r(x) =
µ(x)σ(x)2

2

(

1 +
4

b(x)
+

b(x) − 4

1 − e−b(x)

)

b′(x).

In forthcoming work, this diffusion and other examples will be investigated.
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5.3 Fixation probability

Here, we go back to the two-type population with no mutation and characterize the fixation prob-

ability thanks to a discrete harmonic equation (corresponding to Kolmogorov forward equations).

Then we prove Theorem 5.1.

Proposition 5.3 The fixation probability un,m is the unique bounded solution to











(∆u)n,m = 0 for (n,m) 6∈ Ω1 ∪ Ω2

un,m = 0 for (n,m) ∈ Ω1

un,m = 1 for (n,m) ∈ Ω2,

(19)

where ∆ is the harmonic (its coefficients sum to zero) operator defined for any doubly indexed sequence

w as

(∆w)n,m = rn,mwn,m − b1nwn+1,m − b2mwn,m+1

− n
(

c11(n− 1) + c12m+ d1

)

wn−1,m −m
(

c21n+ c22(m− 1) + d2

)

wn,m−1. (20)

Note that in the previously displayed equation, whenever a term is not defined, the multiplying

coefficient is zero. The fact that un,m satisfies (19) follows from the Markov property at the first

jump time of (X,Y ), and the uniqueness relies on Lemma 5.4 below.

Lemma 5.4 Consider a subset Γ of N
2 such that TΓ < +∞ Pn,m-a.s. for any n,m ≥ 0. Then, for

any function f : Γ → R such that, |f(n,m)|/(n +m+ 1) is bounded on Γ, the equation

{

(∆h)n,m = 0 for (n,m) 6∈ Γ

h(n,m) = f(n,m) for (n,m) ∈ Γ
(21)

admits at most one solution h such that |h(n,m)|/(n +m+ 1) is bounded.

Proof. It suffices to prove that (21) with f ≡ 0 admit h ≡ 0 as unique sublinear solution. Let

h be such a function and fix n,m ≥ 0. Then (h(Xt∧TΓ
, Yt∧TΓ

); t ≥ 0) is a Pn,m-semi-martingale for

t ≤ TΓ. Since, by Proposition 2.3, supt≥0 En,m(Xt+Yt)) < +∞, (h(Xt, Yt))t≥0 is actually a uniformly

integrable martingale. Applying the stopping theorem at time TΓ, we get

0 = En,m(h(XTΓ
, YTΓ

)1TΓ<+∞) = En,m(h(X0, Y0)) = h(n,m),

which completes the proof. 2

Proof of Theorem 5.1. As seen in Proposition 5.3, the Kolmogorov forward equations translate

into a discrete harmonic equation satisfied by u with boundary condition 1 on Ω1, and 0 on Ω2,

written as (∆u)n,m = 0, where ∆ is defined in (20). Combining (16) and (20), and identifying

18



second-order terms, we get

(∆0v
ι)n,m =































































nm

(n+m)(n+m+ 1)
if ι = λ

nm

n+m
if ι = δ

nm

(n+m)(n+m− 1)
if ι = α, σ

nm (n−m)

(n+m)(n+m− 1)
if ι = ε,

(22)

where ∆0 corresponds to the neutral case of ∆: for any doubly indexed w,

(∆0w)n,m = (n+m)
[

b+ c(n +m− 1) + d
]

wn,m − bnwn+1,m − bmwn,m+1

− n
[

c(n+m− 1) + d
]

wn−1,m −m
[

c(n +m− 1) + d
]

wn,m−1 n,m ≥ 0. (23)

We know from Theorem 4.1 that the vector v = (vλ, vδ , vα, vε, vσ)′ is sublinear in (n,m), that is,

(‖vn,m‖/(n +m))n,m is bounded. Since the r.h.s. in (22) are all sublinear, Lemma 5.4 ensures that

v is the unique sublinear vector in (n,m) solving (22).

Thanks to this uniqueness result, it is sufficient to show that there are solutions of (22) of the

following form

vι
n,m =



















nm

n+m
uι

n+m if ι = λ, δ, α, σ

nm (n−m)

n+m
uι

n+m if ι = ε,

(24)

where for ι 6= ε, uι is a bounded real sequence indexed by N − {0, 1} (uι
1 has no effect on the values

of vι
1,0 and vι

0,1), and uε is a real sequence indexed by N − {0, 1, 2} (uε
1 and uε

2 have no effect on the

corresponding values of vε
n,m) such that (nuε

n)n is bounded. The proof will then end up by writing

gι
n =











nuι
n if ι = λ, δ, α, σ, n ≥ 2

n2 uι
n if ι = ε, n ≥ 3.

(25)

In this setting, (22) holds iff















































(Luλ)n =
1

n(n+ 1)
and (Luδ)n =

1

n
n ≥ 2,

(Luα)n = (Luσ)n =
1

n(n− 1)
n ≥ 2,

(L′uε)n =
1

n(n− 1)
n ≥ 3,

(26)
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where L (resp. L′) is the endomorphism of the vector space L2 (resp. L3) of real sequences indexed

by N − {0, 1} (resp. by N − {0, 1, 2}) defined as























(Lw)n = −b
n+ 2

n+ 1
wn+1 +

[

b+ c(n− 1) + d
]

wn − (n − 2)

(

c+
d

n− 1

)

wn−1 n ≥ 2

(L′w)n = −b
n+ 3

n+ 1
wn+1 +

[

b+ c(n− 1) + d
]

wn − (n − 3)

(

c+
d

n− 1

)

wn−1 n ≥ 3.

(27)

The following lemma ends the proof.

Lemma 5.5 (existence) There are solutions uλ, uδ , uα, uε, uσ of (26) such that uλ, uδ , uα, uσ and

(nuε
n)n are bounded.

This lemma will be proved in the following subsection, by actually displaying explicit expressions for

these solutions. 2

5.4 Invasibility coefficients and adaptive slopes

In this subsection, we give the explicit formulae for the invasibility coefficients gι of Theorem 5.1 and

the adaptive slopes aι of (18).

5.4.1 Preliminary results

For k ≥ −2, let e(k) be the sequence defined for n ≥ 2 (3 if k = −2) by

e(k)
n =

1

n+ k
,

and for k = 2, 3, let δ(k) denote the Dirac mass at k

δ(k)
n =

{

1 if n = k

0 otherwise.

Then it is elementary to check that for k ≥ 1,

Le(k) = −
b

k
e(1) +

d

k
e(−1) − b

k − 1

k
e(k+1) + (b− (k + 1)c+ d)e(k) + (k + 1)(c −

d

k
)e(k−1), (28)

and that

Le(−1) = −2be(0) + be(1) + be(−1) + (c+ d)δ(2). (29)

Likewise, for any k ≥ 1 and for k = −1,

L′e(k) = −
2b

k
e(1) +

2d

k
e(−1) − b

k − 2

k
e(k+1) + (b− (k + 1)c+ d)e(k) + (k + 2)(c −

d

k
)e(k−1), (30)

and also

L′e(−2) = −2(b+ d)e(−1) + be(1) + (b+ c+ d)e(−2) + (c+
d

2
)δ(3). (31)
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Next observe that (26) can be written in the form


























Luλ = e(0) − e(1) and Luδ = e(0),

Luα = Luσ = e(−1) − e(0),

L′uε = e(−1) − e(0),

(32)

so it is likely that the u’s can be expressed as linear combinations of the e(k)’s. Actually, we will show

they can be expressed as such linear combinations, with a potential extra additive term whose image

by L (resp. L′) is proportional to δ(2) (resp. δ(3)). So we end these preliminaries with displaying two

sequences: one in L2 whose image by L is δ(2), and one in L3 whose image by L′ is δ(3).

Assume that, at time 0, all individuals are assigned distinct labels. We denote by Pn the law of

the logistic branching process (b, c, d) starting from n individuals distinctly labelled at time 0, where

the label of an individual is transmitted to its offspring. In other words, under P, we keep track of

the whole descendance of each ancestral individual.

Then for k=2,3, let Tk denote the first time when the total population size (i.e., the unlabelled

process) is k. Finally, we define

q(k)
n := Pn( at time Tk, the k living individuals have k distinct labels ).

In the tree terminology, q(k) is the probability that all individuals in the first surviving k-tuple have

different ancestors at time 0. In particular, q
(k)
k = 1.

Lemma 5.6 Let D(2) ∈ L2 and D(3) ∈ L3 be the sequences defined as

D(2)
n =

q
(2)
n

κ(n− 1)
n ≥ 2,

D(3)
n =

q
(3)
n

κ′(n− 1)(n − 2)
n ≥ 3,

where

κ = b

(

1 −
2q

(2)
3

3

)

+ c+ d, κ′ =
b

2

(

1 −
q
(3)
4

2

)

+ c+
d

2
.

Then LD(2) = δ(2) and L′D(3) = δ(3).

Moreover, the sequences q(k) satisfy the following property.

Lemma 5.7 For any k ≥ 2, (q
(k)
n )n has a nonzero limit q

(k)
∞ as n→ ∞.

Proofs of Lemmas 5.6 and 5.7 are put to Subsection 5.5.1.

The next (sub)subsections are devoted to results related to invasibility coefficients and adaptive

slopes, which prove Lemma 5.5. In Propositions 5.8, 5.9, 5.11 and 5.13, we display the solutions

of (26) such that uι (ι 6= ε) and (nuε
n)n are bounded (therefore proving Lemma 5.5). We also

specify the behaviour of each invasibility coefficient as the population size grows to infinity. Proofs

of Propositions 5.11 and 5.13 are to be found in Subsection 5.5.2. Proposition 5.14 gives explicit

expressions for the adaptive slopes.

21



5.4.2 Results for the λ-invasibility

Here, we must find a bounded sequence uλ in L2 such that Luλ = e(0) − e(1).

Recall from Lemma 5.6 that D(2) ∈ L2 is a sequence such that LD(2) = δ(2), and

D(2)
n =

q
(2)
n

κ(n− 1)
n ≥ 2,

where q
(2)
n is the probability that the first surviving pair in the (labelled) logistic branching process

(b, c, d) have two distinct ancestors in the initial n-tuple.

