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Abstract: Within a constructive homological algebra approach, we study the factorization and
decomposition problems for general linear functional systems (determined, under-determined, over-
determined). Using the concept of Ore algebras of functional operators (e.g., ordinary/partial differ-
ential operators, shift operators, time-delay operators), we first concentrate on the computation of
morphisms from a finitely presented left module M over an Ore algebra to another one M ′, where
M (resp., M ′) is a module intrinsically associated with the linear functional system Ry = 0 (resp.,
R′ z = 0). These morphisms define applications sending solutions of the system R′ z = 0 to the ones
of Ry = 0. We explicitly characterize the kernel, image, cokernel and coimage of a general morphism.
We then show that the existence of a non-injective endomorphism of the module M is equivalent to
the existence of a non-trivial factorization R = R2R1 of the system matrix R. The corresponding
system can then be integrated in cascade. Under certain conditions, we also show that the system
Ry = 0 is equivalent to a system R′ z = 0, where R′ is a block-triangular matrix of the same size as
R. We show that the existence of projectors of the ring of endomorphisms of the module M allows
us to reduce the integration of the system Ry = 0 to the integration of two independent systems
R1 y1 = 0 and R2 y2 = 0. Furthermore, we prove that, under certain conditions, idempotents provide
decompositions of the system Ry = 0, i.e., they allow us to compute an equivalent system R′ z = 0,
where R′ is a block-diagonal matrix of the same size as R. Many applications of these results in
mathematical physics and control theory are given. Finally, the different algorithms of the paper are
implemented in a Maple package Morphisms based on the library OreModules.
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Utilisation du calcul de morphismes pour factoriser et

décomposer les systèmes fonctionnels linéaires

Résumé : En utilisant l’algèbre homologique constructive, nous étudions les problèmes de fac-
torisation et décomposition des systèmes fonctionnels linéaires (déterminés, sous-déterminés, sur-
déterminés). Après avoir rappelé le concept d’algèbre de Ore d’opérateurs fonctionnels (e.g., opéra-
teurs différentiels ordinaires ou aux dérivées partielles, opérateurs de décalage, opérateurs de re-
tard), nous nous concentrons tout d’abord sur le calcul des morphismes d’un module à gauche M
de présentation finie sur une algèbre de Ore dans un second module M ′, où M (resp., M ′) est le
module intrinsèquement associé au système fonctionnel linéaire Ry = 0 (resp., R′ z = 0). Ces mor-
phismes définissent des applications envoyant les solutions du système R′ z = 0 sur des solutions de
Ry = 0. Nous caractérisons explicitement le noyau, l’image, le conoyau et la coimage d’un mor-
phisme quelconque et montrons que l’existence d’un endomorphisme non-injectif du module M est
équivalente à l’existence d’une factorisation non-triviale R = R1R2 de la matrice R du système. Le
système correspondant peut alors être intégré en cascade. Sous certaines conditions de liberté, nous
prouvons aussi que le système Ry = 0 est équivalent à un système R′ z = 0, où R′ est une matrice
triangulaire par blocs. Nous montrons ensuite que l’existence de projecteurs dans l’anneau des en-
domorphismes du module M permet de ramener l’intégration du système Ry = 0 à celle de deux
systèmes indépendants R1 y1 = 0 et R2 y2 = 0. De plus, nous prouvons que, sous certaines condi-
tions de liberté, les idempotents mènent à des décompositions du système Ry = 0, i.e., permettent
de calculer un système équivalent R′ z = 0, où R′ est une matrice diagonale par blocs. Plusieurs
applications de ces résultats en physique mathématique et théorie du contrôle sont présentées. Les
différents algorithmes proposés sont implémentés dans un package Maple appelé morphisms qui est
basé sur la librairie OreModules.

Mots-clés : Systèmes fonctionnels linéaires, problèmes de factorisation et de décomposition, mor-
phismes, équivalence de systèmes, symétries de Galois, intégrales premières quadratiques du mou-
vement, lois de conservation quadratiques, contrôlabilité, algèbre homologique effective, théorie des
modules, calcul symbolique.
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1 Introduction

Many systems coming from mathematical physics, applied mathematics and engineering sciences can
be described by means of systems of ordinary or partial differential equations, difference equations,
differential time-delay equations. . . If these systems are linear, they can then be defined by means
of matrices with entries in non-commutative algebras of functional operators such as the rings of
differential operators, shift operators, time-delay operators. . . An important class of such algebras is
called Ore algebras ([14]). See also [16].

The methods of algebraic analysis give a way to intrinsically study a linear functional system by
considering its associated finitely presented left module over an Ore algebra ([16, 31, 41, 44, 47, 67, 70]).
This idea is natural as the structural properties of the linear functional systems can be studied by han-
dling algebraic manipulations on the system matrix of functional operators, i.e., by performing linear
algebra over a ring which is also called module theory ([33, 42, 62]). The tools of homological algebra
have been developed in order to study the properties of modules ([62]), and thus, the structural prop-
erties of the corresponding systems. Using recent developments and implementations of Gröbner and
Janet bases over Ore algebras ([14, 37]), it has been shown in [16, 47, 48, 49, 50, 51, 58, 59] how to make
effective some of these tools as, for instance, free resolutions, parametrizations, projective dimensions,
torsion-free degrees, Hilbert series, extension functors, classification of modules (torsion, torsion-free,
reflexive, projective, stably free, free). Applications of these algorithms in multidimensional control
theory have recently been given in [15, 16, 24, 44, 45, 47, 48, 49, 50, 51, 56, 57, 58, 59, 60, 67, 70, 71].

Continuing the development of constructive homological algebra for linear systems over Ore algebras
and, in particular [52, 58, 57], the first part of the paper aims at computing effectively morphisms
from a left D-module M , finitely presented by a matrix R with entries in an Ore algebra D, to a left
D-module M ′ presented by a matrix R′. In particular, we show that a morphism from M toM ′ defines
a transformation sending a solution of the system R′ z = 0 into a solution of Ry = 0. In the case
where R′ = R, the ring endD(M) of endomorphisms of M corresponds to the “Galois symmetries” of
the system Ry = 0. In the case of 1-D linear systems, we explain how to find again classical results
on the concept of eigenring developed in the system theory and symbolic computation literatures.
Algorithms for computing morphisms are given when Gröbner bases exist over the underlying Ore
algebra D. As an application, we show how to use the computation of the morphisms from two
modules in order to obtain quadratic first integrals of motion and conservation laws.

We then explicitly characterize the kernel, coimage, image and cokernel of a morphism from M to
M ′ and deduce a method to check the equivalence of the corresponding systems Ry = 0 and R′ z = 0.
In Theorem 1, we prove that the existence of a non-injective endomorphism of a left D-module M ,
finitely presented by a matrix R with entries in an Ore algebra D, corresponds to a factorization of
the form R = R2R1, where R1 and R2 are two matrices with entries in D. As a consequence, the
integration of the system Ry = 0 is reduced to a cascade of integrations. In Theorem 2, under certain
conditions on the morphism (freeness), we show that the system Ry = 0 is equivalent to a system of
the form (

T1 T2

0 T3

) (
z1
z2

)
= 0, (1)

where T1, T2 and T3 are three matrices with entries in D and such that (1) has the same dimensions
as R. We finish the section by giving a way to constructively compute r-pure autonomous elements
of a linear system ([47, 56]).

In the fourth part of the paper, we show how to effectively compute the projectors of endD(M)
and we prove in Theorem 3 that they allow us to decompose the system Ry = 0 into two decoupled
systems S1 y1 = 0 and S2 y2 = 0, where S1 and S2 are two matrices with entries in D. Consequently,
the integration of the system Ry = 0 is then equivalent to the integrations of the two independent
systems S1 y1 = 0 and S2 y2 = 0. Then, under certain conditions on the projectors (e.g., idempotent,
freeness), we prove in Theorem 4 that the system Ry = 0 is equivalent to a block-diagonal system of
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4 T. Cluzeau & A. Quadrat

the form (
T1 0
0 T2

) (
z1
z2

)
= 0, (2)

where T1 and T2 are two matrices with entries in D and such that (2) has the same dimensions as R. In
particular, these conditions always hold in the case of a univariate Ore algebra over a field of coefficients
(i.e., ordinary differential/difference systems over the field of rational functions) and in the case of a
multivariate commutative Ore algebras due to the Quillen-Suslin theorem ([40, 62]) (e.g., linear system
of partial differential equations with constant coefficients). Moreover, if some rank conditions on the
projector are fulfilled, then, using a result due to Stafford ([42, 59]), we prove that a similar result
also holds for the Weyl algebras An(k) and Bn(k) over a field k of characteristic 0 (i.e., linear system
of partial differential equations with polynomial/rational coefficients). Using recent implementations
of both Quillen-Suslin and Stafford results in the library OreModules ([15, 24, 59, 60]), we obtain
a constructive way to compute the decomposition (2) of Ry = 0 when it exists.

We point out that, for all the above-mentioned results and, hence, for all the corresponding algo-
rithms, no condition on the system Ry = 0 is required such asD-finite, determined, under-determined,
over-determined, i.e., this approach handles general linear systems over an Ore algebra. To our knowl-
edge, the problem of factoring or decomposing linear functional systems has been studied only for a
few particular cases. For scalar linear ordinary differential operators or linear determined ordinary
differential systems, we refer to [4, 8, 9, 13, 25, 27, 29, 30, 63, 64, 66]. Generalizations to linear
determined difference and q-difference systems appear in [4, 11] and see [38, 68, 69] for D-finite par-
tial differential systems (and finite-dimensional determined systems over an Ore algebra with rational
coefficients). A more general work in that direction is included in [28]. For similar cases where the
base field is of positive characteristic and also for modular approaches, see [7, 17, 18, 19, 20, 26, 54].

All along the paper, we illustrate our results by considering some applications coming from math-
ematical physics (e.g., Galois symmetries of the linearized Euler equations, quadratic first integrals of
motion and conservation laws, equivalence of systems appearing in linear elasticity) and control theory
(controllability, r-autonomous elements, decoupling of the autonomous and controllable subsystems).

The different algorithms presented in the paper have been implemented in the Maple package
Morphisms based on the library OreModules ([15]). This package is available on the authors’ web
pages and on the one of OreModules (see [15] for the precise address) with a library of examples
which demonstrates the main results of the paper. In an appendix added at the end of the paper, we
show how to use Morphisms and OreModules in order to explicitly compute the different examples
developed in the paper. Finally, we note that this paper is an extension of the congress paper [21].

2 Morphisms of linear functional systems

2.1 Finitely presented modules and linear functional systems

In this paper, we consider linear functional systems defined by matrices with entries in an Ore algebra
D and we study them by means of their associated left D-modules. In this first subsection, we gather
many useful definitions and properties on these concepts.

Definition 1 ([14, 16]). Let A be a ring, σ an endomorphism of A, namely,

∀ a, b ∈ A,

{
σ(a + b) = σ(a) + σ(b),

σ(a b) = σ(a)σ(b),

and δ a σ-derivation, namely, δ : A→ A satisfies:

∀ a, b ∈ A,

{
δ(a+ b) = δ(a) + δ(b),

δ(a b) = σ(a) δ(b) + δ(a) b.

INRIA



Using morphism computations for factoring and decomposing linear functional systems 5

1. A (non-commutative) polynomial ring A[∂;σ, δ] in ∂ is called skew if it satisfies the following
commutation rule:

∀ a ∈ A, ∂ a = σ(a) ∂ + δ(a). (3)

An element P of A[∂;σ, δ] has the canonical form:

P =

r∑

i=0

ai ∂
i, r ∈ Z+ = {0, 1, 2, . . .}, ai ∈ A, i = 1, . . . , r.

If ar 6= 0, the order ord(P ) of P is then r.

2. Let k be a field and A be either k, the commutative polynomial ring k[x1, . . . , xn] or the com-
mutative ring of rational functions k(x1, . . . , xn). The skew polynomial ring

D = A[∂1;σ1, δ1] · · · [∂m;σm, δm]

is called an Ore algebra if the following conditions are fulfilled:




σi δj = δj σi, 1 ≤ i, j ≤ m,

σi(∂j) = ∂j , 1 ≤ j < i ≤ m,

δi(∂j) = 0, 1 ≤ j < i ≤ m.

An element P of D has the canonical form

P =
∑

0≤|ν|≤r

aν ∂
ν , r ∈ Z+, aν ∈ A,

where ν = (ν1, . . . , νn) ∈ Zn
+ denotes a multi-index of non-negative integers, |ν| = ν1 + · · ·+ νn

its length, and ∂ν = ∂ν1

1 · · · ∂
νn
n .

If there exists ν ∈ Zn
+ such that |ν| = r and aν 6= 0, then the (total) order ord(P ) is r.

We note that the commutation rule (3) must be understood as a generalization of the Leibniz rule
for functional operators, namely, for an unknown y, we have:

∂(a y) = σ(a) ∂ y + δ(a) y.

Let us give a few examples of skew polynomial rings and Ore algebras.

Example 1. 1. Let k be a field, A = k, k[n] or k(n), σ : A → A the forward shift operator,
namely, σ(a)(n) = a(n+ 1), and δ = 0. Then, the skew polynomial ring A[∂;σ, 0] is the ring of
shift operators with coefficients in A (i.e., constant, polynomial or rational coefficients).

2. Let k be a field, A = k, k[t] or k(t), σ = idA and δ : A → A the standard derivation d
dt

. The

skew polynomial ring A
[
∂; idA,

d
dt

]
is then the ring of differential operators with coefficients in

A (i.e., constant, polynomial or rational coefficients).

3. If k is a field and A is respectively k, k[x1, . . . , xn] or k(x1, . . . , xn), then we can consider

σi = idA[∂1;σ1,δ1]···[∂i−1;σi−1,δi−1], δi(a) =
∂a

∂xi

the standard derivation of a ∈ A with respect to xi. Then, the Ore algebraA[∂1; id, δ1] · · · [∂n; id, δn]
is the ring of differential operators with respectively constant, polynomial or rational coefficients.
The last two algebras are called the Weyl algebras and they are respectively denoted by:

An(k) = k[x1, . . . , xn][∂1; id, δ1] · · · [∂n; id, δn],

Bn(k) = k(x1, . . . , xn)[∂1; id, δ1] · · · [∂n; id, δn].
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6 T. Cluzeau & A. Quadrat

4. Let k be a field, A = k, k[t] or k(t), and A
[
∂1; idA,

d
dt

]
the ring of differential operators with

coefficients in A. Let h ∈ R+ be a positive real and let us denote by σ2(a) = a(t− h) the time-
delay operator and δ2(a) = 0 for all a ∈ A. Then, A

[
∂1; idA,

d
dt

]
[∂2;σ2, 0] is the Ore algebra of

differential time-delay operators with coefficients in the ring A.

We refer the reader to [14] for more examples of functional operators such as, for instance, differ-
ence, divided difference, q-difference, q-dilation operators and their applications in the study of special
functions and combinatorics.

We recall that a ring A is said to be left noetherian if every left ideal I of A is finitely generated
as a left A-module, namely, if there exists a finite family {ai}i=1,...,l(I) of elements of A which satisfies
I = Da1 + · · ·+Dal(I). A similar definition exists for right noetherian rings.

Proposition 1 ([42]). If A is a left (resp., right) noetherian ring and σ is an automorphism of A,
then the skew polynomial ring D = A[∂;σ, δ] is a left (resp., right) noetherian.

The examples of Ore algebras given in Example 1 are left and right noetherian rings. Moreover,
they are domains, namely, the product of non-zero elements is non-zero.

Proposition 2 ([14]). Let k be a computable field (e.g., k = Q, Fp), A be either k, k[x1, . . . , xn] or
k(x1, . . . , xn) and A[∂1;σ1, δ1] . . . [∂m;σm, δm] an Ore algebra satisfying the following conditions

{
σi(xj) = aij xj + bij ,

δi(xj) = cij ,
1 ≤ i ≤ m, 1 ≤ j ≤ n,

for certain aij ∈ k \ {0}, bij ∈ k, cij ∈ A. If the cij are of total degree at most 1 in the xi’s, then a
non-commutative version of Buchberger’s algorithm terminates for any monomial order on x1, . . . , xn,
∂1, . . . , ∂m, and its result is a Gröbner basis with respect to the given monomial order.

Proposition 2 holds for the examples of Ore algebras given in Example 1. In the rest of the paper,
we shall only consider left noetherian domains which satisfy the hypotheses of Proposition 2.

In what follows, we shall assume that a linear functional system (LFS) is defined by means of
a matrix of functional operators R ∈ Dq×p, where D is an Ore algebra. Then, we consider the
D-morphism of left D-modules (i.e., the left D-linear application) defined by:

D1×q .R
−→ D1×p,

(λ1, . . . , λq) 7−→ (λ1, . . . , λq)R = (
∑q

i=1 λi Ri1, . . . ,
∑q

i=1 λi Rip).
(4)

Generalizing an important idea coming from number theory and algebraic geometry, we shall consider
the left D-module

M = D1×p/(D1×q R)

which is the cokernel of the D-morphism defined by (4).

This idea can be traced back to the work of B. Malgrange ([41]) on linear systems of PDEs with
constant coefficients and it has been extended to the variable coefficients case by M. Kashiwara ([31]).
We refer to [16] for the extension to linear functional systems.

Finally, we note that if k is a field, V a finite-dimensional k-vector space of dimension p, E ∈ kp×p

and D = k[X ] the commutative polynomial ring in X with coefficients in k, then the D-module

Dp/((X Ip −E)Dp) = D1×p/(D1×p (X Ip −E)T )

plays a central role in the study of the reduction of the endomorphism E of V (see [12]).

Before explaining the main interest of the left D-module M , we first recall some basic concepts of
homological algebra used in the sequel. We refer the reader to [62] for more details.

INRIA



Using morphism computations for factoring and decomposing linear functional systems 7

Definition 2. A sequence (Mi, di)i∈Z+
of left D-modules Mi and D-morphisms di : Mi −→ Mi−1,

with the convention that M−1 = 0, is said to be:

1. a complex if, for all i ∈ Z+, di ◦ di+1 = 0 or, equivalently, im di+1 ⊆ ker di. The complex
(Mi, di)i∈Z+

is then denoted by:

. . .
di+2

−−−→Mi+1
di+1

−−−→Mi
di−→Mi−1

di−1

−−−→ . . .

The defect of exactness at Mi of the complex (Mi, di)i∈Z+
is defined by:

H(Mi) = ker di/im di+1.

2. exact at Mi if ker di = im di+1, i.e., H(Mi) = 0.

3. exact if kerdi = im di+1, for all i ∈ Z+.

4. split exact if it is exact and there further exist left D-morphisms si : Mi−1 −→Mi satisfying the
following conditions:

∀ i ∈ Z+,

{
si+1 ◦ si = 0,

si ◦ di + di+1 ◦ si+1 = idMi
.

The complex (Mi−1, si)i∈Z+
is then exact.

Using (4), we obtain the exact sequence

D1×q .R
−→ D1×p π

−→M = D1×p/(D1×q R) −→ 0, (5)

where π denotes the canonical projection of D1×p onto M that sends an element of D1×p onto its
residue class in M . The exact sequence (5) is called a finite presentation of M and M is said to be a
finitely presented left D-module.

Let us describe M in terms of its generators and relations. Let {ei}1≤i≤p (resp., {fj}1≤j≤q) be the
standard basis of D1×p (resp., D1×q), namely, the basis of D1×p formed by the row vectors ei defined
by 1 at the ith position and 0 elsewhere. We denote by yi the residue class of ei in M , i.e., yi = π(ei).
Then, {yi}1≤i≤p is a set of generators of M as every element m ∈ M is trivially of the form π(µ),
where µ = (µ1, . . . , µp) ∈ D

1×p, and thus, we obtain m = π(µ) =
∑p

i=1 µi π(ei) =
∑p

i=1 µi yi. The
left D-module M is then said to be finitely generated. Now, for j = 1, . . . , q, we have

fj R = (Rj1, . . . , Rjp) ∈ (D1×q R)⇒ π(fj R) = 0,

where:

π(fj R) =

p∑

k=1

Rjk π(ek) =

p∑

k=1

Rjk yk, j = 1, . . . , q.

Hence, the generators {yi}1≤i≤p of M satisfy the relations
∑p

k=1 Rjk yk = 0 for j = 1, . . . , q, or, more
compactly, Ry = 0 where y = (y1, . . . , yp)

T .

Example 2. Let us consider the equations of a fluid in a tank satisfying Saint-Venant’s equations
and subjected to a one dimensional horizontal move, developed in [23]:

{
y1(t− 2h) + y2(t)− 2 u̇(t− h) = 0,

y1(t) + y2(t− 2h)− 2 u̇(t− h) = 0.
(6)
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8 T. Cluzeau & A. Quadrat

Let D = Q
[
∂1; 1,

d
dt

]
[∂2;σ2, 0] be the Ore algebra of differential time-delay operators with coefficients

in Q defined in 4) of Example 1 and let us consider the system matrix:

R =

(
∂2
2 1 −2 ∂1 ∂2

1 ∂2
2 −2 ∂1 ∂2

)
∈ D2×3. (7)

The D-module M = D1×3/(D1×2R) is then defined by the following finite presentation

0 −→ D1×2 .R
−→ D1×3 π

−→M −→ 0,

as the rows of R are D-linearly independent, i.e., kerD(.R) = {λ ∈ D1×2 |λR = 0} = 0.

To develop the relations between the properties of the finitely presented left D-module M defined
by (5) and the solutions of the system Ry = 0, we need to introduce a few more concepts of module
theory (see [62] for details).

Definition 3. 1. Let N be a left D-module. We denote by homD(M,N) the abelian group of the
D-morphisms from M to N . If M has a D-D′ bimodule structure, i.e., M is a right D′-module
which satisfies (am) b = a (mb) for all a in D and b in D′, then homD(M,N) inherits a right
D′-module. In particular, if D is a commutative ring, then homD(M,N) is a D-module.

2. If N = M , then we denote the non-commutative ring of endomorphisms of M by endD(M).
Moreover, we denote by isoD(M) the non-abelian group of isomorphisms of M , namely, the
group of injective and surjective D-morphisms from M to M .

3. A finitely generated left D-module is called free if M is isomorphic to a finite power of D, i.e.,
there exists an injective and surjective D-morphism from M to D1×r, where r is a non-negative
integer. r is then called the rank of the free D-module M .

4. A finitely generated left D-module M is called projective if there exist a left D-module N and
a non-negative integer r such that M ⊕ N ∼= D1×r, where ⊕ denotes the direct sum of left
D-modules and P ∼= Q means that P and Q are isomorphic as left D-modules. We note that N
is then also a projective left D-module.

5. A projective resolution of a left D-module M is an exact sequence of the form

. . .
d3−→ P2

d2−→ P1
d1−→ P0

d0−→M −→ 0, (8)

where the Pi are projective left D-modules. If all the Pi are free left D-modules, then (8) is
called a free resolution of M . Finally, if there exists a non-negative integer s such that Pr = 0
for all r ≥ s and the Pi are finitely generated free left D-modules, then (8) is called a finite free
resolution of M .

6. Let (8) be a projective resolution of a left D-module M . We call truncated projective resolution
of M the complex defined by:

. . .
d3−→ P2

d2−→ P1
d1−→ P0 −→ 0.

Let us suppose that a finitely presented left D-module admits a finite free resolution (we note that
it is always the case for the Ore algebras defined in Example 1 as it is proved in [16]):

0 −→ D1×pl
.Rl−−→ . . .

.R2−−→ D1×p1
.R1−−→ D1×p0

π
−→M −→ 0. (9)
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Let F be a left D-module. Then, applying the functor hom(·,F) to the following truncated free
resolution of M

0 −→ D1×pl
.Rl−−→ . . .

.R2−−→ D1×p1
.R1−−→ D1×p0 −→ 0,

we get the following complex (see [62])

0←− Fpl
Rl.←−− . . .

R2.
←−− Fp1

R1.
←−− Fp0 ←− 0, (10)

where, for i = 1, . . . , l, Ri. is defined by:

Ri. : F
pi−1 −→ Fpi

ζ =




ζ1
· · ·
ζpi−1



 7−→ (Ri.) ζ = Ri ζ.

We can prove that, up to isomorphisms, the defects of exactness of (10) only depend on M and F and
not on the choice of the finite free resolution (9) of M . See [62] for more details. In particular, we
note that these defects of exactness can be defined by using any projective resolution of M and not
necessarily a finite free resolution of M as we have done for simplicity reasons. They are denoted by:

{
ext0D(M,F) ∼= kerF (R1.) = {η ∈ Fp0 |R1 η = 0},

exti
D(M,F) ∼= kerF (Ri+1.)/imF (Ri.), i ≥ 1.

It is quite easy (see [62]) to show that

ext0D(M,F) = homD(M,F),

which proves that the abelian group kerF (R1.) of F-solutions of the linear functional system R1 η = 0
is isomorphic to homD(M,F). We refer to [16, 31, 41] for more details. The abelian group kerF (R1.)
is sometimes called the behaviour of the left D-module M = D1×p0/(D1×p1 R1) ([45, 46, 52, 67, 70]).
Moreover, if we want to solve the inhomogeneous system R1 η = ζ, where ζ ∈ Fp1 is fixed, then, using
the fact that (9) is exact, we obtain that a necessary condition for the existence of a solution η ∈ F p0

is given by R2 ζ = 0 as we have:

R1 η = ζ ⇒ R2(R1 η) = R2 ζ ⇒ R2 ζ = 0.

In order to understand if the compatibility condition R2 ζ = 0 is also sufficient, we need to investigate
the residue class of ζ in ext1D(M,F) = kerF(R2.)/(R1 F

p0). If its residue class is 0, then it means that
ζ ∈ Fp1 satisfying R2 ζ = 0 is such that ζ ∈ (R1 F

p0), i.e., there exists η ∈ Fp0 such that R1 η = ζ.
The solution η is generally not unique as we can add any element of kerF (R1.) = {η ∈ Fp0 | R1 η = 0}
to it.

Definition 4 ([62]). 1. A left D-module F is called injective if, for every left D-module M , we
have:

exti
D(M,F) = 0, i ≥ 1.

2. A left D-module F is called cogenerator if homD(M,F) = 0 implies M = 0.

If F is an injective left D-module, then R2 ζ = 0 is a necessary and sufficient condition for the
existence of η ∈ Fp0 satisfying R1 η = ζ. Moreover, if F is a cogenerator left D-module and M is
not reduced to the trivial module 0, then homD(M,F) 6= 0, which means that the system R1 η = 0
admits at least one solution in Fp0 . Finally, if F is an injective cogenerator left D-module, then we
can prove that any complex of the form (10) is exact if and only if the corresponding complex (9) is
exact.
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Proposition 3 ([62]). For every ring D, there exists an injective cogenerator left D-module F .

In some interesting situations, explicit injective cogenerators are known. Let us give some examples.

Example 3. 1. If Ω is a convex open subset of Rn, then the space C∞(Ω) (resp., D′(Ω)) of smooth
functions (resp., distributions) on Ω is an injective cogenerator module over the commutative
ring R[∂1; id, δ1] · · · [∂n; id, δn] of partial differential operators with coefficients in R (see [41]).