Since, by (29),

Le(−1) = −2be(0) + be(1) + be(−1) + (c+ d)δ(2),

and by (28)

Le(1) = de(−1) + (−2c+ d)e(1) + 2(c − d)e(0),

we can readily state the following

Proposition 5.8 (fertility) The sequence uλ defined as

uλ = −
d

2bc
e(−1) +

d(c + d)

2bc
D(2) +

1

2c
e(1), (33)

is a bounded sequence of L2 such that Luλ = e(0)−e(1). Then the invasibility coefficient gλ associated

to fertility (gλ
n = nuλ

n) is given by

gλ
n = −

dn

2bc(n− 1)
+
d(c+ d)

2bcκ

nq
(2)
n

n− 1
+

n

2c(n + 1)
n ≥ 2. (34)

In particular,

lim
n→∞

gλ
n =

b− d+ d(c+ d)q
(2)
∞ /κ

2bc

5.4.3 Results for the α and σ-invasibilities

Here, we must find bounded sequences uα and uσ in L2 such that Luα = Luσ = e(−1) − e(0). Exactly

in the same way as for the λ-invasibility coefficient, we can readily make the needed statement.

Proposition 5.9 (aggressiveness, survival) The sequences uα and uσ defined as

uα = uσ =
2c− d

2bc
e(−1) −

(2c− d)(c+ d)

2bc
D(2) +

1

2c
e(1), (35)

are bounded sequences of L2 such that Luα = Luσ = e(−1) − e(0). Then the invasibility coefficients

associated to aggressiveness (gα
n = nuα

n) and survival, (gσ
n = nuσ

n) are given by

gα
n = gσ

n =
(2c− d)n

2bc(n − 1)
−

(2c− d)(c + d)

2bcκ

nq
(2)
n

n− 1
+

n

2c(n + 1)
n ≥ 2. (36)

In particular,

lim
n→∞

gα
n = lim

n→∞
gσ
n =

b+ 2c− d− (2c − d)(c+ d)q
(2)
∞ /κ

2bc
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5.4.4 Results for the δ-invasibility

For δ and ε-invasibility coefficients, the task is mathematically more challenging. A side-effect is

that we only obtain fine results in the case when the resident species has no natural death rate.

This shortcoming is not very disturbing, however, because we are especially interested in precisely

those populations with stationary behaviour (which are those needed for applications to adaptive

dynamics). From now on, we assume that d = 0.

Recall that we must find a bounded sequence uδ in L2 such that Luδ = e(0).

Lemma 5.10 Let Φ be the sequence of L2 defined recursively as Φ2 = 1 and

c(n+ 2)Φn+1 + [b− c(n + 1)] Φn − b
n− 2

n− 1
Φn−1 = 0. (37)

Then the sequence (nΦn)n converges to a nonzero finite limit Φ∞, and the (thus well-defined) sum

S :=
∑

n≥2

n−1Φn

has 3c− bS = cΦ∞.

Proposition 5.11 (defence capacity) Define the sequence φ of L2 as

φn := Φn/cΦ∞ n ≥ 2.

Then, with φ1 := 1/2c, the sequence uδ of L2 defined as

uδ :=
∑

k≥1

φke
(k)

is a bounded sequence such that Luδ = e(0). The invasibility coefficient gδ associated to defence

capacity (gδ
n = nuδ

n) is given by

gδ
n =

∑

k≥1

nφk

n+ k
n ≥ 2. (38)

In particular,

gδ
n ∼

1

c
ln(n) as n→ ∞.

The proofs of these results are given in Subsection 5.5.

5.4.5 Results for the ε-invasibility

Recall from Lemma 5.6 that D(3) is a sequence in L3 such that LD(3) = δ(3), and

D(3)
n =

q
(3)
n

κ′(n− 1)(n − 2)
n ≥ 3,

where q
(3)
n is the probability that the first surviving triple in the (labelled) logistic branching process

(b, c, d) have three distinct ancestors in the initial n-tuple. Now as in the previous problem (δ-

invasibility), we assume that the resident species has no natural death rate, that is, d = 0.

Here, we must find a sequence uε in L3 such that (nuε
n)n is bounded, and L′uε = e(−1) − e(0). Recall

θ = b/c.
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Lemma 5.12 Let Ψ be the sequence of L3 defined recursively as Ψ3 = 1 and

c(n + 3)Ψn+1 + [b− c(n+ 1)] Ψn − b
n− 3

n− 1
Ψn−1 = 0. (39)

Then the sequence (n2Ψn)n converges to a nonzero finite limit Ψ∞, and the (thus well-defined) sums

S :=
∑

n≥3

n−1Ψn and Σ :=
∑

n≥3

Ψn

have

Σ + 2θS = Ψ∞ + (θ − 3)Σ = 5.

Proposition 5.13 (isolation) Define the sequence ψ of L3 as

ψn := −Ψn/cΨ∞ n ≥ 3.

Then, with

ψ−2 = −
1

b(θ + 3)

ψ−1 =
θ + 1

b(θ + 3)

ψ1 =
2θ

3c(θ + 3)

ψ2 =
Σ

cΨ∞
−

2θ + 3

3c(θ + 3)
,

the sequence uε of L3 defined as

uε :=
∑

k≥−2,k 6=0

ψke
(k) +

1

θ(θ + 3)
D(3)

is such that (nuε
n)n is bounded and L′uε = e(−1) − e(0). Then the invasibility coefficient gε associated

to isolation (gε
n = n2uε

n) is given by

gε
n =

∑

k≥1

n2ψk

n+ k
+

1

κ′θ(θ + 3)

n2q
(3)
n

(n − 1)(n − 2)
n ≥ 3. (40)

In particular,

gε
n ∼

1

c
ln(n) as n→ ∞.

The proofs of these results are given in the Subsection 5.5.
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5.4.6 Adaptive slopes

We will denote by q
(2)
n (x), κ(x) and φn(x) the quantities appearing in Propositions 5.8, 5.9 and Propo-

sition 5.11 when the resident population has trait x (and dynamical characteristics (b(x), c(x, x), 0)).

The adaptive slopes appearing in the deterministic part of the canonical diffusion (15) can be

expressed as follows.

Proposition 5.14 The coefficients aι for ι = λ, δ, α can be expressed in terms of the microscopic

parameters b(x), θ(x), q
(2)
n (x), κ(x) and φn(x) as

aλ(x) =
eθ(x)(θ(x)2 − 3θ(x) + 4) − θ(x) − 4

2b(x)θ(x)2
(41)

aα(x) =
eθ(x)(θ(x)2 − θ(x) + 2) − θ(x) − 2

2b(x)θ(x)2
−

1

κ(x)θ(x)

∞
∑

n=1

nq
(2)
n+1(x)θ(x)

n−1

(n+ 1)!
(42)

aδ(x) =
∑

k≥1

φk(x)

θ(x)k+2

∫ θ(x)

0
uk−1(eu(u2 − u+ 1) − 1)du (43)

=
1

θ(x)3

∫ θ(x)

0
(eu(u2 − u+ 1) − 1)πx

(

u

θ(x)

)

du (44)

where for k ≥ 1,

∫ θ

0
uk−1(eu(u2 − u+ 1) − 1)du = eθ

(

θk+1 − (k + 2)θk + (k + 1)2(k − 1)!

k−1
∑

i=0

(−1)iθk−i−1

(k − i− 1)!

)

− (−1)k−1(k + 1)2(k − 1)! −
θk

k
(45)

and for any v ∈ [0, 1), πx(v) :=
∑

k≥1 φk(x)v
k−1. Moreover, πx is solution on [0, 1) to

u2(1 − u)π′′x(u) + u(θ(x)u(1 − u) + 2 − 3u)π′x(u) − 2πx(u) +
θ(x)

b(x)
= 0. (46)

Proof. It follows from Proposition 5.8 that

aλ(x) =
∞
∑

n=1

nθ(x)n−1

2c(x, x)(n + 2)(n+ 1)(n − 1)!

and from Proposition 5.9 that

aα(x) =

∞
∑

n=1

θ(x)n−1

b(x)(n + 1)(n − 1)!
+

∞
∑

n=1

nθ(x)n−1

2c(x, x)(n + 2)(n + 1)(n − 1)!
−

∞
∑

n=1

q
(2)
n+1(x)θ(x)

n−1

θ(x)κ(x)(n + 1)(n − 1)!
.

Elementary calculations then give (41) and (42).

For the δ-invasibility, using Proposition 5.11 and switching the two sums, we get

aδ(x) =
∑

k≥1

φk(x)
∑

n≥1

n2θ(x)n−1

(n+ k + 1)(n + 1)!
.
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The following observation

∑

n≥1

n2un−1

(n+ 1)!
=

d

du



u
d

du

∑

n≥1

un

(n+ 1)!



 =
d

du

(

u
d

du

(

eu − 1

u

))

=
eu(u2 − u+ 1) − 1

u2

yields (43). (44) follows from switching the sum and the integral in (43) which is standard since

φn(x) = O(1/n).

Equation (45) can be checked using the fact that eu(uk − kuk−1 + k(k − 1)uk−2 + . . .+ (−1)kk!)

is a primitive of euuk.

Finally, (46) can be deduced from the facts that φ1(x) = 1/2c(x, x) = θ(x)/2b(x) and

∀n ≥ 2, (n+ 2)φn+1(x) + (θ(x) − n− 1)φn(x) − θ(x)
n− 2

n− 1
φn−1(x) = 0.

Multiplying these equations by (n − 1)xn+1 and summing over n ≥ 2 yields

0 =
∑

n≥3

(n+ 1)(n − 2)φn(x)un + θ(x)
∑

n≥2

(n− 1)φn(x)un+1

−
∑

n≥2

(n+ 1)(n − 1)φn(x)un+1 − θ(x)
∑

n≥2

(n− 1)φn(x)un+2

=
d

du

(

u4 d

du

(

πx(u) − φ1(x) − φ2(x)u

u

))

+ θ(x)u3π′x(u) − u
d

du

(

u3π′x(u)
)

− θ(x)u4π′x(u)

which finally gives (46). 2

5.5 Proofs

5.5.1 Proofs of Lemmas 5.6 and 5.7

Proof of Lemma 5.6. It is quite elementary to check the result by standard applications of the

Markov property under P, but we prefer to give a more conceptual proof. We start with D(2).

Under P, we only keep track of two types at time t, i.e. the number Xt of residents, and the number

Yt of mutants, whereas under Pn, there are n types at time 0, say 1, 2, . . . , n. Recall individuals of

all types are exchangeable (because in this setting, the discrete operators ∆0 and L are associated

to selective neutrality). Set

wn,m := Pn,m(XT2 = YT2 = 1).