2. If F is the set of all functions that are smooth on R except for a finite number of points, then
F is an injective cogenerator left R(t)

[
∂; idR(t),

d
dt

]
-module. See [71] for more details.

To finish, let us recall two classical results of homological algebra.

Proposition 4 ([62]). 1. Let us consider the following short exact sequence of left D-modules:

0 −→M ′ f
−→M

g
−→M ′′ −→ 0.

If M ′′ is a projective left D-module, then the previous exact sequence splits (see 4) of Defini-
tion 2).

2. Let F be a left D-module. Then, the functor homD(·,F) transforms split exact sequences of left
D-modules into split exact sequences of abelian groups.

2.2 Morphisms of finitely presented modules

2.2.1 Definitions and results

Let us first introduce a few definitions of homological algebra concerning morphisms of complexes.
See [62] for more details.

Definition 5. 1. Let (Pi, di)i∈Z+
and (P ′

i , d
′
i)i∈Z+

be two complexes of left D-modules. A mor-
phism of complexes f : (Pi, di)i∈Z+

−→ (P ′
i , d

′
i)i∈Z+

is a set of D-morphisms fi : Pi −→ P ′
i such

that
∀ i ≥ 1, d′i ◦ fi = fi−1 ◦ di,

i.e., we have the following commutative diagram:

. . .
di+2

−−−→ Pi+1
di+1

−−−→ Pi
di−→ Pi−1

di−2

−→ . . .
↓ fi+1 ↓ fi ↓ fi−1

. . .
d′

i+2

−−−→ P ′
i+1

d′

i+1

−−−→ P ′
i

d′

i−→ P ′
i−1.

d′

i−2

−→ . . .

2. A morphism of complexes
f : (Pi, di)i∈Z+

−→ (P ′
i , d

′
i)i∈Z+

is said to be homotopic to zero if there exist D-morphisms si : Pi −→ P ′
i+1 such that (s−1 = 0):

∀ i ≥ 1, fi = d′i+1 ◦ si + si−1 ◦ di.

By extension, two morphisms of complexes

f, f ′ : (Pi, di)i∈Z+
−→ (P ′

i , d
′
i)i∈Z+

are homotopic if f − f ′ is homotopic to zero.
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3. A morphism of complexes
f : (Pi, di)i∈Z+

−→ (P ′
i , d

′
i)i∈Z+

is called a homotopy equivalence or a homotopism if there exists a morphism of complexes

g : (P ′
i , d

′
i)i∈Z+

−→ (Pi, di)i∈Z+

such that f ◦ g − idP ′ and g ◦ f − idP are homotopic to zero, where idP = (Pi, idPi
)i∈Z+

. The
complexes (Pi, di)i∈Z+

and (P ′
i , d

′
i)i∈Z+

are then said to be homotopy equivalent.

We have the following important result. See [51, 62] for a proof.

Proposition 5 ([51, 62]). Let (Pi, di)i∈Z+
(resp., (P ′

i , d
′
i)i∈Z+

) be a truncated projective resolution of
M (resp., M ′). Then, a morphism f : M −→M ′ induces a morphism of complexes

f̃ : (Pi, di)i∈Z+
−→ (P ′

i , d
′
i)i∈Z+

defined uniquely up to a homotopy.
Conversely, a morphism of complexes

f̃ : (Pi, di)i∈Z+
−→ (P ′

i , d
′
i)i∈Z+

from a truncated projective resolution (Pi, di)i∈Z+
of M to a truncated projective resolution (P ′

i , d
′
i)i∈Z+

of M ′ induces a morphism f : M −→M ′.

We deduce the following interesting corollary.

Corollary 1. Let

D1×q .R
−→ D1×p π

−→M −→ 0,

D1×q′ .R′

−→ D1×p′ π′

−→M ′ −→ 0,

be a finite presentation of respectively M and M ′.

1. The existence of a morphism f : M −→M ′ is equivalent to the existence of two matrices

P ∈ Dp×p′

, Q ∈ Dq×q′

satisfying the commutation relation:

RP = QR′. (11)

We then have the commutative exact diagram

D1×q .R
−→ D1×p π

−→ M −→ 0
↓ .Q ↓ .P ↓ f

D1×q′ .R′

−→ D1×p′ π′

−→ M ′ −→ 0,

(12)

where f(π(λ)) = π′(λP ), for all λ ∈ D1×p.

2. Moreover, if we denote by R′
2 ∈ D

q′

2×q′

a matrix satisfying

kerD(.R′) = D1×q′

2 R′
2,

then P and Q are defined up to a homotopy, i.e., the matrices
{

P = P + Z1R
′,

Q = Q+RZ1 + Z2R
′
2,

where Z1 ∈ D
p×q′

and Z2 ∈ D
q×q′

2 are two arbitrary matrices, also satisfy the relation:

RP = QR′.
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12 T. Cluzeau & A. Quadrat

In the particular case where R′ = R, from Corollary 1, we obtain that the existence of an endo-
morphism f of M is equivalent to the existence of two matrices P ∈ Dp×p and Q ∈ Dq×q satisfying
the following commutation relation:

RP = QR. (13)

Before illustrating Corollary 1, let us give a direct consequence of this corollary which shows one
interest of computing morphisms between finitely presented left D-modules.

Corollary 2. With the same hypotheses and notations as in Corollary 1, if F is a left D-module,
then the morphism P. : Fp′

−→ Fp defined by

∀ ζ ∈ Fp′

, (P.)(ζ) = P ζ,

sends the elements of kerF(R′.) to elements kerF (R.), i.e., F-solutions of the system R′ ζ = 0 to
F-solutions of the system Rη = 0.

Proof. Applying the right-exact functor homD(·,F) (see [62]) to the exact commutative exact diagram
(12), we obtain the following exact commutative exact diagram:

Fq R.
←− Fp π?

←− homD(M,F) ←− 0
↑ Q. ↑ P. ↑ f?

Fq′ R′.
←− Fp′ (π′)?

←−−− homD(M ′,F) ←− 0.

Up to an isomorphism, we have seen at the end of the previous subsection that we can identify
homD(M,F) (resp., homD(M ′,F)) with kerF(R.) (resp., kerF(R′.)). A chase in the previous exact
diagram easily proves that, for all ζ ∈ kerF(R′.), we have f?(ζ) = P ζ ∈ kerF (R.).

Remark 1. From Corollary 2, we see that the computation of morphisms from a finitely presented
left D-module M to a finitely presented left D-module M ′ gives some kind of “Galois symmetries”
which send solutions of the second system to solutions of the first one. This fact is particularly clear
when we have M = M ′: we then send a solution of the system to another one.

As an example, we now apply Corollary 1 to a particular case and recover in a unified way the
so-called eigenring introduced in the literature (see [4, 11, 17, 18, 26, 64, 69]).

Example 4. Let D = A[∂;σ, δ] be a skew polynomial ring over a (commutative) ring A and two
matrices E,F ∈ Ap×p. Let us consider the matrix of functional operators R = (∂ Ip − E) ∈ Dp×p

(resp., R′ = (∂ Ip−F ) ∈ Dp×p) and the finitely presented left D-module M = D1×p/(D1×pR) (resp.,
M ′ = D1×p/(D1×pR′)). Let π (resp., π′) be the canonical projection of D1×p onto M (resp., M ′)
and {ei}1≤i≤p the standard basis of D1×p. As we have seen in Subsection 2.1, {yi = π(ei)}1≤i≤p and
{zi = π′(ei)}1≤i≤p satisfy:

∂ yi =
∑p

j=1 Eij yj , i = 1, . . . , p,

∂ zi =
∑p

j=1 Fij zj , i = 1, . . . , p.
(14)

Let f be a morphism from M to M ′. Then, there exist Pij ∈ D (i, j = 1, . . . , p) such that
f(yi) =

∑p
j=1 Pij zj . Using (14), we easily check that we can always suppose that all the Pij belong

to A, i.e., P ∈ Ap×p. By Corollary 1, there exists Q ∈ Dp×p satisfying (11).
Clearly, f is the zero morphism if and only if there exists a matrix Z ∈ Dp×p satisfying P = Z R′.

As the order of P is 0 in ∂ and that of R′ is 1 in ∂, we obtain that Z = 0, i.e., P = 0 and Q = 0.
Now, let us suppose that P and Q are different from zero. As both the orders of RP and R′ in ∂

are 1, we deduce that the order of Q must be 0, i.e., Q ∈ Ap×p. Then, we get:

(11) ⇔ (∂ Ip −E)P = Q (∂ Ip − F )

⇔ σ(P ) ∂ + δ(P )−E P = Q∂ −QF

⇔ (σ(P )−Q) ∂ + (δ(P )−E P +QF ) = 0. (15)
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The first order polynomial matrix in the left-hand side of (15) must be equal to 0 so that:

(15)⇔

{
Q = σ(P ),

δ(P ) = E P − σ(P )F.
(16)

We then obtain the following commutative exact diagram:

0 −→ D1×p .R
−→ D1×p π

−→ M −→ 0
↓ .σ(P ) ↓ .P ↓ f

0 −→ D1×p .R′

−→ D1×p π′

−→ M ′ −→ 0.

(17)

Conversely, if there exist P ∈ Ap×p and Q ∈ Ap×p which satisfy (16), we then check that we have
(11), i.e., the commutative exact diagram (17) where the morphism f : M −→M ′ is defined by

∀ m ∈M, f(m) = π′(λP ),

and λ ∈ D1×p is any element such that m = π(λ).

The previous results prove that we have:

homD(M,M ′) =



f : M −→M ′ | f(yi) =

p∑

j=1

Pij zj , i = 1, . . . , p, P ∈ Ap×p, δ(P ) = E P − σ(P )F



 ,

endD(M) =



f : M −→M | f(yi) =

p∑

j=1

Pij yj , i = 1, . . . , p, P ∈ Ap×p, δ(P ) = E P − P E



 .

For instance, if we consider the ring A = k[t] or k(t) and D = A
[
∂; idA,

d
dt

]
, then (16) becomes

{
Q(t) = P (t),

Ṗ (t) = E(t)P (t)− P (t)F (t),
(18)

whereas, if we consider the ring A = k[n] or A = k(n) and D = A[∂;σ, 0] with σ(a)(n) = a(n + 1),
then (16) gives: {

Qn = σ(Pn) = Pn+1,

En Pn − σ(Pn)Fn = En Pn − Pn+1 Fn = 0.
(19)

We find again in a unified way known results concerning the eigenring of a linear system (see [64, 4,
11, 17, 18, 26, 69] for more details).

Finally, if F is a left D-module, then applying the functor homD(·,F) to the commutative exact
diagram (17), we obtain the following commutative exact diagram:

Fp R.
←− Fp ←− homD(M,F) ←− 0

↑ σ(P ). ↑ P. ↑ f?

Fp R′.
←−− Fp ←− homD(M ′,F) ←− 0.

If η ∈ homD(M ′,F), i.e., η ∈ Fp is a solution of the system ∂ η = F η, then the previous commutative
exact diagram shows that ζ = P η is a solution of ∂ ζ = E ζ, i.e., ζ = f ?(η) ∈ homD(M,F). Indeed,
we have:

∂ ζ −E ζ = ∂ (P η)−E (P η) = σ(P ) ∂ η + δ(P ) η − (E P ) η = σ(P ) (∂ η − F η) = 0.
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For instance, if D = A
[
∂; idA,

d
dt

]
, using (18), we obtain:

∂ ζ(t)−E(t) ζ(t) = ∂ (P (t) η(t)) − (E(t)P (t)) η(t) = P (t) ∂ η(t)− Ṗ (t) η(t)− (E P ) η(t)

= P (t) (∂ η(t)− F η(t)) = 0.

If we now consider D = A[∂;σ, 0], using (19), we have:

ζn+1 −En ζn = Pn+1 ηn+1 −En Pn ηn = Pn+1 (ηn+1 − Fn ηn) = 0.

Remark 2. In the case where F = E is a matrix of differential operators in ∂x, we point out that, in
the inverse scattering theory, (P,E) is called a Lax pair and (18) is the Lax relation ([3, 35]). We just
want here to recall the classical example of the Korteweg-de Vries (KdV) equation but similar results
hold for the sine-Gordon equation, the Boussinesq equation, the nonlinear Schrödinger equation, the
Toda lattice. . . See [3] for more details. The relations between endD(M), the eigenring, the inverse
scattering method and the complete integrability of Hamiltonian systems and evolution equations will
be studied in details in a forthcoming publication.

Let us consider the differential ring Q{u} formed by differential polynomials in u, namely, poly-
nomials in a finite number of derivatives of u with respect to x and t, the prime differential ideal of
Q{u} defined by

p =

{
∂u

∂t
− 6u

(
∂u

∂x

)
+
∂3u

∂x3

}
,

the differential ring L = Q{u}/p and its quotient field K = {n/d | 0 6= d, n ∈ L}, i.e., the differential
field defined by the KdV equation:

∂u

∂t
− 6u

(
∂u

∂x

)
+
∂3u

∂x3
= 0. (20)

We refer the reader to [32, 61] for more details on the different concepts of differential algebra.
Let us consider the rings of differential operators with coefficients in K

{
A = K

[
∂x; id, ∂

∂x

]
,

D = A
[
∂t; id,

∂
∂t

]
= K

[
∂x; id, ∂

∂x

] [
∂t; id,

∂
∂t

]
,

the two following differential operators





E = −4 ∂3
x + 6u ∂x + 3

(
∂ u

∂ x

)
∈ D,

R = ∂t −E ∈ D,

and the finitely presented left D-module M = D/(DR).
Extending the ideas developed in Example 4, we can easily check that an endomorphism f of M

can be defined by an element P ∈ A (Q = P ∈ A) satisfying RP = P R. In particular, if we consider
the Schrödinger operator P = −∂2

x + u with the potential u, we can check after tedious computations
that we have:

RP − P R = ∂t P −E P + P E =
∂u

∂t
− 6u

(
∂u

∂x

)
−
∂3u

∂x3
= 0. (21)

Hence, if u satisfies the KdV equation (20), then the Schrödinger operator P defines an endomorphism
of the left D-module M . In particular, if η is a solution of the evolution equation

Rη =
∂ η

∂ t
+ 4

(
∂3 η

∂ x3

)
− 6u

(
∂ η

∂ x

)
− 3

(
∂ u

∂ x

)
η = 0,
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then a new solution ζ of Rη = 0 is obtained by applying the Schrödinger operator P to η, namely:

ζ = P η = −
∂2 η

∂x2
+ u η.