Now by exchangeability,

wn,m =
n
∑

i=1

n+m
∑

j=n+1

Pn+m( at T2, type i and type j have one representative each )

= nmPn+m( at T2, type 1 and type 2 have one representative each ),

and once again by exchangeability,

q(2)n =
∑

1≤i<j≤n

Pn( at T2, type i and type j have one representative each )

=

(

n

2

)

Pn( at T2, type 1 and type 2 have one representative each ).
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As a consequence,

wn,m =
2nm

(m+ n)(m+ n− 1)
q
(2)
m+n.

Observe that by definition w is harmonic (in the sense that ∆0w = 0) on the complementary of

Ω1 ∪Ω2 ∪{(1, 1)}. Then as in the previous subsection, with vn = q
(2)
n /(n− 1), we get that (Lv)n = 0

for any n ≥ 3. The proof is completed by checking that (Lv)2 = κ 6= 0.

As to D(3), set

wn,m := En,m(XT3YT3(XT3 − YT3)) = 2Pn,m((XT3 , YT3) = (2, 1)) − 2Pn,m((XT3 , YT3) = (1, 2)).

Now by exchangeability

Pn,m((XT3 , YT3) = (1, 2))

=

n
∑

i=1

n+m
∑

j=n+1

Pn+m( at T3, type i has one representative and type j has two )

+
∑

1≤i≤n

∑

n+1≤j<k≤n+m

Pn+m( at T3, types i, j and k have one representative each )

= nmPn+m( at T3, type 1 has one representative and type 2 has two )

+ n
m(m− 1)

2
Pn+m( at T3, types 1, 2 and 3 have one representative each )

Since Pn,m((XT3 , YT3) = (1, 2)) = Pm,n((XT3 , YT3) = (2, 1)), the corresponding first terms in the

difference cancel out, and we are left with

wn,m = nm(n−m)Pn+m( at T3, types 1, 2 and 3 have one representative each ).

But again we get an expression involving the last displayed probability as

q(3)n =

(

n

3

)

Pn( at T3, types 1, 2 and 3 have one representative each ),

so that

wn,m =
6nm(n−m)

(m+ n)(m+ n− 1)(m+ n− 2)
q
(3)
m+n.

This time w is harmonic on the complementary of Ω1 ∪ Ω2 ∪ {(1, 1), (1, 2), (2, 1)}. Then with vn =

q
(3)
n /(n − 1)(n − 2), we get that (L′v)n = 0 for any n ≥ 4. The proof is completed by checking that

(L′v)3 = κ′ 6= 0. 2

Proof of Lemma 5.7. From [25], we know that ∞ is an entrance boundary for the probabilities

Pn, n ≥ 1, so that P∞ and q
(k)
∞ are properly defined for any k ≥ 1. At time t, we denote by Zt

the number of living individuals and by Nt the number of types represented. Obviously, under P∞,
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Zt → ∞ as t → 0+. As to N , since it is a nonincreasing function of time, it has a right-limit

N0+ ≤ ∞ at t = 0. Next we want to show that

∃k0 ≥ 2, q(k0)
∞ = 0 ⇒ P∞(N0+ ≤ k0) = 1. (47)

This will end the proof of the Lemma. Indeed, N0+ ≤ k0 means that, under P∞, there are at most

k0 individuals whose total descendance at any time t is Zt. Then, conditional on these individuals,

Z would be dominated by a binary logistic branching process starting at k0, which contradicts the

fact that Z0+ = +∞. Conclude by summing over all possible k0-tuples.

Now, we prove (47). Assume there is k0 ≥ 2 such that q
(k0)
∞ = 0. Since for k ≥ k0, q

(k0)
n > q

(k)
n q

(k0)
k , we

get that q
(k)
∞ = 0 for all k ≥ k0. Recall that Tj is the first hitting time of j by Z. For n ≥ j ≥ k ≥ k0,

q(k)
n > Pn(NTj = k,NTk

= k)

> Pn(NTj = k)C(j, k),

where C(j, k) is the probability that conditional on Tj = k, after picking k representative individuals

at Tj (one for each type), the first j − k events after Tj are the deaths of all non-representative

individuals. Because this probability only depends on j and k, we get that P∞(NTj = k) = 0 for all

j ≥ k ≥ k0. As a consequence,

P∞(NTj ≤ k0) = 1.

But under P∞, limj→∞ Tj = 0 a.s., so that P∞(N0+ ≤ k0) = 1. 2

5.5.2 Proofs for δ and ε-invasibilities

Proof of Lemma 5.10. The proof stems immediately from the two following claims. Claim 1 will

also be helpful in the proof of Proposition 5.11. 2

Claim 1. Assume that (nΦn)n converges to a finite limit Φ∞, where (Φn)n is defined in (37).

Then the real number S :=
∑

n≥2 n
−1Φn and the sequence W :=

∑

k≥2 Φke
(k) of L2 are well-defined,

and

(i) cΦ∞ = 3c− bS

(ii) LW = cΦ∞e
(1).

Claim 2. The sequence (nΦn)n converges to a nonzero finite limit.

Proof of Claim 1. To prove (i), let

βn := (n + 1)Φn and γn := (n− 1)Φn n ≥ 2, (48)

so that

lim
n→∞

βn = lim
n→∞

γn = Φ∞,
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and, thanks to (37),

βn+1 − βn = −
θ

n− 1
(γn − γn−1) n ≥ 2, (49)

with γ1 = 0. As a consequence, by Abel’s transform, we get

S =
∑

n≥2

γn

(

1

n− 1
−

1

n

)

=
∑

n≥2

γn − γn−1

n− 1

= −θ−1
∑

n≥2

(βn+1 − βn) = −θ−1(Φ∞ − β2)

= (3 − Φ∞)/θ.

As for (ii), thanks to (28) and (29), and by continuity of linear operators,

LW = lim
l→∞

l
∑

k=2

ΦkLe
(k)

= lim
l→∞

l
∑

k=2

Φk

(

−
b

k
e(1) − b

k − 1

k
e(k+1) + [b− (k + 1)c]e(k) + (k + 1)ce(k−1)

)

= lim
l→∞







−b

(

l
∑

k=2

k−1Φk

)

e(1)− b

l+1
∑

i=2

i− 2

i− 1
Φi−1e

(i)+

l
∑

k=2

[b− (k + 1)c]Φke
(k)+

l−1
∑

j=1

c(j + 2)Φj+1e
(j)







= −bSe(1) + lim
l→∞

{

l−1
∑

k=2

(

−b
k − 2

k − 1
Φk−1 + [b− (k + 1)c]Φk + c(k + 2)Φk+1

)

e(k)

−b
l − 2

l − 1
Φl−1e

(l) − b
l − 1

l
Φle

(l+1) + [b− (l + 1)c]Φl + 3cΦ2e
(1)

}

= (3c − bS)e(1),

which ends the proof. 2

Proof of Claim 2. We split this proof into the four following steps (recall (48))

(i) if (nΦn)n converges to a finite limit Φ∞, then Φ∞ 6= 0

(ii) (βn)n has constant sign for large n

(iii) (βn)n is bounded

(iv) (βn)n converges.

Since we are only interested in the asymptotic properties of the sequences (Φn)n, (βn)n and (γn)n,

we will implicitly assume throughout this proof that θ/(n+ 1) < 1, that is, n ≥ θ.
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(i) If Φ∞ exists, then thanks to Claim 1, we can define W =
∑

k≥2 Φke
(k) and the doubly indexed

sequence w as

wn,m =
nm

n+m
Wn+m (n,m) ∈ N × N \ (0, 0).

Because W is bounded, w is sublinear. Assume Φ∞ = 0. Then by Claim 1, LW = 0, and the

same calculations as those yielding (26) and (27) show that ∆0w = 0. The contradiction comes

with Lemma 5.4, which implies that the null sequence is the only sublinear doubly indexed sequence

which vanishes on Ω1 ∪ Ω2 and is in the kernel of ∆0.

(ii) First observe that (37) reads

βn+1 =

(

1 −
θ

n+ 1

)

βn + θ
n− 2

n(n− 1)
βn−1, (50)

so if there is n0 ≥ θ such that βn0βn0−1 ≥ 0, then a straightforward induction shows that (βn)n≥n0

never changes sign. Now, we prove that if no such n0 exists, then (βn)n converges to 0, which

contradicts (i). Indeed, assume that for all n ≥ θ, βnβn−1 < 0. Then for any n ≥ θ + 1, if βn−1 < 0,

then βn > 0 and βn+1 < 0, so that

(

1 −
θ

n+ 1

)

βn < −θ
n− 2

n(n− 1)
βn−1,

which can be written as
(

1 −
θ

n+ 1

)

|βn| < θ
n− 2

n(n− 1)
|βn−1|,

and we would get the same inequality if βn−1 > 0. This would imply that |βn|/|βn−1| would vanish

as n grows, and so would βn.

(iii) Without loss of generality, we can assume thanks to (ii) that there is n0 such that βn ≥ 0 for all

n ≥ n0 (otherwise change β for −β). Next, we prove that for all n ≥ n0, βn+1 < max(βn, βn−1). It

is then elementary to see that (βn)n is bounded. First check that

βn+1 − βn = −
θ

n− 1
(βn − βn−1) − 2θ

βn−1

n(n− 1)(n + 1)
,

so for any n ≥ n0,

βn+1 − βn ≤ −
θ

n− 1
(βn − βn−1).

In particular, if βn+1 ≥ βn, then βn ≤ βn−1, and

|βn+1 − βn| ≤
θ

n− 1
|βn − βn−1| < |βn − βn−1|,

which reads βn+1 − βn < −βn + βn−1, that is, βn+1 < βn−1. As a conclusion, βn+1 < βn or

βn+1 < βn−1.
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(iv) By (49) and Abel’s transform, we get

βn+1 − β2 = −θ
n
∑

k=2

γk − γk−1

k − 1

= −θ
γn

n− 1
− θ

n−1
∑

k=2

γk

k(k − 1)
,

and the r.h.s. converges, because (γn)n is bounded, thanks to (iii). 2

Proof of Proposition 5.11. Thanks to Claim 1 above, since uδ = φ1e
(1) + (cΦ∞)−1W ,

Luδ = φ1Le
(1) + (cΦ∞)−1LW

= (2c)−1(−2ce(1) + 2ce(0)) + (cΦ∞)−1cΦ∞e
(1)

= e(0).