Conversely, we can also interpret R as defining an endomorphism of the left D-module N = D/(DP ),
meaning that, if η satisfies the Schrödinger equation P η = 0, then ζ = Rη satisfies P ζ = 0.

In the inverse scattering theory, a key point is that the smooth one-parameter family of differential
operators t 7−→ −∂2

x + u(x, t) defines an isospectral flow on the solutions of the evolution equation
∂t η = E η, namely, if ψ(x) is an eigenvector of the differential operator −∂2

x + u(x, 0) with eigenvalue
λ, then the solution η(x, t) of the equation ∂t η(x, t) = E η(x, t) with the initial value η(x, 0) = ψ(x)
is an eigenvector of the differential operator −∂2

x + u(x, t) with the same eigenvalue λ. This result
directly follows from the integrability condition ∂tP = E P − P E, i.e., the KdV equation. Using
the previous result, the inverse scattering method then proves that the non-trivial KdV equation is
completely integrable. We refer the reader to [3, 35] for more details and examples.

2.2.2 Algorithms

Before giving two algorithms for the computation of morphisms between two finitely presented left
modules, we first recall the notion of the Kronecker product of two matrices.

Definition 6. Let E ∈ Dq×p and F ∈ Dr×s be two matrices with entries in a ring D. The Kronecker
product of E and F , denoted by E ⊗ F , is the matrix defined by:

E ⊗ F =




E11 F . . . E1p F
...

...
...

Eq1 F . . . Eqp F


 ∈ D(q r)×(p s).

The next result is very classical.

Lemma 1. Let D be a commutative ring, E ∈ Dr×q, F ∈ Dq×p and G ∈ Dp×m three matrices. If
we denote by row(F ) = (F1•, . . . , Fq•) ∈ D

1×q p the row vector obtained by stacking the rows of F one
after the other, then the product of the three matrices can be obtained by:

E F G = row(F ) (ET ⊗G).

We point out that Lemma 1 is only valid for commutative rings. Let us consider a commutative
ring D and the matrices R ∈ Dq×p, R′ ∈ Dq′×p′

, P ∈ Dp×p′

and Q ∈ Dq×q′

. Then, from the previous
lemma, we have {

RP = RP Ip′ = row(P ) (RT ⊗ Ip′),

QR′ = Iq QR
′ = row(Q) (Iq ⊗R

′),

which implies that (11) is equivalent to:

(row(P ) row(Q))

(
RT ⊗ Ip′

−Iq ⊗R
′

)
= 0.

This leads to an algorithm for computing matrices P ∈ Dp×p′

and Q ∈ Dq×q′

satisfying (11) in
the case where the Ore algebra D is commutative.

Algorithm 1. � Input: A commutative Ore algebra D, R ∈ Dq×p and R′ ∈ Dq′×p′

.
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� Output: A finite family of generators {fi}i∈I of the D-module homD(M,M ′), where

M = D1×p/(D1×q R), M ′ = D1×p′

/(D1×q′

R′),

and each fi is defined by means of two matrices Pi and Qi satisfying the relation (11), i.e.:

∀ λ ∈ D1×p : fi(π(λ)) = π′(λPi), i ∈ I.

1. Form the following matrix with entries in D:

K =

(
RT ⊗ Ip′

−Iq ⊗R
′

)
∈ D(p p′+q q′)×q p′

. (22)

2. Compute kerD(.K), i.e., the first syzygy left D-module of D1×(p p′+q q′)K, by means of a com-
putation of a Gröbner basis for an elimination order (see [16]). We obtain L ∈ Ds×(p p′+q q′)

satisfying:
kerD(.K) = D1×s L.

3. For i = 1, . . . , s, construct the following matrices

{
Pi(j, k) = ri(L)(1, (j − 1) p′ + k),

Qi(l,m) = ri(L)(1, p p′ + (l − 1) q′ +m),

where ri(L) denotes the ith row of L, E(i, j) the i × j entry of the matrix E, j = 1, . . . , p,
k = 1, . . . , p′, l = 1, . . . , q and m = 1, . . . , q′. We then have:

RPi = QiR
′, i = 1, . . . , s.

4. Compute a Gröbner basis G of the rows of R′ for a total degree order.

5. For i = 1, . . . , s, reduce the rows of Pi with respect to G by computing their normal forms with
respect to G. We obtain the matrices P i which satisfy

P i = Pi + ZiR
′,

where Zi ∈ D
p×q′

are certain matrices which can be easily obtained by means of a factorization
(see [15] for details).

6. For i = 1, . . . , s, define the following matrices

Qi = Qi +RZi.

The pair (Pi, Qi) then satisfies the relation:

RP i = QiR
′

Remark 3. If we denote by R′
2 ∈ D

q′

2×q′

a matrix satisfying kerD(.R′) = D1×q′

2 R′
2, we then note

that any matrix of the form
Qi = Qi +RZi + Z ′

i R
′
2,

where Z ′
i ∈ D

q×q′

2 is an arbitrary matrix, also satisfies the relation RP i = QiR
′.

INRIA



Using morphism computations for factoring and decomposing linear functional systems 17

Remark 4. As D is a commutative ring, we know that homD(M,M ′) has a D-module structure.
Let us prove that the family {fi}i∈I obtained in the output of Algorithm 1 generates homD(M,M ′).
Let us consider f ∈ homD(M,M ′). By Corollary 1, we know that there exist P ∈ Dp×p′

and
Q ∈ Dq×q′

such that RP = QR′, i.e., (row(P ) row(P ))K = 0, where K is defined by (22). Using
the fact that the matrix L, defined in Step 2 of Algorithm 1, generates kerD(.K), we obtain that
(row(P ) row(P )) ∈ (D1×s L), i.e., there exists (α1, . . . , αs) ∈ D

1×s such that

(row(P ) row(P )) = (α1, . . . , αs)L⇒

{
P =

∑s
i=1 αi Pi,

Q =
∑s

i=1 αi Qi,

where the matrices Pi and Qi are defined in Step 3 of Algorithm 1. Using the definitions of P i and
Qi defined in Steps 5 and 6 of Algorithm 1, we then get:

{
P =

∑s
i=1 αi Pi − (

∑s
i=1 αi Zi)R

′,

Q =
∑s

i=1 αi Qi −R (
∑s

i=1 αi Zi).

If we denote by H =
∑s

i=1 αi Zi ∈ Dp×q′

, then we easily check that the pair (H R′, RH) defines
an element of homD(M,M ′) homotopic to 0, meaning that the morphism f ∈ homD(M,M ′) can be
defined by the pair (

∑s
i=1 αi Pi,

∑s
i=1 αiQi), i.e., f =

∑s
i=1 αi fi, which proves the result.

Hence, if {fi}i∈I is a family of morphisms obtained by Algorithm 1 and defined the pairs of matrices
(P i, Qi), then any element f ∈ homD(M,M ′) has the form f =

∑
i∈I αi fi, where αi ∈ D for i ∈ I ,

and f can be defined, up to a homotopy, by the pair:

(
∑

i∈I

αi P i,
∑

i∈I

αi Qi

)
.

Example 5. Let us consider again Example 2. Applying Algorithm 1 to the matrix R defined by (7),
we obtain that the D-endomorphisms of M are generated by the matrices

Pα =




α1 α2 2α3 ∂1 ∂2

α2 + 2α4 ∂1 α1 − 2α4 ∂1 2α3 ∂1 ∂2

α4 ∂2 −α4 ∂2 α1 + α2 + α3 (∂2
2 + 1)


 ,

and

Qα =

(
α1 − 2α4 ∂1 α2 + 2α4 ∂1

α2 α1

)
,

where α1, α2, α3 and α4 are arbitrary elements of D, i.e., we have:

∀ λ ∈ D1×3, fα(π(λ)) = π(λPα).

As it is noticed in 1) of Definition 3, if D is a non-commutative ring, then homD(M,M ′) is an
abelian group or generally an infinite-dimensional k-vector space. Hence, the only possibility to access
homD(M,M ′) is to use a certain “filtration”, i.e., to only consider morphisms of homD(M,M ′) which
can be defined by means of a matrix P with a fixed total order in the functional operators ∂i and a
fixed degree in xi for the numerators and denominators of the polynomial/rational coefficients. We
obtain the following algorithm:

Algorithm 2. � Input: An Ore algebra D, two matrices R ∈ Dq×p, R′ ∈ Dq′×p′

and three
non-negative integers α, β, γ.
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18 T. Cluzeau & A. Quadrat

� Output: A family of pairs (P i, Qi)i∈I satisfying:





RP i = QiR
′,

ord∂(P i) ≤ α, i.e., P i =
∑

0≤|ν|≤α a
(i)
ν ∂ν ,

and ∀ ν ∈ Zn
+, 0 ≤ |ν| ≤ α, a

(i)
ν ∈ Ap×p satisfies :

degx(num(a
(i)
ν )) ≤ β,

degx(denom(a
(i)
ν )) ≤ γ,

where ord∂(P i) denotes the maximal of the total orders of the entries of P i, degx(num(a
(i)
ν ))

(resp., degx(denom(a
(i)
ν ))) the maximal of the degrees of the numerators (resp., denominators)

of a
(i)
ν . For all i ∈ I , the morphisms fi are then defined by:

∀ λ ∈ D1×p : fi(π(λ)) = π′(λP i).

1. Take an ansatz for P satisfying the input

P (i, j) =
∑

0≤|ν|≤α

b(i,j)ν ∂ν , 1 ≤ i ≤ p, 1 ≤ j ≤ p′,

where b
(i,j)
ν is a rational function whose numerator (resp., denominator) has a total degree β

(resp., γ).

2. Compute RP and denote the result by F .

3. Compute a Gröbner basis G of the rows of R′ for a total degree order.

4. Reduce the rows of F with respect to G by computing their normal forms with respect to G.

5. Solve the system for the coefficients of b
(i,j)
ν so that all the normal forms vanish.

6. Substitute the solutions into the matrix P . Denote the set of solutions by {Pi}i∈I .

7. For i ∈ I , reduce the rows of Pi with respect to G by computing their normal forms with respect
to G. We obtain P i for i ∈ I .

8. Using rj(RP i) ∈ (D1×q′

R′), j = 1, . . . , q, where rj(RP i) denotes the jth row of RP i ∈ D
q×p′

,

compute a matrix Qi ∈ D
q×q′

satisfying RP i = QiR, i ∈ I .

If we search for morphisms with only polynomial coefficients, i.e., γ = 0, then we note that the

algebraic system in the coefficients b
(i,j)
ν that we need to solve in Step 5 of Algorithm 2 is linear.

Hence, the solutions of this system belong to field k. However, if we look for morphisms with rational

coefficients, we then have to solve a non-linear algebraic system in the coefficients b
(i,j)
ν , meaning that

its solutions generally belong to the algebraic closure k of k.

Let us illustrate Algorithm 2 by means of an example.

Example 6. We consider the so-called Euler-Tricomi equation ∂2
1 u(x1, x2)−x1 ∂

2
2 u(x1, x2) = 0 which

appears in the study of transonic flow. Let D = A2(Q) be the Weyl algebra, R = (∂2
1−x1 ∂

2
2) ∈ D and

M = D/(DR) the associated left D-module. Using Algorithm 2, we can compute the endomorphisms
of M defined by P ∈ D with given total order in ∂i and total degree in xi. We denote by endD(M)α,β

the Q-vector space of all the elements of endD(M) defined by a differential operator Pα,β which total
order (resp., degree) in ∂i (resp., xi) is less or equal to α (resp., β), where α and β are two non-negative
integers. Below is a list of some of these Q-vector spaces obtained by means of Algorithm 2:
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Using morphism computations for factoring and decomposing linear functional systems 19

� endD(M)0,0 is defined by P = Q = a, a ∈ Q.

� endD(M)1,1 is defined by

{
P = a1 + a2 ∂2 + 3

2 a3 x2 ∂2 + a3 x1 ∂1,

Q = (a1 + 2 a3) + a2 ∂2 + 3
2 a3 x2 ∂2 + a3 x1 ∂1,

where a1, a2 and a3 ∈ Q.

� endD(M)2,0 is defined by P = Q = a1 + a2 ∂2 + a3 ∂
2
2 , where a1, a2, a3 ∈ Q.

� endD(M)2,1 is defined by

{
P = a1 + a2 ∂2 + 3

2 a3 x2 ∂2 + a3 x1 ∂1 + a4 ∂
2
2 + 3

2 a5 x2 ∂
2
2 + a5 x1 ∂1 ∂2,

Q = (a1 + 2 a3) + a2 ∂2 + 3
2 a3 x2 ∂2 + a3 x1 ∂1 + a4 ∂

2
2 + a5 x1 ∂1 ∂2 + 2 a5 ∂2 + 3

2 a5 x2 ∂
2
2 ,

where a1, . . . , a5 ∈ Q.