The boundedness of uδ is straightforward. To get the equivalent of gδ
n as n → ∞, it is sufficient to

prove that nWn ∼ Φ∞ ln(n). First, starting over from the proof of Claim 2 (iv) above, get that

Φ∞ − β2 = −θ
∑

k≥2

γk

k(k − 1)
,

so that

βn+1 − Φ∞ = −θ
γn

n− 1
+ θ

∑

k≥n

γk

k(k − 1)
,

whch implies that βn − Φ∞ = o (n−1). Next, writing ρk := kΦk, we get

nWn =
∑

k≥2

nρk

k(n+ k)
=
∑

k≥2

ρk

(

1

k
−

1

n+ k

)

= lim
l→∞

{

n+1
∑

k=2

ρk

k
+

l
∑

k=2

ρn+k − ρk

n+ k
−

l+n
∑

k=l+1

ρk

k

}

=

n+1
∑

k=2

ρk − Φ∞

k
+

n+1
∑

k=2

Φ∞

k
+
∑

k≥2

ρn+k − ρk

n+ k

= Φ∞ ln(n) +O (1),

where the last equation comes from the fact that ρk = Φ∞ +O (k−1) as k → ∞. 2

Proof of Lemma 5.12. Since proofs for the isolation ε are quite similar to those done for the

defence capacity δ, we will often sketch them. The proof of Lemma 5.12 stems immediately from the

following two claims. 2

Claim 1. Assume that (n2Ψn)n converges to a finite limit Ψ∞, where (Ψn)n is defined in (39). Then
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the real numbers S :=
∑

n≥3 n
−1Ψn and Σ :=

∑

n≥3 Ψn, as well as the sequence Z :=
∑

k≥3 Ψke
(k)

of L3 are well-defined, and

(i) Σ + 2θS = Ψ∞ + (θ − 3)Σ = 5.

(ii) L′(Z − Σe(2)) = cΨ∞(e(2) − e(1)).

Claim 2. The sequence (n2Ψn)n converges to a nonzero finite limit.

Proof of Claim 1. To prove (i), let

βn := (n+ 2)(n + 1)Ψn and γn := (n− 2)(n − 1)Ψn n ≥ 3, (51)

so that

lim
n→∞

βn = lim
n→∞

γn = Ψ∞,

and, thanks to (39),

βn+1 − βn = −
θ(n+ 2)

(n− 1)(n − 2)
(γn − γn−1) n ≥ 3, (52)

with γ2 = 0. As a consequence, by two applications of Abel’s transform, we get

Σ =
∑

n≥3

Ψn =
∑

n≥3

βn

(

1

n+ 1
−

1

n+ 2

)

=
β3

4
+
∑

n≥3

βn+1 − βn

n+ 2
= 5Ψ3 − θ

∑

n≥3

γn − γn−1

(n− 1)(n − 2)

= 5 − θ
∑

n≥3

2γn

n(n− 1)(n − 2)

= 5 − 2θS.

On the other hand, the same type of arguments as above show that

Σ =
∑

n≥3

γn

(n− 2)(n − 1)
=
∑

n≥3

γn − γn−1

n− 2

= −θ−1
∑

n≥3

n− 1

n+ 2
(βn+1 − βn)

= −θ−1







−
β3

4
+ Ψ∞ +

∑

n≥3

(

n− 2

n+ 1
βn −

n− 1

n
βn

)







= −θ−1 (−5 + Ψ∞ − 3Σ) ,

which ends the proof of (i). With the help of (30) and (31), (ii) can be proved easily mimicking what

was done for the δ-invasibility. 2
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Proof of Claim 2. We proceed just as for the defence capacity. First, we prove that if Ψ∞ exists,

it cannot be 0. Indeed, consider Σ and Z ∈ L3 defined in Claim 1, and further define

zn,m =
nm(n−m)

n+m

(

Zn+m −
Σ

n+m+ 2

)

(n,m) ∈ N
⋆ × N

⋆.

Because (nZn)n is bounded, z is sublinear. If Ψ∞ = 0, then thanks to Claim 1, we would get

∆0z = 0, but this would contradict Lemma 5.4.

Next recall the sequences β and γ defined in (51). Thanks to (39),

βn+1 =

(

1 −
θ

n+ 1

)

βn + θ
(n+ 2)(n − 3)

n(n− 1)(n + 1)
βn−1,

which proves that βn has constant sign for large n, otherwise it would converge to 0 (and then

Ψ∞ = 0, which would contradict (i)). Therefore we can assume that βn ≥ 0 for large n without loss

of generality. Since

βn+1 − βn = −
θ

n+ 1
(βn − βn−1) − 6θ

βn−1

n(n− 1)(n + 1)
,

then for any sufficiently large n, 0 ≤ βn+1 < max(βn, βn−1), so that (βn)n is bounded, and so is

(γn)n. Use (52) to show that

βn+1 − β3 = −θ
n+ 2

(n− 1)(n− 2)
γn − θ

n−1
∑

k=3

k + 6

k(k − 1)(k − 2)
γk,

and conclude that (βn)n is convergent. 2

Proof of Proposition 5.13. Recall Z defined in Claim 1 and set ϕ2 := −(2θ + 3)/3c(θ + 3), as

well as V ∈ L3

V := ψ−2e
(−2) + ψ−1e

(−1) + ψ1e
(1) + ϕ2e

(2),

so that

uε = −(cΨ∞)−1(Z − Σe(2)) + V +
1

θ(θ + 3)
D(3). (53)

By an elementary computation relying on (30) and (31), get

L′V = −
1

θ(θ + 3)
δ(3) + e(−1) − e(0) − e(1) + e(2),

and conclude, thanks to Claim 1, that L′uε = e(−1) − e(0).

To get the equivalent of gε
n as n→ ∞, first recall (53) and observe that

ψ−2 + ψ−1 + ψ1 + ϕ2 = 0,
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so that (n2Vn)n converges. Next consider nZn

nZn =
∑

k≥3

nΨk

n+ k
=
∑

k≥3

kΨk

(

1

k
−

1

n+ k

)

= Σ −
∑

k≥3

kΨk

n+ k

= Σ − Ψ∞
ln(n)

n
+ o

(

ln(n)

n

)

,

by a similar method as in the proof of Proposition 5.11. As a consequence,

nuε
n = −(cΨ∞)−1

(

nZn − Σ
n

n+ 2

)

+ nVn +
1

θ(θ + 3)
nD(3)

n =
ln(n)

cn
+ o

(

ln(n)

n

)

,

which ends the proof, since gε
n = n2uε

n. 2

6 Proof of the convergence to the TSS and the canonical diffusion

6.1 Preliminary result

We start this section by stating and proving a technical proposition about the two type particular case

without mutation (µ ≡ 0) of the GL-population of Section 2.2. In the case where ν0 = X0δx + Y0δy,

for any t > 0, νt = Xtδx + Ytδy. Then, the Markov process (Xt, Yt; t ≥ 0) satisfies the following

properties.

Proposition 6.1 (a) Let (X̂n, Ŷn;n ∈ N) denote the discrete-time Markov chain associated with

(Xt, Yt; t ≥ 0), and T̂ denote the first hitting time of Ω1∪Ω2 by (X̂, Ŷ ). There is some positive

constant C independent of x and y such that

En,m(T̂ ) < C(n+m) and En,m(T̂ 2) < C(n+m)2. (54)

(b) En,m(X2
T + Y 2

T ) < C(n+m)2 for some constant C independent of x and y.

(c) With the notation of Section 4.1, when the birth rates b(x, y, n,m) are multiplied by a positive

constant a, the fixation probabilities un,m are continuous as a function of a.

Proof. (a) The process (X̂n + Ŷn;n ∈ N) is dominated by the Markov chain (Ẑn;n ∈ N) in N
∗

with initial state k = X0 + Y0 and transition probabilities

pij =











b̄/[b̄+ c(i− 1)α] if i ≥ 1 and j = i+ 1

c(i− 1)α/[b̄+ c(i− 1)α] if i ≥ 2 and j = i− 1

0 otherwise.

Let us denote by Pk its law. Therefore, T̂ is dominated by Ŝ := inf{n ≥ 0, Ẑn = 1} and it suffices to

prove that Ek(Ŝ) ≤ Ck and Ek(Ŝ
2) ≤ Ck2 for some C > 0.
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Let (Ũn;n ≥ 0) be the discrete-time random walk on Z with right transition probability 1/3 and

left transition probability 2/3. The law of Ũ conditional on Ũ0 = k is denoted by P̃k. Let τ be the

first hitting time of 0 by Ũ . For any k ≥ 0, one can compute explicitly (see e.g. Norris [32]) that

Ẽk(τ) = 3k, Ẽk(τ
2) = 3k(3k + 8) and Ẽk(exp(ρτ)) = exp(σρk)

for 0 ≤ ρ ≤ ln(9/8)/2 with exp(σρ) =
(

1 −
√

1 − 8 exp(2ρ)/9
)

3 exp(−ρ)/2.

Now, let k0 be large enough to have c(k0−1)α > 2b̄. First, observe that any excursion of Ẑ above

k0 + 1 is stochastically dominated by an excursion of the random walk Ũ above k0 + 1. Second, let

Ŝ′ := inf{j ≥ k0 : Ẑj = 1, Ẑj−1 = 2, · · · , Ẑj−k0 = k0 + 1}.

Obviously, Ŝ ≤ Ŝ′. Moreover, for any n such that Ẑn = k0 + 1, Ŝ′ = n + k0 with probability

β := pk0+1,k0 · · · p2,1 > 0, and otherwise, Ẑn+k0 ≤ 2k0 + 1. Therefore, under Pk, Ŝ is dominated by

τ0 +
G
∑

i=1

(k0 + τi)

where G, τ0, τ1, . . . are independent, τ0 has the law of the first hitting time of k0 + 1 under P̃k∨(k0+1),

G is a geometric r.v. with parameter β, and the τi’s are i.i.d. r.v. distributed as the first hitting time

of k0 + 1 under P̃2k0+1.

Therefore, if ρ is small enough to have (1 − β) exp(k0(ρ + σρ)) < 1 (observe that σρ → 0 when

ρ→ 0), then

Ek(e
ρŜ) ≤ Ẽ(k−k0−1)∨0(e

ρτ )





∑

j≥1

β(1 − β)j−1
(

eρk0Ẽk0(e
ρτ )
)j





≤
β

1 − β
eµρ(k−k0)

∑

j≥1

[

(1 − β)ek0(ρ+σρ)
]j
.