Remark 5. If D is a non-commutative ring, then we note that homD(M,M ′) is generally an infinite-
dimensional k-vector space and an abelian group. In particular, homD(M,M ′) has no non-trivial mod-
ule structure, a fact implying that there does not exist a finite family of generators of homD(M,M ′)
as a left or right D-module.

However, if M and M ′ are two finite-dimensional k-vector spaces (e.g., the linear systems defined
in Example 4 with A a field, integrable connections, D-finite modules [14]), we can then compute a
basis of the finite-dimensional k-vector space homD(M,M ′). In order to do that, we need to know
some bounds on the orders and degrees of the entries of solutions of (11) so that we can know whether
or not Algorithm 2 finds a k-basis of the morphisms. In some cases, such bounds are known. Let us
recall some known results.

In Example 4, we saw that if D = A[∂;σ, δ] was a skew polynomial ring over a (commutative) ring
A, E,F ∈ Ap×p and R = (∂ Ip − E), R′ = (∂ Ip − F ), the morphisms from M = D1×p/(D1×pR) to
M ′ = D1×p/(D1×pR) are defined by means of matrices P ∈ Ap×p satisfying:

δ(P ) = E P − σ(P )F. (23)

Hence, we need to solve (23). There are two main cases:

1. If A = k[t] or k(t) and D = A
[
∂; idA,

d
dt

]
, then (23) becomes Ṗ (t) = E(t)P (t) − P (t)F (t). A

direct method to solve the previous linear system of ODEs is developed in [8]. Another method,
based on the fact that the entries of the matrices E, F and P belong to a commutative ring A,
uses the equivalence of the previous system with the following first order linear system of ODEs

δ(row(P )) = row(P ) ((ET ⊗ Ip)− (Ip ⊗ F )), (24)

where ⊗ denotes the Kronecker product (see Definition 6). Hence, computing homD(M,M ′) is
equivalent to computing the A-solutions of the auxiliary linear differential system (24) (see for
example [8, 17, 18, 26, 64]). Consequently, we can use the bounds appearing in [2, 5] on the
degrees of numerators (and denominators) of polynomial (rational) solutions to deduce bounds
on the entries of P . We note that in that case, the matrices P and Q are necessarily of order
0 in ∂. We may precise that these bounds depend only on the valuations and degrees of the
entries of the two matrices E and F .
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20 T. Cluzeau & A. Quadrat

2. If we consider the ring A = k[n] or A = k(n) and D = A[∂;σ, 0] with σ(a)(n) = a(n+ 1), then
(23) becomes Pn+1 Fn = En Pn. A direct method to solve the previous linear difference system
is developed in [6]. Another one, based again on the fact that the entries of the matrices En,
Fn and Pn belong to a commutative ring A, uses the equivalence of the previous system with
the following first order linear discrete system:

row(Pn+1) (ET
n ⊗ Ip) = row(Pn) (Ip ⊗ Fn). (25)

Moreover, if E ∈ GLp(A), i.e., the matrix E is invertible, then (25) becomes

row(Pn+1) = row(Pn) ((Ip ⊗ F ) (ET
n ⊗ Ip)

−1).

As in the differential case, some bounds exist on the degrees of numerators (and denominators)
of polynomial (rational) solutions of the previous system (see [1, 6]), and thus, for the matrices
P and Q.

Finding bounds in more general situations is a subject for future researches.

2.2.3 Applications: quadratic first integrals of motion and conservation laws

We illustrate the interest of the computation of morphisms in the search of quadratic first integrals of
motion of linear systems of ODEs and quadratic conservation laws of linear systems of PDEs.

We consider the Ore algebra D = A
[
∂; idA,

d
dt

]
of ordinary differential operators with coefficients

in a commutative k-algebra A (e.g., A = k[t], k(t)), where k is a field, and R = (∂ Ip − E) ∈ Dp×p.
Using (18), we easily check that any solution P ∈ Ap×p of the following Liapunov equation

Ṗ (t) +ET (t)P (t) + P (t)E(t) = 0

defines a morphism from the finitely presented left D-module Ñ = D1×p/(D1×p R̃) to the the finitely

presented left D-module M = D1×p/(D1×pR), where R̃ = (−(∂ Ip +ET )) ∈ Dp×p denotes the formal

adjoint of R (as we have D1×p R̃ = D1×p (∂ Ip +ET ), we can also use the matrix (∂ Ip +ET ) instead

of R̃ in the definition of Ñ).

We recall that the formal adjoint R̃ of a matrix R of differential operators is obtained by contracting
the column vector Rη by a row vector λT and integrating the result by parts (see [48, 49, 50]). Hence,
there exists a bilinear application Φ which satisfies:

λT (Rη) = η (R̃ λT ) + ∂ (Φ(λ, η)). (26)

In particular, in our case, we have:

λT (∂η −E η) = −(∂λT + λT E) η + ∂(λT η) = ηT (−(∂λ+ET λ)) + ∂ (ηT λ). (27)

If F is a left D-module and η ∈ Fp satisfies the system ∂η − E η = 0, then, following the results
obtained in Example 4, λ = P η is a solution of ∂ λ+ET λ = 0. Hence, using (27), we then get

∂ (ηT λ) = ∂(ηT P η) = 0,

which proves that the quadratic form V = ηT P η is a first integral of the motion of the system
∂η −E η = 0. Hence, we obtain that there exists a one-to-one correspondence between the quadratic
first integrals of the motion of the form V = ηT P η, where P ∈ Aq×p, of the system ∂ η − E η = 0
and the morphisms between the left D-modules Ñ and M , i.e., the elements of homD(Ñ ,M).

We note that if E is a skew-symmetric matrix, namely, ET = −E, then we get

−R̃ = (∂ Ip +ET ) = (∂ Ip −E) = R,

Ñ = M and homD(Ñ ,M) = endD(M). Such a particular case appears in mechanics.

Let us illustrate the previous result.
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Example 7. Let us consider the example of a linear system of ODEs defined in page 117 of [34] and
let us compute its quadratic first integrals. In order to do that, let us introduce the following matrix
of coefficients

E =




0 1 0 0
−ω2 0 α 0

0 0 0 1
0 0 −ω2 α


 ∈ Q(ω, α)4×4,

the ring D = Q(ω, α)
[
∂; id, d

dt

]
of differential operators, the matrix R = (∂ I4 − E) ∈ D4×4 of

differential operators and the D-module M = D1×4/(D1×4R). Then, we have R̃ = (−(∂ I4+ET )) and

Ñ = D1×4/(D1×4 R̃). Using Algorithm 1, we obtain that an element of the D-module homD(Ñ ,M)
can be defined by means of the matrix

P =




c1 ω
4 c2 ω

2 −ω2 (c1 α+ c2) c1 ω
2

−c2 ω
2 c1 ω

2 −c1 ω
2 + c2 α −c2

−ω2 (c1 α− c2) −c1 ω
2 − c2 α c1 (α2 + ω2) −c1 α+ c2

c1 ω
2 c2 −c1 α− c2 c1


 ,

where c1 and c2 are two constants, which leads to the quadratic first integral V (x) = xT P x, i.e.:

V (x) = c1 ω
4 x1(t)

2 − 2 c1 αω
2 x1(t)x3(t) + 2 c1 ω

2 x1(t)x4(t) + c1 ω
2 x2(t)

2 − 2 c1 ω
2 x2(t)x3(t)

+c1 α
2 x3(t)

2 + c1 ω
2 x3(t)

2 − 2 c1 α x3(t)x4(t) + c1 x4(t)
2.

More generally, let us consider a matrix R ∈ Dq×p of differential operators, R̃ ∈ Dp×q its formal
adjoint and the finitely presented left D-modules M = D1×p/(D1×q R) and Ñ = D1×q/(D1×p R̃). Let

us suppose that there exists a morphism f from Ñ to M defined by P ∈ Dq×p and Q ∈ Dp×q , i.e.,
we have the commutative exact diagram:

D1×p . eR
−→ D1×q π′

−→ Ñ −→ 0
↓ .Q ↓ .P ↓ f

D1×q .R
−→ D1×p π

−→ M −→ 0.

Applying the right exact functor homD(·,F) to the previous commutative exact diagram, we then
obtain the following commutative exact diagram

Fp
eR.
←− Fq ←− kerF (R̃.) ←− 0

↑ Q. ↑ P. ↑ f?

Fq R.
←− Fp ←− kerF (R.) ←− 0,

where f?(η) = P η. Hence, if η ∈ Fp is a solution of Rη = 0, then λ = P η is a solution of R̃ λ = 0 as:

R̃ (P η) = Q (Rη) = 0.

Therefore, using (26), we obtain that V = Φ(P η, η) is a quadratic first integral of the motion of
system Rη = 0, i.e., V satisfies ∂ V = 0.

An extension of the previous ideas exists for the computation of quadratic conservation laws of
linear system of PDEs, namely, a vector Φ = (Φ1, . . . ,Φn)T of quadratic functions of the system
variables and their derivatives which satisfies div Φ =

∑n
i=1 ∂i Φi = 0, where n denotes the number of

independent variables. Let us give a simple example as the general theory follows exactly the same
lines.
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Example 8. Consider the PDE ∆ y(x1, x2) = 0, where ∆ = ∂2
1 +∂2

2 ∈ D = Q

[
∂1; id,

∂
∂x1

] [
∂2; id,

∂
∂x2

]

is the Laplacian operator in R2. Multiplying ∆ y(x1, x2) by a function λ(x1, x2) and integrating the
result by parts, we obtain:

λ (∆ y)− (∆λ) y = ∂1 (λ (∂1 y)− (∂1 λ) y) + ∂2 (λ (∂2 y)− (∂2 λ) y). (28)

Using the fact that R = ∆ is a differential operator with constant coefficients and R̃ = R, we then
obtain homD(Ñ ,M) = endD(M) = D. Hence, if F is a D-module (e.g., C∞(Ω)), then, for all α ∈ D
and y ∈ F satisfying ∆ y = 0, λ = αy is then a solution of ∆λ = 0. Substituting λ = αy in (28), we
finally obtain

div Φ = ∂1 Φ1 + ∂2 Φ2 = 0,

with the notation:

Φ =

(
(αy) (∂1 y)− y (∂1 αy)

(αy) (∂2 y)− y (∂2 αy)

)
.

3 Reducible modules and factorizations

3.1 Modules associated with a morphism and equivalences

Let f : M −→M ′ be a morphism between two left D-modules. Then, we can define the following left
D-modules: 





ker f = {m ∈M | f(m) = 0},

im f = {m′ ∈M ′ | ∃ m ∈M : m′ = f(m)},

coim f = M/ kerf,

cokerf = M ′/im f.

Let us explicitly characterize the above-mentioned kernel, image, coimage and cokernel of a mor-
phism f : M −→M ′ between two finitely presented left D-modules M and M ′.

Proposition 6. Let R ∈ Dq×p, R′ ∈ Dq′×p′

, M = D1×p/(D1×q R) and M ′ = D1×p′

/(D1×q′

R′). Let
f : M −→ M ′ be a morphism defined by two matrices P ∈ Dp×p′

and Q ∈ Dq×q′

satisfying (11).
Then, we have:

1. kerf = (D1×r S)/(D1×q R), where S ∈ Dr×p is the matrix defined by:

kerD

(
.

(
P
R′

))
= D1×r (S − T ), T ∈ Dr×q′

. (29)

2. coim f = D1×p/(D1×r S),

3. im f =

(
D1×(p+q′)

(
P
R′

))
/(D1×q′

R′),

4. cokerf = D1×p′

/

(
D1×(p+q′)

(
P
R′

))
.

Proof. 1. Letm ∈ kerf and writem = π(λ) for a certain λ ∈ D1×p. Then, f(m) = π′(λP ) = 0 implies
that λP ∈ (D1×q′

R′), i.e., there exists µ ∈ D1×q′

satisfying λP = µR′. Hence, m = π(λ) ∈ ker f
implies that there exists µ ∈ D1×q′

such that λP = µR′. Conversely, we easily check that any element
(λ − µ) ∈ kerD(.(P T R′T )T ) gives m = π(λ) ∈ kerf , which proves the result.
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2. Using the canonical short exact sequence

0 −→ kerf
i
−→M

ρ
−→ coim f −→ 0,

where i (resp., ρ) denotes the canonical injection (resp., surjection), M = D1×p/(D1×q R) and ker f =
(D1×r S)/(D1×q R), we obtain the following exact sequence

0 −→ (D1×r S)/(D1×q R)
i
−→ D1×p/(D1×q R)

ρ
−→ coim f −→ 0,

which proves that coim f = D1×p/(D1×r S) (see [62]).

3. For all λ ∈ D1×p, we have f(π(λ)) = π′(λP ), which clearly proves that we have:

im f =

(
D1×(p+q′)

(
P
R′

))
/(D1×q′

R′).

4. Using the canonical short exact sequence

0 −→ im f
j
−→M ′ σ

−→ cokerf −→ 0,

where j (resp., σ) denotes the canonical injection (resp., surjection), M ′ = D1×p′

/(D1×q′

R′) and
im f = (D1×p P +D1×q′

R′)/(D1×q′

R′), we then obtain the following exact sequence

0 −→

(
D1×(p+q′)

(
P
R′

))
/(D1×q′

R′)
j
−→ D1×p′

/(D1×q′

R′)
σ
−→ cokerf −→ 0,

which proves that coker f = D1×p′

/

(
D1×(p+q′)

(
P
R′

))
(see [62]).