Therefore, there exists C, ρ, σ > 0 such that

Ek(e
ρŜ) ≤ Ceσk. (55)

Moreover, for any k ≥ k0,

Ek(Ŝ) ≤ Ek0(Ŝ) + Ẽk−k0(τ) = Ek0(Ŝ) + 3(k − k0).

and

Ek(Ŝ
2) ≤ 2Ek0(Ŝ

2) + 2Ẽk−k0(τ
2) = 2Ek0(Ŝ

2) + 6(k − k0)(3(k − k0) + 8).

Since Ek0(Ŝ
2) <∞ by (55), this ends the proof of (54).

(b) With the same notation as above, since T̂ is the number of jumps of the process (X,Y )

that occurred on the time interval [0, T ], XT ≤ X0 + T̂ and YT ≤ Y0 + T̂ . Hence En,m(X2
T + Y 2

T ) ≤

2En,m((n +m+ T̂ )2) and the required bound follows from (a).
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(c) Let us only denote the dependence of the fixation probability in a by un,m(a), and let us

denote by πij(a) the transitions (10) of the Markov chain (X̂, Ŷ ) when b(x, y, n,m) and b(y, x, n,m)

are replaced by ab(x, y, n,m) and ab(y, x, n,m). It suffices to prove that un,m(a) is continuous at

a = 1.

We will use the notation πi1,...,ik(a) for the product πi1i2(a)πi2i3(a) . . . πik−1ik(a) and S(n,m)→Γ for

the set of paths linking (n,m) to a subset Γ of N
2 without hitting Ω1 ∪Ω2 before Γ, i.e. the set of all

k-tuples (i1, i2, . . . , ik) for all k ≥ 1 such that i1 = (n,m), i2, . . . , ik−1 ∈ N
2 \ (Ω1 ∪ Ω2) and ik ∈ Γ.

Now,

un,m(a) =
∑

k≥2

∑

(i1,...,ik)∈S(n,m)→Ω1

πi1,...,ik(a) ,

so it is sufficient to prove that the previous series (in k) is uniformly convergent for a in some

neighborhood of 1.

Fix i = (n,m) and j ∈ N
2 such that ‖i − j‖ = 1, where ‖ · ‖ denotes the L1 norm in Z

2. It is

elementary to check that πij(a)/πij(1) ≤ (a∨1)/(1+(a−1)cn,m), where cn,m = Bn,m/(Bn,m +Dn,m)

with Bn,m = nb(x, y, n,m) + mb(y, x,m, n) and Dn,m = nd(x, y, n,m) + md(y, x,m, n). Because

of the bounds we assumed on b and d (Definition 2.1), the cn,m are bounded by some constant C.

Then, if |a − 1|C < 1/2, we finally get πij(a) ≤ 2(a ∨ 1)πij(1), which implies the required uniform

convergence. 2

6.2 Proofs of Theorems 3.1 and 3.2

Recall from Section 3 the definition the stopping times τn (n-th mutation time) and ρn (first time

after τn when the population becomes monomorphic) and of the random variables Vn (the surviving

trait at time ρn). Recall also the notation b(x, n) ≡ b(x, nδx) for the birth rate of an individual of

trait x in a monomorphic population made of n individuals of trait x.

The proof relies on the following three lemmas. The first one states that there is no accumulation

of mutations on the timescale t/γ. The second one gives the limiting laws of γτ1 and of the population

size at time τ1. The last one gives the behaviour of ρ0 and V0 when the initial population is dimorphic.

Lemma 6.2 Fix C, η > 0. There is ε > 0 such that for any γ ∈ (0, 1),

E(〈νγ
0 ,1〉) ≤ C ⇒ ∀t ≥ 0, P

(

∃n ∈ N
∗ :

t

γ
≤ τn ≤

t+ ε

γ

)

< η. (56)

Moreover, for any η > 0 and t ≥ 0, there exists n ∈ N
∗ such that, for any γ ∈ (0, 1),

E(〈νγ
0 ,1〉) ≤ C ⇒ P(τn ≤ t/γ) < η. (57)

Lemma 6.3 Assume νγ
0 = nδx where µ(x) > 0.

(a) As γ → 0, the pair (γτ1, 〈ν
γ
τ1−,1〉) converges in law to a couple of independent random variables

(T,N) where T is an exponentially distributed random variable with parameter β(x) defined

in (8) and the law of N is obtained by b(x, ·)-size-biasing ξ(x)

P(N = k) =
kb(x, k)P(ξ(x) = k)

E(ξ(x)b(x, ξ(x)))
. (58)
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(b) For any p ≥ 1, supγ∈(0,1) E
γ
nδx

(〈ντ1 ,1〉
p) <∞.

Lemma 6.4 Assume νγ
0 = nδx + δy (with y 6= x). Then

(a) γρ0 → 0 in probability and P
γ(ρ0 < τ1) → 1 as γ → 0.

(b) supγ∈(0,1) E
γ
(

〈νγ
ρ0 ,1〉

21{ρ0<τ1}

)

<∞.

(c) limγ→0 P
γ(V0 = y) = 1 − limγ→0 P

γ(V0 = x) = un,1(x, y).

Proof of Lemma 6.2. Fix C > 0 and assume E(〈νγ
0 ,1〉) ≤ C. By Proposition 2.3, there exists a

constant C ′ such that E(〈νγ
t ,1〉) ≤ C ′ for any t ≥ 0 and γ > 0. Therefore, it is sufficient to show (56)

for t = 0.

Now, when the total population size is n, the total mutation rate in the population is bounded

by γb̄n, so that the number of mutations Mt between times 0 and t is dominated by a Poisson point

process with intensity γb̄〈νs,1〉ds. Therefore,

P(Mε/γ ≥ 1) ≤ E(Mε/γ) ≤ γb̄

∫ ε/γ

0
E(〈νγ

s ,1〉)ds ≤ εb̄C ′,

which concludes the proof of (56).

Similarly, for t ≥ 0, P(Mt/γ ≥ n) ≤ tb̄C ′/n, which implies (57). 2

Proof of Lemma 6.3. Fix γ ∈ (0, 1) and assume that νγ
0 = nδx. Recall that τ1 is the first

mutation time. Notice that (νγ
t ; t < τ1) is distributed as (Xγ

t δx; t < τ), where Xγ is a birth-and-

death process with initial state Xγ
0 = n and transition rates (1 − γµ(x))ib(x, i) from i to i + 1

and id(x, i) from i to i − 1, and τ is the first point of a Poisson point process with inhomogeneous

intensity gγ(Xγ
t ) := γµ(x)Xγ

t b(x,X
γ
t ) (depending on Xγ solely through its intensity). Therefore, for

any bounded function f : N
∗ → R and for any t ≥ 0,

E
γ(f(〈νγ

t/γ ,1〉); γτ1 > t) = E

[

f(Xγ
t/γ) exp

(

−

∫ t/γ

0
gγ(Xγ

s )ds

)]

, (59)

and

E
γ(f(〈νγ

τ1−,1〉); γτ1 ≤ t) = E

(

∫ t/γ

0
f(Xγ

s )g(Xγ
s )e−

∫ s
0 g(Xγ

u )duds

)

,

which yields, after a change of variable,

E
γ(f(〈νγ

τ1−,1〉)1{γτ1≤t}) = µ(x)

∫ t

0
E

(

f(Xγ
s/γ)Xγ

s/γb(x,X
γ
s/γ)e−γµ(x)

∫ s/γ
0

Xγ
ub(x,Xγ

u )du
)

ds. (60)

Now, since the individual birth rates of Xγ decrease with γ, all the processes Xγ can be con-

structed on a same space in such a way that, for 0 ≤ γ ≤ γ′ ≤ 1 and t ≥ 0, Xγ′

t ≤ Xγ
t ≤ X0

t .
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To compute the limit of (60) when γ → 0, let us first prove that

lim
γ→0

∣

∣

∣

∣

∫ t

0
E

(

g1(X
γ
s/γ)e−γ

∫ s/γ
0

g2(X
γ
u )du

)

ds−

∫ t

0
E

(

g1(X
0
s/γ)e−γ

∫ s/γ
0

g2(X0
u)du

)

ds

∣

∣

∣

∣

= 0 (61)

for any functions g1 and g2 on N such that |g1(x)| ≤ Cx and 0 ≤ g2(x) ≤ Cx. For M > 0, this

quantity is bounded by

∫ t

0
E|g1(X

γ
s/γ) − g1(X

0
s/γ)|ds + C

∫ t

0
γ

∫ s/γ

0
E(Xγ

s/γ |g2(X
γ
u ) − g2(X

0
u)|)duds

≤ 2Cγ

∫ t/γ

0
E(X0

u;X0
u 6= Xγ

u )du+ 2C2

∫ t

0
γ

∫ s/γ

0
E(Xγ

s/γX
0
u;X0

u 6= Xγ
u)duds

≤ +2Cγ

∫ t/γ

0
[E(X0

u;X0
u > M) +MP(X0

u ≤M,X0
u 6= Xγ

u )]du

+ 2C2

∫ t

0
γ

∫ s/γ

0
[E(Xγ

s/γX
0
u;X0

u > M) +ME(Xγ
s/γ ;X0

u ≤M,X0
u 6= Xγ

u )]duds.

Therefore, by Proposition 2.3, using Cauchy-Schwartz inequality to bound the term involving E(Xγ
s/γX

0
u;X0

u >

M) and distinguishing between Xγ
s/γ ≤ M and Xγ

s/γ > M in the term involving E(Xγ
s/γ ;X0

u ≤

M,X0
u 6= Xγ

u ), it is sufficient to prove that

lim
γ→0

γ

∫ t/γ

0
P(X0

u ≤M,X0
u 6= Xγ

u )du = 0

or equivalently that γ times the expected time length between 0 and t/γ whereX0
u ≤M andX0

u 6= Xγ
u

goes to 0.

Since the difference between the birth rates of X0
u and Xγ

u when X0
u = Xγ

u is less than γb̄X0
u, any

time when the two processes can start to differ belongs to the set of times when a point of a Poisson

point process on R
2
+ with intensity γb̄duds independent of X0 lies below the curve (t,X0

t )t≥0. For

each of these points, the time length where the two processes differ is dominated by the first hitting

time of 1 by X0 (at this time, the two processes are necessarily equal). Since, moreover, we only have

to consider the time intervals where X0
u ≤ M , all these time lengths are dominated by independent

realizations of the hitting time of 1 by X0 starting from M .