Let us state the first main result of the paper.

Theorem 1. With the notations of Proposition 6, any non-injective morphism f : M −→ M ′ leads
to a non-trivial factorization of R ∈ Dq×p of the form R = LS, where L ∈ Dq×r and S ∈ Dr×p.

Proof. Using (29) and the fact that RP = QR′, i.e.,

(R −Q)

(
P
R′

)
= 0,

we obtain that (D1×q (R − Q)) ⊆ (D1×r (S − T )), and thus, there exists a matrix L ∈ Dq×r

satisfying: {
R = LS,

Q = LT.
(30)

We then obtain the following commutative exact diagram

0
↓

0 ker f
↓ ↓

D1×q .R
−→ D1×p π

−→ M −→ 0
↓ .L ‖ ↓ ρ

D1×r .S
−→ D1×p κ

−→ coim f −→ 0,
↓ ↓
0 0

(31)

where ρ : M −→ coim f denotes the canonical projection.
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Let us illustrate Theorem 1 by means of an example.

Example 9. We consider the linearized Euler equations for an incompressible fluid (page 519 of [39])





div~v(x, t) = 0,

∂ ~v(x, t)

∂t
+ grad p(x, t) = 0,

(32)

where x = (x1, x2, x3) and ~v = (v1, v2, v3)
T (resp., p) denotes the perturbations of the speed (resp.,

pressure). If we denote by D the Ore algebra

Q

[
∂1; id,

∂

∂x1

][
∂2; id,

∂

∂x2

][
∂3; id,

∂

∂x3

][
∂t; id,

∂

∂t

]

of differential operators with rational constant coefficients, the system matrix corresponding to (32)
is then defined by:

R =




∂1 ∂2 ∂3 0
∂t 0 0 ∂1

0 ∂t 0 ∂2

0 0 ∂t ∂3


 ∈ D

4×4.

Let M = D1×4/(D1×4R) be the D-module associated with the system (32). An endomorphism f of
M is defined by the following two matrices:

P =




0 0 0 0
0 ∂2

3 −∂2 ∂3 0
0 −∂2 ∂3 ∂2

2 0
0 0 0 0


 , Q =




0 0 0 0
0 0 0 0
0 0 ∂2

3 −∂2 ∂3

0 0 −∂2 ∂3 ∂2
2


 .

We then obtain the following factorization R = LS of R, where:

S =




1 0 0 0
0 ∂2 ∂3 0
0 −∂t 0 0
0 0 ∂t 0
0 0 0 1



, L =




∂1 1 0 0 0
∂t 0 0 0 ∂1

0 0 −1 0 ∂2

0 0 0 1 ∂3


 .

We can check that kerf = (D1×5 S)/(D1×4R) 6= 0, which shows that R = LS is a non-trivial
factorization of R. The solutions of the system S η = 0 are particular solutions of Rη = 0. If we
consider F = C∞(Ω), where Ω is an open convex subset of R4, we easily check that all F-solutions of
S η = 0 are given by

η = (v1, v2, v3, p)
T =

(
0, −

∂ξ(x)

∂x3
,

∂ξ(x)

∂x2
, 0

)T

, (33)

where ξ is any function of C∞(Ω ∩ R3), i.e., (33) gives a family of stationary solutions of (32).

Let us state a useful lemma.

Lemma 2. Let R ∈ Dq×p, R′ ∈ Dq′×p, R′′ ∈ Dq×q′

be three matrices satisfying the relation R = R′′R′

and let T ′ ∈ Dr′×q′

be such that kerD(.R′) = D1×r′

T ′. Let us also consider the following canonical
projections:

π1 : (D1×q′

R′) −→M1 = (D1×q′

R′)/(D1×q R),

π2 : D1×q′

−→M2 = D1×q′

/(D1×q R′′ +D1×r′

T ′).
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Then, the morphism ψ defined by

ψ : M2 −→ M1

m2 = π2(λ) 7−→ ψ(m2) = π1(λR
′),

is an isomorphism and its inverse φ is defined by:

φ : M1 −→ M2

m1 = π1(λR
′) 7−→ φ(m1) = π2(λ).

In other words, we have the following isomorphism of left D-modules:

(D1×q′

R′)/(D1×q R) ∼= D1×q′

/(D1×q R′′ +D1×r′

T ′). (34)

Proof. Let us prove that ψ is a well-defined morphism. We assume that we have m2 = π2(λ) = π2(λ
′),

where λ, λ′ ∈ D1×q′

. Then, we have π2(λ− λ
′) = 0, i.e., λ− λ′ ∈ (D1×q R′′ +D1×r′

T ′) so that there
exist µ ∈ D1×q and ν ∈ D1×r′

such that λ− λ′ = µR′′ + ν T ′. We then have:

(λ− λ′)R′ = (µR′′ + ν T ′)R′ = µR

⇒ π1((λ− λ
′)R′) = π1(µR) = 0

⇒ π1(λ
′R′) = π1(λR

′) = ψ(m2).

Now, let us prove that the morphism φ is also well-defined. Let us suppose that:

m1 = π1(λR
′) = π1(λ

′ R′), λ, λ′ ∈ D1×q′

.

We have π1(λR
′) − π1(λ

′ R′) = π1((λ − λ
′)R′) = 0, and thus, (λ − λ′)R′ ∈ (D1×q R), i.e., there

exists µ ∈ D1×q such that (λ − λ′)R′ = µR. Now, using the factorization R = R′′R′, we then get
(λ−λ′−µR′′)R′ = 0 so that we have λ−λ′−µR′′ ∈ kerD(.R′) = (D1×r′

T ′). Therefore, there exists
ν ∈ D1×r′

such that λ− λ′ = µR′′ + ν T ′ and then:

π2(λ)− π2(λ
′) = π2(λ− λ

′) = π2(µR
′′ + ν T ′) = 0.

Finally, for all m1 = π1(λR
′) ∈M1 and m2 = π2(λ) ∈M2, where λ ∈ D1×q′

, we have

{
(ψ ◦ φ)(m1) = ψ(π2(λ)) = π1(λR

′) = m1,

(φ ◦ ψ)(m2) = φ(π1(λR
′)) = π2(λ) = m2,

which proves that ψ ◦ φ = idM1
, φ ◦ ψ = idM2

and we thus have (34).

We deduce the following corollary of Lemma 2 and Proposition 6.

Corollary 3. With the notations of Proposition 6:

1. If L ∈ Dq×r denotes a matrix satisfying R = LS and kerD(.S) = D1×r2 S2, where S2 ∈ D
r2×r,

we then have:

ker f ∼= D1×r/

(
D1×(q+r2)

(
L
S2

))
.

2. We have im f ∼= coim f .
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Proof. 1. It is a straightforward application of the isomorphism (34) to this particular case.

2. Using the following two facts





R′ = (0 Iq′ )

(
P
R′

)
,

kerD

(
.

(
P
R′

))
= (D1×r (S − T )),

where S ∈ Dr×p and T ∈ Dr×q, applying Lemma 2 to 3) of Proposition 6, we get:

im f ∼= D1×(p+q)/

(
D1×(q′+r)

(
0 Iq′

S −T

))
∼= D1×p/(D1×r S) = coim f.

We give a corollary of Proposition 6 and Corollary 3.

Corollary 4. With the notations of Corollary 3 and Proposition 6, a morphism f : M −→M ′ is:

1. the zero morphism (f = 0) if and only if one of the following conditions holds:

(a) There exists a matrix Z ∈ Dp×q′

such that P = Z R′. Then, there exists Z ′ ∈ Dq×q′

2 such
that Q = RZ + Z ′R′

2, where the matrix R′
2 ∈ D

q′

2×q′

satisfies kerD(.R′) = (D1×q′

2 R′
2).

(b) The matrix S admits a left-inverse.

2. injective if and only if one of the following conditions holds:

(a) There exists a matrix F ∈ Dr×q such that S = F R.

(b) The matrix (LT ST
2 )T admits a left-inverse.

3. surjective if and only if (P T R′T )T admits a left-inverse.

4. an isomorphism (f ∈ iso(M)) if the matrices (LT ST
2 )T and (P T R′T )T admit left-inverses.

Proof. 1. Using 3) of Proposition 6, im f = 0 if and only if we have

D1×p P +D1×q′

R′ = D1×q′

R′,

that is, if and only if D1×p P ⊆ D1×q′

R′ which is equivalent to the existence of a matrix Z ∈ Dp×q′

such that P = Z R′. Now, substituting P = Z R′ into (11), we then get:

RZ R′ = QR′ ⇒ (Q−RZ)R′ = 0.

Thus, there exists Z ′ ∈ Dq×q′

2 satisfying Q−RZ = Z ′R′
2, which proves the result. We note also that

1.a) is a trivial consequence of Corollary 1.

Let us prove 1.b). Using the canonical isomorphism ε : coim f −→ im f, defined by

∀ m ∈M : ε(σ(m)) = f(m),
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where σ : M −→ coim f denotes the canonical projection, we obtain that im f = 0 if and only if

coim f = D1×p/(D1×r S) = 0⇔ D1×r S = D1×p,

i.e., if and only if S admits a left-inverse.

2. From 1) of Proposition 6, ker f = 0 if and only if D1×r S = D1×q R, i.e., if and only if there
exists F ∈ Dr×q satisfying S = F R.

Moreover, using 1) of Corollary 3, we have ker f = 0 if and only if D1×q L + D1×r2 S2 = D1×r,
i.e., if and only if the matrix (LT ST

2 )T admits a left-inverse.

3. f is surjective if and only if cokerf = 0, i.e., from 4) of Proposition 6, if and only if

D1×p P +D1×q′

R′ = D1×p

which is equivalent to the fact that the matrix (P T R′T )T admits a left-inverse.

4. The result is a direct consequence of 2.b) and 3).

Let us see how to apply the previous results in order to check the equivalence between two modules,
and thus, between two systems.

Example 10. We consider two systems of PDEs appearing in the theory of linear elasticity (see [47]):
one half of the so-called Killing operator, namely, the Lie derivative of the euclidean metric defined
by ωij = 1 for i = j and 0 otherwise (1 ≤ i, j ≤ 2) and the Spencer operator of the Killing operator:






d1 ξ1 = 0,
1
2 (d2 ξ1 + d1 ξ2) = 0,

d2 ξ2 = 0,






d1 z1 = 0,

d2 z1 − z2 = 0,

d1 z2 = 0,

d1 z3 + z2 = 0,

d2 z3 = 0,

d2 z2 = 0.

Let D = Q

[
∂1; id,

∂
∂x1

] [
∂2; id,

∂
∂x2

]
be the ring of differential operators with rational coefficients and

let us define the following two matrices

R =




∂1 0
1
2 ∂2

1
2 ∂1

0 ∂2


 ∈ D3×2, R′ =




∂1 0 0

∂2 −1 0

0 ∂1 0

0 1 ∂1

0 0 ∂2

0 ∂2 0




∈ D6×3,

and the associated finitely presented D-modules M = D1×2/(D1×3R) and M ′ = D1×3/(D1×6R′).
Using Algorithm 1, we find that the matrices

P =

(
1 0 0
0 0 1

)
, Q =

1

2




2 0 0 0 0 0
0 1 0 1 0 0
0 0 0 0 2 0



 ,

satisfy the relation RP = QR′, i.e., they define a morphism f : M −→M ′ by:
{

f(ξ1) = z1,

f(ξ2) = z3.
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The morphism f is injective as the matrix S (with the same notations as in Corollary 4) defined by

S =

(
∂2 ∂1 ∂2

2 0
∂1 0 0 ∂2

)T

satisfies the relation S = F R, where:

F =




0 2 0
1 0 0
0 2 ∂2 −∂1

0 0 1


 .

Moreover, f is surjective as the matrix (P T R′T )T admits the following left-inverse:




1 0 0 0 0 0 0 0
0 −∂1 0 0 0 1 0 0
0 1 0 0 0 0 0 0



 .

This proves that f is an isomorphism and M ∼= M ′.

To finish this section, we show an important application of Lemma 2. In order to simplify the
exposition, we only consider here a commutative Ore algebra of partial differential operators but
the extension to non-commutative one can be easily obtained by using the concept of formal adjoint
instead of the simple transposition ([16, 47, 48, 49]).

Let M be a D-module defined by a finite free resolution of the form (9). If we consider (10) with
F = D, we then obtain the D-modules:

exti
D(M,D) ∼= kerD(Ri+1.)/(Ri D

pi−1), i ≥ 1,

∼= kerD(.RT
i+1)/(D

1×pi−1 RT
i ), i ≥ 1.

Computing the first syzygy module of kerD(.RT
i+1), we obtain a matrix QT

i ∈ D
p′

i−1×pi such that:

kerD(.RT
i+1) = (D1×p′

i−1 QT
i ).

Therefore, we obtain:
exti

D(M,D) ∼= (D1×p′

i−1 QT
i )/(D1×pi−1 RT

i ).

Using Lemma 2, we obtain

exti
D(M,D) ∼= D1×p′

i−1/(D1×pi−1 F T
i +D1×p′

i−2 P T
i ), (35)

where F T
i ∈ D

pi−1×p′

i−1 and P T
i ∈ D

p′

i−2×p′

i−1 satisfy:

{
RT

i = F T
i QT

i ,

kerD(.QT
i ) = (D1×p′

i−2 P T
i ).

The isomorphism (35) is useful for computation of the D-modules extj
D(exti

D(M,D)), 1 ≤ i, j ≤ n,
which play a crucial role in the study of r-pure differential modules as it is explained in [10, 47, 56].
We refer the reader to a future communication for more details on r-pure differential modules. Let us
illustrate these results on a simple example.