Let nγ denote the number of points of the previous Poisson point process below X0 before time

t/γ and let (Rk) be a sequence of r.v. independent of nγ distributed as the hitting time of 1 by X0

starting from M . Then

γ

∫ t/γ

0
P(X0

u ≤M,X0
u 6= Xγ

u )du ≤ γE

( nγ
∑

k=1

Rk

)

= γE(R1)E(nγ) = γE(R1)b̄γ

∫ t/γ

0
E(X0

u)du

which goes to 0 as γ → 0 by Proposition 2.3.

Therefore, (61) is proved. Combined with (60), we get

lim
γ→0

E
γ(f(〈νγ

τ1−,1〉)1{γτ1≤t}) = lim
γ→0

µ(x)

∫ t

0
E

(

f(X0
s/γ)X0

s/γb(x,X
0
s/γ)e−γµ(x)

∫ s/γ
0

X0
ub(x,X0

u)du
)

ds.
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Since X0 is exactly the positive-recurrent Markov chain mentioned at the end of Proposition 2.2,

apply the ergodic theorem to get that γ
∫ s/γ
0 X0

ub(x,X
0
u)du→ sE(ξ(x)b(x, ξ(x))) a.s. as γ → 0. Since

supt≥0 E((X0
t )2) <∞ and by Lebesgue’s theorem, we finally get

lim
γ→0

E
γ(f(〈νγ

τ1−,1〉)1{γτ1≤t}) = µ(x)

∫ t

0
E

(

f(ξ(x))ξ(x)b(x, ξ(x))e−µ(x)E[ξ(x)b(x,ξ(x))]s
)

=
E(f(ξ(x))ξ(x)b(x, ξ(x)))

E(ξ(x)b(x, ξ(x)))

∫ t

0
β(x)e−β(x)sds,

which completes the proof of Lemma 6.3(a).

Lemma 6.3(b) can be obtained by taking f(x) = xp∧K in (60), then letting first K go to infinity

and next t to infinity. Then, we get that

E
γ
nδx

(〈ντ1 ,1〉
p) ≤ b̄

∫ ∞

0
E

[

(Xγ
s/γ)p+1 exp

(

−γµ(x)

∫ s/γ

0
Xγ

ub(x,X
γ
u )du

)]

ds

≤ b̄

∫ ∞

0
E

[

(Xγ
s/γ)p+1 exp

(

−γµ(x)b(x, 1)Ls/γ

)

]

ds

where Lt =
∫ t
0 1{X0

u=1}du. By the ergodic theorem for X0, Lt/t converges a.s. as t→ ∞ to a positive

nonrandom limit l. However, we need a finer result to conclude. Fix λ > 0. Distinguishing between

Ls/γ ≤ λs/γ and Ls/γ > λs/γ and using Cauchy-Schwartz inequality and Proposition 2.3, one can

bound from above the last displayed integral by a constant times

∫ ∞

0

[

P(Ls/γ ≤ λs/γ)1/2 + exp(−µ(x)b(x, 1)λs)
]

ds.

Therefore, it suffices to prove that there exist λ, λ′, C > 0 such that P(Lt ≤ λt) ≤ Ce−λ′t for any

t ≥ 0.

Now, define recursively t0 = 0, and for i ≥ 1, si = inf{s ≥ ti−1 : X0
s = 1}, ti = inf{t ≥ si : X0

s =

2}. Then for i ≥ 1, set Ti := ti − si and Si := si − ti−1. By the strong Markov property, all these r.v.

are independent, and more specifically (Ti)i≥1 are i.i.d. exponential r.v. with parameter b(x, 1) (the

jump rate of X0 from state 1), (Si)i≥2 are i.i.d. r.v. distributed as the hitting time of 1 by the process

X0 started at 2, whereas S1 is the hitting time of 1 by the process X0 started at n (remind that n

has been defined by ν0 = nδx). Then, for any ρ, σ > 0, using Chebyshev’s exponential inequality to
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get the last line,

P(Lt ≤ λt) ≤ P

(

∃k ≥ 1 :

k
∑

i=1

Ti ≤ λt and

k+1
∑

i=1

(Si + Ti) ≥ t

)

≤ P

(

∃k ≥ 1 :
k
∑

i=1

Ti ≤ λt and Tk+1 +
k+1
∑

i=1

Si ≥ (1 − λ)t

)

≤
∞
∑

k=1

P

(

k
∑

i=1

Ti ≤ λt

)

P

(

Tk+1 +
k+1
∑

i=1

Si ≥ (1 − λ)t

)

≤ E(eσ(T1+S1))e[ρλ−σ(1−λ)]t
∞
∑

k=1

[

E(e−ρT1)E(eσS2)
]k
.

Observe that E(exp(σT1)) = b(x, 1)/(b(x, 1)−σ) if σ < b(x, 1). Therefore, if we can prove that there

exists σ > 0 such that E(exp(σS1)) < ∞ (and thus E(exp(σS2)) < ∞), then ρ can be chosen large

enough to have E(exp(−ρT1))E(exp(σS2)) < 1, and next λ > 0 can be chosen small enough to have

ρλ− σ(1 − λ) < 0. This would end the proof of Lemma 6.3(b).

Therefore, it only remains to prove that there exists σ > 0 such that E(exp(σS1)) < ∞. This

can be done as follows. Let X̂0 be the discrete-time Markov chain associated with X0 and let Uk be

the holding time of X0 in the state X̂0
k . Let also Ŝ1 be the first integer k such that X̂0

k = 1. Then,

for any k, Uk is dominated by an exponential r.v. with parameter κ := b(x, 1) ∨ c, which is a lower

bound for the jump rates of X0. Therefore, if σ < κ and (Ri)i≥1 denote i.i.d exponential r.v. with

parameter κ,

E(eσS1) ≤
∞
∑

k=0

E(exp(σ
k
∑

i=1

Ri))P(Ŝ1 = k)

= E

[

(

κ

κ− σ

)Ŝ1
]

,

which has already been proved to be finite for small enough σ in (55). 2

Proof of Lemma 6.4. Before the first mutation, νγ
t = Xγ

t δx +Y γ
t δy where (Xγ

t , Y
γ
t ) is a two-type

GL-population with transition rates



























(1 − γµ(x))nb(x, y, n,m) from (n,m) to (n+ 1,m)

(1 − γµ(y))mb(y, x,m, n) from (n,m) to (n,m+ 1)

nd(x, y, n,m) from (n,m) to (n− 1,m)

mb(y, x,m, n) from (n,m) to (n,m− 1)

0 otherwise.

On the event {τ1 > ρ0}, V0 = y if and only if there is fixation in this process, V0 = x otherwise, and

ρ0 equals the fixation time T (see Section 2.2.2).

40



Now, by Lemma 6.2, for any η > 0, there exists ε > 0 such that P(τ1 > ε/γ) ≥ 1 − η. Since

Pn,1(T < ∞) = 1, this implies easily (a). It is then elementary to deduce from Proposition 6.1(c)

that (c) holds. Finally, (b) follows from the observation that

Enδx+δy

(

〈νγ
ρ0
,1〉21{ρ0<τ1}

)

≤ En,1((X
γ
T )2 + (Y γ

T )2)

and from Proposition 6.1(b). 2

Proof of Theorem 3.1. Observe that the generator A of the process S, defined in (7), can be

written as

Aϕ(x) =

∫

X
(ϕ(x+ h) − ϕ(x))β(x)κ(x, dh), (62)

where β(x) has been defined in (8) and where κ(x, dh) is the probability measure on X −x defined

by

κ(x, dh) =
∞
∑

n=1

un,1(x, x+ h)
nb(x, n)P(ξ(x) = n)

E(ξ(x)b(x, ξ(x)))
M(x, dh)

+

(

∫

Rk

∞
∑

n=1

(1 − un,1(x, x+ y))
nb(x, n)P(ξ(x) = n)

E(ξ(x)b(x, ξ(x)))
M(x, dy)

)

δ0(dh). (63)

This means that the TSS model S with initial state x can be constructed as follows: let (U(k), k =

0, 1, 2, . . .) be a Markov chain in X with initial state x and with transition kernel κ(x, dh), and let

(P (t), t ≥ 0) be an independent standard Poisson process. Then, the process (St, t ≥ 0) defined by

St = U ◦ P

(
∫ t

0
β(Ss)ds

)

is a Markov process with infinitesimal generator (62) [12, Chap. 6]. Let (Jn)n≥1 denote the sequence

of jump times of the Poisson process P and define (Tn)n≥1 by Jn =
∫ Tn

0 β(Ss)ds or Tn = ∞ if
∫∞
0 β(Ss)ds < Jn. Observe that any jump of the process S occurs at some time Tn, but that all Tn

may not be effective jump times for S, because of the Dirac mass at 0 appearing in (63). As will

appear below, the sequence (Tn) can be interpreted as the sequence of mutation times in the limit

process. Whether an effective jump occurs at time Tn or not then corresponds to the fixation or

extinction of the mutant.

Let Px denote the law of ζt, as defined in the theorem, conditional on Supp(ζ0) = S0 = x. Fix

t > 0, m ∈ N
∗, x ∈ X and a measurable subset Γ of X . Under Px, T1 and ST1 are independent, T1

is an exponential random variable with parameter β(x), and ST1 has law κ(x, ·). Therefore, for any

n ≥ 1, applying the strong Markov property to the process S at time T1 in the second line,

Px(Tn ≤ t < Tn+1, ∃z ∈ Γ : ζt = mδz) = Ex

(

1{St∈Γ}1{Tn≤t<Tn+1}P(ξ(St) = m)
)

=

∫ t

0
β(x)e−β(x)s

∫

Rk

Px+h(Tn−1 ≤ t− s < Tn, ∃z ∈ Γ : ζt−s = mδz)κ(x, dh)ds. (64)
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Moreover,

Px(0 ≤ t < T1, ∃z ∈ Γ : ζt = mδz) = 1{x∈Γ}e
−β(x)t

P(ξ(x) = m). (65)

These two relations characterize the one-dimensional laws of the process ζ. The idea of our proof

is to show that the same relations hold when we replace Tn by τn and the support of ζt by the support

of νγ
t/γ (when it is a singleton) in the limit γ → 0.

More precisely, let us define for any ν0 ∈ M and n ∈ N

pγ
n(t,Γ,m, ν0) := P

γ
ν0

(

ρn ≤
t

γ
< τn+1, ∃z ∈ Γ : νt/γ = mδz

)

We will prove the following lemma after the end of this proof.

Lemma 6.5 For any x ∈ X , m,k ≥ 1, n ≥ 0, t > 0 and any measurable subset Γ of X ,

pn(t,Γ,m, x) := limγ→0 p
γ
n(t,Γ,m, kδx) exists, is independent of k and satisfies

p0(t,Γ,m, x) = 1{x∈Γ}e
−β(x)t

P(ξ(x) = m) (66)

and ∀n ≥ 1, pn(t,Γ,m, x) =

∫ t

0
β(x)e−β(x)s

∫

Rk

pn−1(t− s,Γ,m, x+ h)κ(x, dh)ds. (67)

Comparing (64) and (65) with (66) and (67), this lemma implies that pn(t,Γ,m, x) = Px(Tn ≤

t < Tn+1, ∃z ∈ Γ : ζt = mδz).

Recall that νγ
0 = Nγ

0 δx with supγ∈(0,1) E((Nγ
0 )p) < ∞ for some p > 1. By Proposition 2.3,

supγ∈(0,1) supt≥0 E(〈νγ
t ,1〉

p) < +∞ and

∣

∣

∣
P

γ
νγ
0
(∃z ∈ Γ : νγ

t/γ = mδz) − Px(∃z ∈ Γ : ζt = mδz)
∣

∣

∣

≤ 2P(Nγ
0 > M) +

M
∑

k=1

∣

∣

∣

∣

∣

∞
∑

n=0

(pγ
n(t,Γ,m, kδx) − pn(t,Γ,m, x))

∣

∣

∣

∣

∣

P(Nγ
0 = k).

Because of Lemma 6.2 (57), the quantity inside the absolute value in the r.h.s. of this equation

vanishes as γ → 0. Thus,

lim
γ→0

P
γ
νγ
0
(∃z ∈ Γ : νγ

t/γ = mδz) = Px(∃z ∈ Γ : ζt = mδz). (68)

Taking Γ = X and summing this relation over m ∈ N
∗, Fatou’s lemma yields

lim
γ→0

P
γ
νγ
0
(Supp(νγ

t/γ) is a singleton) = 1. (69)

Now, consider a bounded measurable f : M → R such that f(ν) = 0 if 〈ν,1〉 6= m ∈ N
∗ and define

the function f̂ : X → R by f̂(x) = f(mδx). Then, it follows from (68) and (69) that

lim
γ→0

E
γ
νγ
0

(

f(νγ
t/γ)
)

= lim
γ→0

E
γ
νγ
0

(

f̂(Supp(νγ
t/γ)); Supp(νγ

t/γ) is a singleton and 〈νγ
t/γ ,1〉 = m

)

= Ex(f̂(St);Nt = m) = Ex(f(ζt)) (70)

This equality generalizes to any bounded measurable f : M → R using once again that supγ∈(0,1) E(〈νγ
t/γ ,1〉

p) <

+∞. This completes the proof of Theorem 3.1 for one-dimensional distributions.

The extension to finite dimensional marginals can be proved exactly in the same fashion. 2
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Proof of Lemma 6.5. Recall β(x) = µ(x)E(ξ(x)b(x, ξ(x))). The result is trivial when the mu-

tation rate µ(x) is 0. Let us assume that µ(x) 6= 0. We will prove this lemma by induction over

n ≥ 0.

Fix x ∈ X , m,k ≥ 1 and t > 0. First, we have already proved in (59) that

pγ
0(t,Γ,m, kδx) = 1{x∈Γ}P

γ
kδx

(

〈νγ
t/γ ,1〉 = m, γτ1 > t

)

= 1{x∈Γ}E

[

1{Xγ
t/γ

=m} exp

(

−γµ(x)

∫ t/γ

0
Xγ

s−b(x,X
γ
s−)ds

)]

where Xγ has been defined in the proof of Lemma 6.3. Using (61) and the ergodic theorem for

positive-recurrent Markov chains, we get

lim
γ→0

pγ
0(t,Γ,m, kδx) = 1{x∈Γ}P(ξ(x) = m) exp(−µ(x)E(ξ(x)b(x, ξ(x)))t),

which entails (66).

Then, fix n ≥ 1 and assume that limγ→0 p
γ
n−1(t,Γ,m, kδx) = pn(t,Γ,m, x) for any t > 0,Γ ⊂

X , x ∈ X and m,k ≥ 1. Applying the strong Markov property to the process νγ at time τ1, and using

the fact that the mutant trait at this time is x+U where U has law M(x, dh) and is independent of

νγ
τ1−, we get

pγ
n(t,Γ,m, kδx) =

∫

Rk

E
γ
kδx

[

1{γτ1≤t}p
γ
n−1(t− γτ1,Γ,m, 〈ν

γ
τ1−,1〉δx + δx+h)

]

M(x, dh). (71)

Now, we want to apply the strong Markov property to νγ at time ρ0 to compute the quantity

pγ
n−1(s,Γ,m, lδx +δy) appearing inside the expectation in the last formula. For K > 0, distinguishing

between the cases where ρ0 > τ1, 〈νρ0,1〉 > K, V0 = x and V0 = y yields

pγ
n−1(s,Γ,m, lδx + δy) = E

γ
lδx+δy

[

1{ρ0<τ1, 〈νγ
ρ0

,1〉≤K, V0=x}p
γ
n−1(s− γρ0,Γ,m, 〈ν

γ
ρ0
,1〉δx)

]

+ E
γ
lδx+δy

[

1{ρ0<τ1, 〈νγ
ρ0

,1〉≤K, V0=y}p
γ
n−1(s− γρ0,Γ,m, 〈ν

γ
ρ0
,1〉δy)

]

+ P
γ
lδx+δy

({ρ0 ≥ τ1} ∩ E) + P
γ
lδx+δy

({ρ0 < τ1} ∩ {〈νγ
ρ0
,1〉 > K} ∩ E)

where

E = {ρn−1 ≤ s/γ < τn, ∃z ∈ Γ : νs/γ = mδz}.

The third term of the r.h.s. vanishes as γ → 0 because of Lemma 6.4(a) and the last term vanishes

as K → +∞ uniformly for γ ∈ (0, 1) because of Lemma 6.4(b).

As for the first two terms, assume that pγ
n−1(t,Γ,m, kδx) converges to pn−1(t,Γ,m, x) as in

the statement of Lemma 6.5. As a consequence of Lemma 6.2 (56), for any t > 0, the function

s 7→ pγ
n−1(s,Γ,m, kδx) is uniformly continuous on [0, t], uniformly in γ. Combining this observation

with Lemma 6.4(c),

lim
γ→0

pγ
n−1(s,Γ,m, lδx + δy) = ul,1(x, y)pn−1(s,Γ,m, y) + (1 − ul,1(x, y))pn−1(s,Γ,m, x). (72)
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This uniform continuity argument also applies to s 7→ pγ
n−1(s,Γ,m, lδx + δy), so that the conver-

gence in (72) is uniform in s ∈ [0, t] and l ∈ {1, . . . , L}, for fixed L ≥ 1. Therefore, distinguishing

between 〈νγ
τ1−,1〉 ≤ L and 〈νγ

τ1−,1〉 > L, we can combine Lemma 6.3(a) and (b) to get

lim
γ→0

E
γ
kδx

[

1{γτ1≤t}p
γ
n−1(t− γτ1,Γ,m, 〈ν

γ
τ1−,1〉δx + δy)

]

=

∫ t

0
ds β(x)e−β(x)s×

×

∞
∑

l=1

lb(x, l)P(ξ(x) = l)

E(ξ(x)b(x, ξ(x)))
[ul,1(x, y)pn−1(t− s,Γ,m, y) + (1 − ul,1(x, y))pn−1(t− s,Γ,m, x)] .

Finally, using Lebesgue’s theorem, this limit applies inside the integral in (71), which gives ex-

actly (67) and ends the proof of Lemma 6.5. 2

Proof of Theorem 3.2. Since the limiting law of the process (Sγ
t ; t ≥ 0) is characterized by its

finite-dimensional distributions, obtained in Theorem 3.1, we only have to show the tightness of their

laws. Fix T > 0. By Ascoli’s theorem for càdlàg functions (see e.g. [2]), we have to show that, for

any ε, η > 0, there is δ > 0 such that

lim sup
γ→0

P(ω′(Sγ , δ) > η) < ε (73)

where the modulus of continuity ω′ is defined as

ω′(f, δ) = inf{ max
0≤i≤r−1

ω(f, [ti, ti+1))}

where the infimum is taken over all finite partitions 0 = t0 < t1 < . . . < tr = T of [0, T ] such that

ti+1 − ti > δ for any 0 ≤ i ≤ r − 1, and where ω is the usual modulus of continuity

ω(f, I) = sup
s,t∈I

‖f(t) − f(s)‖.

Now, fix ε > 0 and, by Lemma 6.2 (57), choose N such that P
γ(γτN ≤ T ) ≤ ε/2 for any γ ≤ 1. For

any n ≤ N ,

P
γ(ρn+1 − ρn < δ/γ) ≤ P

γ(ρn − τn > δ/γ) + P
γ(τn+1 − τn < 2δ/γ).

By Lemma 6.2 (56) and Lemma 6.3(b), one can choose δ such that the second term is bounded by

ε/2N uniformly in γ. Then, by Lemma 6.4(a) and Lemma 6.3(b), the first term goes to 0 when

γ → 0. Therefore, for any ε > 0, there exists δ > 0 such that

lim sup
γ→0

P
γ(∃n ≥ 0 : ρn+1 − ρn < δ/γ and ρn+1 ≤ T/γ) ≤ ε,

which implies (73). 2

6.3 Proof of Theorem 4.1

Since vn,m ≡ 0 on Ω1∪Ω2, we will always assume n,m ≥ 1. Recall the definition (10) of the transition

probabilities πij(x, y) (i, j ∈ N
2) of the embedded Markov chain (X̂n, Ŷn;n ≥ 0) associated to the
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(x, y)-type GL-population (Xt, Yt; t ≥ 0) without mutation. Recall also the notation πi1,...,ik(x, y)

for the product πi1i2(x, y)πi2i3(x, y) . . . πik−1ik(x, y) and S(n,m)→Γ for the set of paths linking (n,m)

to a subset Γ of N
2 without hitting Ω1 ∪ Ω2 before Γ, i.e. the set of all k-tuples (i1, i2, . . . , ik) for all

k ≥ 1 such that i1 = (n,m), i2, . . . , ik−1 ∈ N
2 \ (Ω1 ∪ Ω2) and ik ∈ Γ.