INRIA



Using morphism computations for factoring and decomposing linear functional systems 29

Example 11. Let us consider the linear system of PDEs:




∂2y

∂x2
2

= 0,

∂2y

∂x1 ∂x2
= 0.

(36)

We easily check that we have: 



z1 =
∂y

∂x2
,

∂z1
∂x1

= 0,

∂z1
∂x2

= 0,





z2 =
∂y

∂x1
,

∂z2
∂x2

= 0,

We obtain that z1 is an arbitrary constant, i.e., its Krull dimension is 0 ([62]), whereas z2 is an
arbitrary function of x1, i.e., its Krull dimension is 1. An important issue in system theory is to be
able to classify the observables of a system of PDEs, namely, the differential linear combinations of
the system variables ([16, 47]) in terms of their Krull dimensions. As it was explained in [47], we need
to be able to compute extj

D(exti
D(M,D)), 1 ≤ i, j ≤ n, in order to achieve this classification. Let us

illustrate these computations of the system (36).

Let D = Q

[
∂1; id,

∂
∂x1

] [
∂2; id,

∂
∂x2

]
be the ring of differential operators with constant coefficients,

the matrix R = (d2
2 d1 d2)

T and the D-module M = D/(D1×2R).

Let us compute extj
D(exti

D(M,D)), 1 ≤ i, j ≤ 2. We have the following finite free resolution of M

0 −→ D
.R2−−→ D1×2 .R

−→ D
π
−→M −→ 0, R2 = (d1 − d2).

The defects of exactness of the complex 0←− D
.RT

2←−− D1×2 .RT

←−− D ←− 0 are:




ext0D(M,D) ∼= kerD(.RT ) = 0,

ext1D(M,D) ∼= kerD(.RT
2 )/(DRT ),

ext2D(M,D) ∼= D/(D1×2RT
2 ).

Using the following finite free resolution of the D-module ext2D(M,D)

0 −→ D
.L
−→ D1×2 .RT

2−−→ D −→ ext2D(M,D) −→ 0,

where L = (d2 d1), the defects of exactness of the complex 0←− D
.LT

←−− D1×2 .R2←−− D ←− 0 are:





ext0D(ext2D(M,D), D) ∼= kerD(.R2) = 0,

ext1D(ext2D(M,D), D) ∼= kerD(.LT )/(DR2),

ext2D(ext2D(M,D), D) ∼= D/(D1×2 LT ).

We easily check that kerD(.LT ) = (DR2), which proves ext1D(ext2D(M,D), D) = 0.

Moreover, we can check that kerD(.RT
2 ) = (DL), which shows that ext1D(M,D) = (DL)/(DRT ).

Using Lemma 2, we then have

ext1D(M,D) ∼= (DL)/(DRT ) ∼= D/(Dd2),
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as RT = d2 L and kerD(.L) = 0. Using the following finite free resolution of ext1D(M,D) ∼= D/(Dd2)

0 −→ D
.d2−→ D −→ ext1D(M,D) −→ 0,

the defects of exactness of the complex 0←− D
.d2←− D ←− 0 are then defined:

{
ext0D(ext1D(M,D), D) ∼= kerD(.d2) = 0,

ext1D(ext1D(M,D), D) ∼= D/(Dd2).

If we denote by 



t0(M) = M,

tr(M) = {m ∈M | dim(Dm) ≤ 1− r}, r = 0, 1,

t2(M) = 0,

the D-submodule M formed by the elements of M of Krull dimension less or equal to 1− r, in this
precise case, we have the following exact sequences:

0 −→ tr(M) −→ tr−1(M) −→ extr
D(extr

D(M,D), D) −→ 0, r = 1, 2.

See [10, 47] for more details. Hence, we obtain that:

{
t1(M) = ext2D(ext2D(M,D), D) ∼= D/(D1×2 LT ),

M/t1(M) ∼= D/(Dd2).

Finally, using the fact that exti
D(exti

D(M,D), D) is a pureD-module of Krull dimension n−i ([10, 47]),
from the first equality, we find again that the Krull dimension of the residue class z1 of 1 in t1(M)
is 0, which was easy to find directly on the simple example (36) but could be much more difficult on
more general linear systems. We refer the reader to a forthcoming publication for more details and
difficult examples.

3.2 Reducible modules and block-triangular matrices

The next proposition will play an important role in what follows.

Proposition 7. Let us consider a matrix P ∈ Dp×p. The following assertions are equivalent:

1. The left D-modules kerD(.P ) and coimD(.P ) are free of rank respectively m and p−m.

2. There exists a unimodular matrix U ∈ GLp(D) and a matrix J ∈ Dp×p of the form

J =

(
0 0
J1 J2

)
, J1 ∈ D

(p−m)×m, J2 ∈ D
(p−m)×(p−m),

where (J1 J2) has full row rank, i.e., kerD(.(J1 J2)) = 0, satisfying the relation:

U P = J U. (37)

The matrix U has then the form

U =

(
U1

U2

)
, (38)
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where the matrix U1 ∈ D
m×p defines a basis of kerD(.P ), i.e., U1 is a full row rank matrix satisfying

kerD(.P ) = D1×m U1, and U2 ∈ D
(p−m)×p defines a basis of coimD(.P ) = D1×p/(D1×m U1), i.e., U2

is a full row rank matrix such that we have the following split exact sequence

0 −→ D1×m .U1−−→ D1×p .W2−−→ D1×(p−m) −→ 0,
.W1←−−

.U2←−−

for certain matrices W1 ∈ D
p×m and W2 ∈ D

p×(p−m).

In particular, we have the following relations:

{
U1 P = 0,

U2 P = J1 U1 + J2 U2.

Proof. (1 ⇒ 2). Let us suppose that kerD(.P ) and coimD(.P ) are two free left D-modules of rank
respectively m and p −m. Let U1 ∈ D

m×p be a basis of kerD(.P ), i.e., the full row rank matrix U1

satisfies kerD(.P ) = D1×m U1. Using the fact that we have the short exact sequence

0 −→ kerD(.P ) −→ D1×p κ
−→ coimD (.P ) −→ 0

and kerD(.P ) = D1×m U1, we then obtain the following short exact sequence:

0 −→ D1×m .U1−−→ D1×p κ
−→ coimD (.P ) −→ 0.

If we denote by N = D1×p/(D1×m U1), then we get:

coim (.P ) = D1×p/ kerD(.P ) = N.

Using the fact that N is a free left D-module of rank p −m and denoting by φ : N −→ D1×(p−m)

the associated isomorphism, by κ : D1×p −→ N the canonical projection and by W2 ∈ D
p×(p−m) the

matrix corresponding to the D-morphism φ◦κ in the canonical bases of D1×p and D1×(p−m), we then
obtain the short exact sequence:

0 −→ D1×m .U1−−→ D1×p .W2−−→ D1×(p−m) −→ 0.

Using the fact that D1×(p−m) is a free left D-module, by 1) of Proposition 4, the previous short exact
sequence splits, and thus, there exist two matrices W1 ∈ D

p×m and U2 ∈ D
(p−m)×p such that we have

the Bézout identities: 



(
U1

U2

)
(W1 W2) = Ip,

(W1 W2)

(
U1

U2

)
= Ip.

Using the fact that U−1 = (W1 W2) ∈ D
p×p, we have

U P =

(
U1

U2

)
P =

(
U1 P
U2 P

)
=

(
0

(U2 P U
−1)U

)
=

(
0

U2 P U
−1

)
U,

which proves a part of the result with the notations:

J =

(
0

U2 P U
−1

)
=

(
0 0
J1 J2

)
∈ Dp×p, with (J1 J2) = U2 P U

−1.
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Finally, if λ ∈ kerD(.(U2 P U
−1)), we then have

λ (U2 P U
−1) = 0 ⇔ (λU2)P = 0⇔ λU2 ∈ kerD(.P ) = D1×m U1

⇔ ∃ µ ∈ D1×m : λU2 = µU1

⇔ ∃ µ ∈ D1×m : (−µ, λ) ∈ kerD(.U) = 0,

which proves that λ = 0 as U ∈ GLp(D), i.e., kerD(.(U2 P U
−1)) = 0, and the matrix (J1 J2) has

full row rank.

(2 ⇒ 1). Using the relation (37) and the fact that U is a unimodular matrix, we have the
commutative exact diagram

0 0
↑ ↑

0 −→ kerD(.P ) −→ D1×p .P
−→ D1×p

↑ .U ↑ .U

0 −→ kerD(.J) −→ D1×p .J
−→ D1×p,

↑ ↑
0 0

which shows that kerD(.P ) ∼= kerD(.J) (more precisely, kerD(.P ) = (kerD(.J))U). Let us characterize
kerD(.J). Let us consider (λ1, λ2) ∈ kerD(.J). We then have λ2 (J1 J2) = 0 and using the fact
that (J1 J2) has full row rank, we obtain that λ2 = 0 and λ1 is any arbitrary element of D1×m,
which proves that kerD(.J) = D1×m and kerD(.P ) is a free left D-module of rank m.

Similarly, we have imD(.P ) = (imD(.J))U as U is a unimodular matrix and:

∀ λ, µ ∈ D1×p,

{
λP = ((λU−1) J)U,

(µJ)U = (µU)P.

Therefore, we have:
imD(.P ) ∼= imD(.J) = (D1×(p−m) (J1 J2)).

Using the fact that the matrix (J1 J2) has full row rank, we obtain that

(D1×(p−m) (J1 J2)) ∼= D1×(p−m),

which proves that coimD(.P ) ∼= imD(.P ) (see 2 of Corollary 3) is a free leftD-module of rank p−m.

Remark 6. We note that (37) is equivalent to P = U−1 J U, which means that the two matrices P
and J are similar.

We shall need the next two lemmas.

Lemma 3. Let R ∈ Dq×p, P ∈ Dp×p and Q ∈ Dq×q be three matrices satisfying (13). Assume
further that there exist U ∈ GLp(D) and V ∈ GLq(D) such that

{
U P = JP U,

V Q = JQ V,
(39)

for certain matrices JP ∈ D
p×p and JQ ∈ D

q×q. Then, we have the following equality:

(V RU−1) JP = JQ (V RU−1). (40)
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Proof. We easily check that we have the following commutative diagram

D1×q D1×p

D1×q D1×p

D1×q D1×p

D1×q D1×p

��

.JQzztt
t
t
t.V

//
.(V R U−1)

��

.Jpzztt
t
t
t.U

��

.Q

//.R

��

.P

zztt
t
t
t.V

//
.(V R U−1)

zztt
t
t
t.U

//.R

from which we obtain (40). Let us give the corresponding explicit computations. Starting with the
second equation of (39) and multiplying it on the right by R and using (13), we obtain:

JQ V R = V QR = V RP = (V RU−1) (U P ).

Now, using the first equation of (39), we get

JQ V R = (V RU−1) (JP U),

and multiplying the previous equality by U−1 on the right, we finally have JQ (V RU−1) = (V RU−1) JP ,
which proves (40).

Lemma 4. Let us consider two matrices of the form





JP =

(
0 0
J1 J2

)
,

JQ =

(
0 0
J3 J4

)
,

(41)

with the notations {
J1 ∈ D

(p−m)×m, J2 ∈ D
(p−m)×(p−m),

J3 ∈ D
(q−l)×l, J4 ∈ D

(q−l)×(q−l),

and 1 ≤ m ≤ p, 1 ≤ l ≤ q. Moreover, let us suppose that the matrix (J1 J2) has full row rank. If
the matrix R ∈ Dq×p satisfies the relation

RJP = JQ R,

then there exist three matrices

R1 ∈ D
l×m, R2 ∈ D

l×(p−m), R3 ∈ D
(q−l)×(p−m),

such that:

R =

(
R1 0
R2 R3

)
. (42)

Proof. Let us write

R =

(
R11 R12

R21 R22

)
,
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where R11 ∈ D
l×m, R12 ∈ D

l×(p−m), R21 ∈ D
(q−l)×m, R22 ∈ D

(q−l)×(p−m). Then, we have:





RJP =

(
R12 J1 R12 J2

R22 J1 R22 J2

)
,

JQR =

(
0 0

J3 R11 + J4R21 J3R12 + J4R21

)
.

Therefore, we obtain R12 (J1 J2) = 0. Using the fact that (J1 J2) has full row rank, we then get
R12 = 0, which proves the result.

Let us state the second main result of the paper (the first fairy’s theorem).

Theorem 2. Let us consider R ∈ Dq×p, M = D1×p/(D1×q R) and f : M −→ M an endomorphism
defined by two matrices P ∈ Dp×p and Q ∈ Dq×q satisfying (13). If the left D-modules kerD(.P ),
coimD(.P ), kerD(.Q), coimD(.Q) are free of rank respectively m, p−m, l and q− l (where 1 ≤ m ≤ p
and 1 ≤ l ≤ q), then the following results hold:

1. There exist U ∈ GLp(D) and V ∈ GLq(D) satisfying the relations
{
P = U−1 JP U,
Q = V −1 JQ V,

where JP and JQ are the matrices defined by (41). In particular, the matrices U and V are
defined by 





U =

(
U1

U2

)
, U1 ∈ D

m×p, U2 ∈ D
(p−m)×p,

V =

(
V1

V2

)
, V1 ∈ D

l×q , V2 ∈ D
(q−l)×q ,

where the matrices U1 and V1 respectively define the bases of the free left D-modules kerD(.P )
and kerD(.Q), i.e., {

kerD(.P ) = D1×m U1,

kerD(.Q) = D1×l V1,

and U2 and V2 respectively define the bases of the free left D-modules coimD(.P ) = D1×p/(D1×m U1)
and coimD(.Q) = D1×q/(D1×l V1).