Now,

un,m(x, y) =
∑

k≥2,(i1,...,ik)∈S(n,m)→Ω1

πi1,...,ik(x, y) ,

so if we prove that

Rn,m(x, y) :=
∑

k≥2,(i1,...,ik)∈S(n,m)→Ω1

∣

∣

∣

∣

∂πi1,...,ik

∂y
(x, y)

∣

∣

∣

∣

is finite, we get the differentiability of un,m(x, y) and the inequality |∂un,m(x, y)/∂y| ≤ Rn,m(x, y).

Observe that

Rn,m(x, y) ≤ C1

∑

k≥2,(i1,...,ik)∈S(n,m)→Ω1

k−1
∑

l=1

πi1,...,il(x, y)πil+1,...,ik(x, y),

where C1 is defined in Assumption (11) and πi,i(x, y) = 1 by convention. Next, with ‖ · ‖ denoting

the L1-norm in Z
2,

Rn,m(x, y) ≤ C1

∑

l≥1

∑

(n′,m′)∈(N∗)2

∑

(i1,...,il)∈S(n,m)→(n′ ,m′)

πi1,...,il(x, y)×

×
∑

‖ε‖=1

∑

k′≥0,(j1,...,jk′)∈S(n′ ,m′)+ε→Ω1

πj1,...,jk′
(x, y)

with the convention that k′ = 0 if (n′,m′) + ε ∈ Ω1, so that, if T̂Γ denotes the first hitting of Γ ⊂ N
2

by (X̂, Ŷ ),

Rn,m(x, y) ≤ C1

∑

l≥1

∑

(n′,m′)∈(N∗)2

∑

(i1,...,il)∈S(n,m)→(n′ ,m′)

πi1,...,il(x, y)
∑

‖ε‖=1

P(n′,m′)+ε(T̂Ω1 < T̂Ω2)

≤ 4C1

∑

l≥1

Pn,m(T̂ > l)

= 4C1En,m(T̂ − 1),

The proof of (12) is completed thanks to Proposition 6.1(a).

45



(b) Following exactly the same method as above, we obtain from (54) that

∑

(i1,...,ik)∈S(n,m)→Ω1

∣

∣

∣

∣

∂2πi1,...,ik

∂y2
(x, y)

∣

∣

∣

∣

≤ 4C2
1

∑

l≥1

∑

(n′,m′)∈(N∗)2

∑

(i1,...,il)∈S(n,m)→(n′ ,m′)

πi1,...,il(x, y)
∑

‖ε‖=1

E(n′,m′)+ε(T̂ − 1)

+ 4C2En,m(T̂ − 1)

≤ 16C2
1C
∑

l≥1

∑

(n′,m′)∈(N∗)2

∑

(i1,...,il)∈S(n,m)→(n′ ,m′)

πi1,...,il(x, y)(n
′ +m′) + 4C2C(n+m)

≤ 16C2
1C
∑

l≥1

(n+m+ l)Pn,m(T̂ > l) + 4C2C(n+m)

≤ 16C2
1CEn,m

(

(T̂ − 1)(n +m+ T̂ /2)
)

+ 4C2C(n+m),

and the result follows again from Proposition 6.1(a). 2

6.4 Proof of Theorem 4.2

We will use the classical method of tightness and martingale problem formulation to prove this

theorem (e.g. [20]). We divide the proof in three steps.

Step 1. Uniqueness of the limit process. Strong existence and uniqueness for the SDE (15)

follow standardly from the Lipschitz-continuity of its coefficients.

Step 2. Tightness of the family of laws of Zǫ. For any ǫ > 0, let Nǫ(dh, du, dt) be a Poisson

point process on R
k × [0, 1] × R+ with intensity measure qǫ(dh, du, dt) = M̄(h)dh β̄χ̄du dt/ǫ2, where

β̄ and χ̄ are constants bounding the functions β and χ from above, respectively, and M̄ has been

defined as the integrable function bounding the density m(x, ·) of M(x, ·) for any x ∈ R
k. Then it is

straightforward to check that Aǫ is the infinitesimal generator of the Markov process Zǫ

Zǫ
t = Zǫ

0 + ǫ

∫ t

0

∫ 1

0

∫

Rk

h1{
u≤

β(Zǫ
s−)

β̄

χ(Zǫ
s−,Zǫ

s−+ǫh)

χ̄

m(Zǫ
s−,h)

M̄(h)

}Nǫ(dh, du, ds)

Since β and χ are bounded, a process generated by Aǫ is unique in law (e.g. [12]), and this con-

struction characterizes the law of the process Zǫ appearing in the statement of Theorem 4.2. Let us

denote this law by Pǫ.

Observe that, if we denote by Ñǫ the compensated Poisson measureNǫ−qǫ, Z
ǫ
t can be decomposed

as Zǫ
0 + Z̃ǫ

t + Ẑǫ
t , where

Z̃ǫ
t = ǫ

∫ t

0

∫ 1

0

∫

Rk

h1{
u≤

β(Zǫ
s−)

β̄

χ(Zǫ
s−,Zǫ

s−+ǫh)

χ̄

m(Zǫ
s−,h)

M̄(h)

}Ñǫ(dh, du, ds)
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and

Ẑǫ
t =

1

ǫ

∫ t

0

∫

Rk

hβ(Zǫ
s−)χ(Zǫ

s−, Z
ǫ
s− + ǫh)M(Zǫ

s−, dh)ds

=
1

ǫ

∫ t

0

∫

Rk

hβ(Zǫ
s−)[χ(Zǫ

s−, Z
ǫ
s− + ǫh) − χ(Zǫ

s−, Z
ǫ
s−)]M(Zǫ

s−, dh)ds

where the last equality follows from the fact that the mutation step law M(x, ·) has 0 expectation.

We will use Aldous’ criterion [1] to prove the tightness of the family of probability measures

(Pǫ)ǫ>0 on D(R+,R
k). Fix δ, ǫ > 0 and let τ and τ ′ be two stopping times such that τ < τ ′ < τ + δ.

Since |χ(x, x + ǫh) − χ(x, x)| ≤ ǫK‖h‖ for some constant K, ‖Ẑǫ
τ ′ − Ẑǫ

τ‖ ≤ δβ̄KM2, where M2 =

supx

∫

‖h‖2M(x, dh), which is finite by assumption. By standard results on stochastic integrals with

respect to Poisson point measures,

Eǫ(‖Z̃
ǫ
τ ′ − Z̃ǫ

τ‖
2) = Eǫ

(

∫ τ ′

τ

∫ 1

0

∫

Rk

ǫ2‖h‖21{
u≤

β(Zǫ
s−)

β̄

χ(Zǫ
s−,Zǫ

s−+ǫh)

χ̄

m(Zǫ
s−,h)

M̄(h)

}qǫ(dh, du, ds)

)

≤ δβ̄χ̄M2.

Therefore, for any η > 0,

Pǫ(‖Z
ǫ
τ ′ − Zǫ

τ‖ ≥ η) ≤ Pǫ(‖Ẑ
ǫ
τ ′ − Ẑǫ

τ‖ ≥
η

2
) + Pǫ(‖Z̃

ǫ
τ ′ − Z̃ǫ

τ‖ ≥
η

2
) ≤ 1{2δβ̄KM2≥η} +

4δβ̄χ̄M2

η2

which converges to 0 as δ → 0, uniformly w.r.t. the choice of τ and τ ′. This is the first part of

Aldous’ criterion. For the second part, we have to prove the tightness of (Zǫ
t )ǫ>0 for any t ≥ 0.

Similar computations as above prove easily that (Z̃ǫ
t )ǫ>0 and (Ẑǫ

t )ǫ>0 are tight, and the tightness of

(Zǫ
0)ǫ>0 follows from the assumption that it is bounded in L1.

Step 3. Martingale problem. Let P0 be an accumulation point of (Pǫ)ǫ>0 as ǫ→ 0 on D(R+,R
k),

endowed with the canonical filtration Ft. Since the martingale problem for (15) is well-posed, it

suffices to show that, for any ϕ ∈ C2(X ), under P0, the process

Mϕ
t (w) = ϕ(wt) − ϕ(w0) −

∫ t

0
A0ϕ(ws)ds

on D(R+,X ) is a local Ft-martingale. We already know that under Pǫ,

M ǫ,ϕ
t (w) = ϕ(wt) − ϕ(w0) −

∫ t

0
Aǫϕ(ws)ds

is a local Ft-martingale. Since β and χ are bounded, this is a square-integrable martingale as soon

as ϕ ∈ C3
b .

Fix ϕ ∈ C3
b , s > 0 and t > s, and consider p real numbers 0 ≤ t1 < . . . < tp ≤ s for some p ≥ 1,
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and a continuous bounded function q : (Rk)p → R. We can write

∣

∣

∣

∣

E0

{

q(wt1 , . . . , wtp)

[

ϕ(wt) − ϕ(ws) −

∫ t

s
A0ϕ(wu)du

]}∣

∣

∣

∣

≤

∣

∣

∣

∣

Eǫ

{

q(wt1 , . . . , wtp)

[

ϕ(wt) − ϕ(ws) −

∫ t

s
Aǫϕ(wu)du

]}∣

∣

∣

∣

+

∣

∣

∣

∣

Eǫ

{

q(wt1 , . . . , wtp)

∫ t

s
(Aǫϕ(wu) −A0ϕ(wu))du

}∣

∣

∣

∣

+

∣

∣

∣

∣

E0

{

q(wt1 , . . . , wtp)

[

ϕ(wt) − ϕ(ws) −

∫ t

s
A0ϕ(wu)du

]}

−Eǫ

{

q(wt1 , . . . , wtp)

[

ϕ(wt) − ϕ(ws) −

∫ t

s
A0ϕ(wu)du

]}∣

∣

∣

∣

.

The first term of the r.h.s. is 0 since M ǫ,ϕ is a Pǫ-martingale. Because of the uniform convergence

of generators (14), the second term converges to 0 as ǫ→ 0. The third term also goes to 0 as ǫ→ 0

because Pǫ converges to P0. Finally, since the l.h.s. does not depend on ǫ, it is 0.

A classical use of the monotone class theorem allows to extend this equality to all Fs-measurable

bounded functions q, so Mϕ is a P0-martingale. This result can easily be extended to any C2 function

ϕ by a standard truncation technique, which completes the proof of Theorem 4.2. 2
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