2. The matrix R is equivalent to R = V RU−1.

3. If we denote by U−1 = (W1 W2), W1 ∈ D
p×m, W2 ∈ D

p×(p−m), we then have:

R =

(
V1 RW1 0
V2 RW1 V2 RW2

)
∈ Dq×p.

Proof. 1. The result directly follows from 2) of Proposition 7.

2. Using the fact that the matrices U and V are unimodular, we obtain R = V −1RU , which
proves the result.

3. From Lemma 3, the matrix R = V RU−1 satisfies (40). Then, applying Lemma 4 to R, we
obtain that R has the triangular form (42), where R1 ∈ D

l×m, R2 ∈ D
l×(p−m) and R3 ∈ D

(q−l)×(p−m).
Finally, we have

R = V RU−1 =

(
V1RW1 V1 RW2

V2RW1 V2 RW2

)
∈ Dq×p,

where V1 RW1 ∈ Dl×m, V2 RW1 ∈ D(p−l)×m and V1 RW2 ∈ Dl×(p−m), V2RW2 ∈ D(p−l)×(p−m),
which finally proves the result.
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We refer to Remark 11 of Section 4.2 for more details on the way that we can constructively
obtain the unimodular matrices U and V defined in Theorem 2 by computing bases of free modules
over different classes of skew polynomial rings and Ore algebras.

Example 12. Let us consider the linearized equations of a bipendulum subjected to a horizontal
move described by 





ÿ1 +
g

l1
y1 −

g

l1
u = 0,

ÿ2 +
g

l2
y2 −

g

l2
u = 0,

where l1 and l2 are the length of the two pendulum and g is gravity. For more details, see [15] and
the references therein. Let us define the ring D = Q(g, l1, l2)

[
∂; id, d

dt

]
of differential operators with

constant coefficients, the system matrix

R =




∂2 +
g

l1
0 −

g

l1

0 ∂2 +
g

l2
−
g

l2


 ∈ D2×3,

and the D-module M = D1×3/(D1×2R).
Using Algorithm 1, we obtain that an endomorphism f of M is defined by the matrices






P =




0 0 g l2

0 g (l2 − l1) g l1

0 0 l1 l2 ∂
2 + g l2


 ,

Q =

(
0 0
0 g (l2 − l1)

)
.

Using algorithms developed in [16], we obtain that kerD(.P ), coimD(.P ), kerD(.Q) and coimD(.Q) are
free D-modules of rank respectively 1, 2, 1 and 1. We can easily compute some bases of kerD(.P ),
coimD (.P ), kerD(.Q) and coim (.Q), and they are defined by means of the following matrices:





U1 = (l1 ∂
2 + g 0 − g),

U2 =




1

g
0 0

0 1 0


 ,

V1 = (1 0),

V2 = (0 1).

We can check that the matrices U = (UT
1 UT

2 )T ∈ D3×3 and V = (V T
1 V T

2 )T ∈ D2×2 are unimod-
ular and: 





JP = U P U−1 =




0 0 0

−
l2
g

l2 (l1 ∂
2 + g) 0

−l1 g l1 (l1 ∂
2 + g) g (l2 − l1)


 ,

JQ = V QV −1 =

(
0 0
0 g (l2 − l1)

)
.

Finally, we obtain that R is similar to the following triangular matrix:

R = V RU−1 =




1

l1
0 0

1

l2

g

l2
(l1 ∂

2 + g) ∂2 +
g

l2


 .
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Remark 7. Let D = A[∂;σ, δ] be a skew polynomial ring over a (commutative) ring of functional
operators A, a matrix R = (∂ Ip−E) ∈ Dp×p and M = D1×p/(D1×q R) the left D-module associated
with the linear functional system ∂y = E y. Using the results proved in Example 4, we then know
that any endomorphism f can always be defined by means of two matrices P ∈ Ap×p and Q ∈ Aq×q .
Hence, if A is a field (e.g., A = k(t), k(n)), then we can do linear algebra in order to compute the
bases of the A-vector spaces kerA(.P ), coimA(.P ), kerA(.Q) and coimA(.Q), i.e., compute the matrices
U1 ∈ A

m×p, U2 ∈ A
(p−m)×p, V1 ∈ A

l×q and V2 ∈ A
(q−l)×q defined in Theorem 2 as we then have

{
kerD(.P ) = D ⊗A kerA(.P ),

coimD(.P ) = D ⊗A coimA(.P ),

and similarly for kerD(.Q) = D⊗A kerA(.Q) and coimD(.Q) = D⊗A coimA(.Q), where D⊗A · denotes
the tensor product of A-modules.

Example 13. Let us study the following simple PDE appearing in linear elasticity [53]

(∆ ∆)λ+
2β

(α + 2β)
∆ψ = 0,

where ∆ = ∂2
1 + ∂2

2 denotes the Laplacian operator, α and β the Lame constants, λ the Airy function
and ψ a potential defining the density of forces f , i.e., f = (∂1ψ, ∂2 ψ)T is the gradient of ψ.

Let us consider the ring D = Q(α, β)
[
∂1; id,

∂
∂x1

] [
∂2; id,

∂
∂x2

]
of differential operators with constant

coefficients, the matrix of differential operators

R =

(
∆2 2β

(α+ 2β)
∆

)
∈ D1×2

and the D-module M = D1×2/(DR). Using Algorithm 1, we obtain that an endomorphism f of M
is defined by the following matrices:

P =

(
0 −2β

0 (α+ 2β) ∆

)
, Q = 0.

We easily obtain that kerD(.P ) = DU1, where U1 = ((α + 2β) ∆ 2β), which shows that kerD(.P )
is a free D-module of rank 1. Moreover, we have coimD(.P ) = D1×2/(DU1). Using the algorithms
developed in [16, 48] based on the computation of ext1D(N,D), where N = D/(D1×2RT ), we obtain
the following split exact sequence

0 −→ D
.U1−−→ D1×2 .W2−−→ D −→ 0
.W1←−−

.U2←−−
(43)

with the notations:

W1 =

(
0

1

2β

)T

, W2 = (−2β (α+ 2β) ∆)T , U2 =

(
−

1

2β
0

)
.

Hence, coimD(.P ) = D1×2/(DU1) = κ(DU2) ∼= D, where κ : D1×2 −→ coimD(.P ) denotes the
canonical projection, which proves that coimD(.P ) is a free D-module of rank 1.

Moreover, we have kerD(.Q) = D and coimD(.Q) = 0, which are two free D-modules. Hence, if
we take V = 1 and form U = (UT

1 UT
2 )T , then we obain

U−1 =




0 −2β

1

2β
(α+ 2β) ∆



 ∈ GL2(D),
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and R is then equivalent to the following matrix:

R = V RU−1 =

(
1

(α+ 2β)
∆ 0

)
.

Example 14. Let us consider again the equation of the tank subjected to a one dimensional horizontal
move defined by (6). Using Algorithm 1, we easily find that an endomorphism of the D-module
M = D1×3/(D1×2R), defined in Example 2, can be generated by the following pair of matrices:

P =




0 0 0

2 ∂1 ∂2 −2 ∂1 ∂2 0

1 −1 0


 , Q =

(
0 0

2 ∂1 ∂2 −2 ∂1 ∂2

)
.

Using algorithms developed in [16, 24, 48, 59], we obtain:





U1 =

(
1 0 0

0 −1 2 ∂1 ∂2

)
,

U2 = (0 0 1),

V1 = (1 0),

V2 = (0 1),

which proves that kerD(.P ) (resp., coimD(.P ), kerD(.Q), coimD(.Q)) is a free D-module of rank 2
(resp., 1, 1, 1). Hence, by Theorem 2, if we form U = (UT

1 UT
2 )T and V = (V T

1 V T
2 )T , we obtain

U−1 =




1 0 0

0 −1 2 ∂1 ∂2

0 0 1


 ∈ GL3(D),

and the matrix R is finally equivalent to the matrix:

R = V RU−1 =

(
∂2
1 −1 0

1 −∂2
1 2 ∂1 ∂2 (∂2

1 − 1)

)
.

We refer the reader to the library of examples of Morphisms ([22]) for more difficult examples.

4 Projectors, idempotents and decompositions

4.1 Projectors of endD(M) and decompositions

We start this section by a lemma which characterizes the projectors of endD(M) and we deduce an
algorithm for computing them.

Lemma 5. Let us consider a finite free resolution

D1×q2
.R2−−→ D1×q .R

−→ D1×p π
−→M −→ 0,

of a left D-module M and a morphism f : M −→M defined by two matrices P ∈ Dp×p and Q ∈ Dq×q

satisfying (13). Then, f is a projector of endD(M), namely, f2 = f , if and only if there exists a
matrix Z ∈ Dp×q satisfying:

P 2 = P + Z R. (44)
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Then, there exists Z ′ ∈ Dq×q2 such that:

Q2 = Q+RZ + Z ′R2. (45)

In particular, if R ∈ Dq×p has full row rank, namely, R2 = 0, we then have:

Q2 = Q+RZ. (46)

Proof. Multiplying (13) on the right by P , we obtain RP 2 = QRP and using again (13), we get

RP 2 = Q2R,

which shows that f2 : M −→M can be defined by the matrices P 2 and Q2. From 1) of Corollary 4,
the morphism f2 − f is 0 if and only if there exists a matrix Z ∈ Dp×q satisfying (44). Then, there
also exists a matrix Z ′ ∈ Dq×q2 such that (45) holds (see also 2) of Corollary 1). The end of the
lemma is straightforward.

From this lemma, we deduce an algorithm which computes projectors of endD(M).

Algorithm 3. � Input: An Ore algebra D, a matrix R ∈ Dq×p and the output of Algorithm 2
for fixed α, β and γ.

� Output: A family of pairs (P i, Qi)i∈I and a set of matrices {Zi}i∈I satisfying





RP i = Qi R,

P
2

i = P i + Zi R, for Zi ∈ D
p×q ,

ord∂(P i) ≤ α, i.e., P i =
∑

0≤|ν|≤α a
(i)
ν ∂ν ,

and ∀ 0 ≤ |ν| ≤ α, a
(i)
ν ∈ Ap×p satisfies :

degx(num(a
(i)
ν )) ≤ β,

degx(denom(a
(i)
ν )) ≤ γ,

where ord∂(P i) denotes the maximal of the total orders of the entries of P i, degx(num(a
(i)
ν ))

(resp., degx(denom(a
(i)
ν ))) the maximal of the degrees of the numerators (resp., denominators)

of a
(i)
ν . The morphisms fi are then defined by:

∀ λ ∈ D1×p : fi(π(λ)) = π(λP i), i ∈ I.

1. Consider a generic element P =
∑

i∈I ci Pi of the outpout of Algorithm 2 for fixed α, β and γ,

where ci ∈ k for i ∈ I .

2. Compute P 2 − P and denote the result by F .

3. Compute a Gröbner basis G of the rows of R for a total degree order.

4. Reduce the rows of F with respect to G by computing their normal forms with respect to G.

5. Solve the system on the coefficients of ci so that all the normal forms vanish.

6. Substitute the solutions into the matrix P . Denote the set of solutions by {Pj}j∈J .

7. For j ∈ J , reduce the rows of Pj with respect to G by computing their normal forms with respect
to G. We obtain P j for j ∈ J .
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8. Using rk(P
2

j −P j) ∈ (D1×q R), k = 1, . . . , p, where rk(P
2

j −P j) denotes the kth row of P
2

j −P j ,

compute a matrix Zj ∈ D
p×q satisfying P

2

j − P j = Zj R, for j ∈ J .

We are now going to show how projectors can be used to decompose the system Ry = 0 into
decoupled (independent) systems S1 y1 = 0 and S2 y2 = 0 or, in other words, how to decompose the
left D-module M into two direct summands M1 and M2, namely, M ∼= M1 ⊕M2.

We start with a first lemma.

Lemma 6. Let R ∈ Dq×p, M = D1×p/(D1×q R) and f ∈ endD(M) be a projector, i.e., f 2 = f .

1. We have the following split exact sequence

0 −→ kerf
i
−→ M

ρ
−→ coim f −→ 0,

idM−f
←−−−−

f]

←−

where f ] : coim f −→M is defined by:

∀ m ∈M, f ](ρ(m)) = f(m). (47)

2. We have the following isomorphism

ϕ : ker f −→ cokerf
m 7−→ σ(m),

whose inverse is defined by

ψ : coker f −→ ker f
σ(m) 7−→ m− f(m),

where σ : M −→ coker f denotes the canonical projection.

Proof. 1. For all ρ(m) ∈ coim f , we have

((idM − f) ◦ f ])(ρ(m)) = f(m)− f2(m) = 0,

i.e., (idM − f) ◦ f ] = 0. Moreover, we easily check that (idM − f) ◦ i = idker f . Now, for all m ∈ M ,
we have

(i ◦ (idM − f) + f ] ◦ ρ)(m) = m− f(m) + f(m) = m,

i.e., (i ◦ (idM − f)) + f ] ◦ ρ = idM . Multiplying the last identity by ρ on the left and using the fact
that ρ ◦ i = 0, we get ρ ◦ f ] ◦ ρ = ρ which proves ρ ◦ f ] = idcoim f and ends the proof of 1).

2. Let us check that ψ is well-defined. We first note that m − f(m) ∈ ker f . Let us consider
σ(m) = σ(m′) and let us prove that ψ(ρ(m)) = ψ(ρ(m′)). The fact that we have σ(m) = σ(m′)
implies that σ(m−m′) = 0, i.e., m−m′ ∈ im f , and thus, there exists n ∈M such that m−m′ = f(n).
Then, we get ψ(ρ(m))−ψ(ρ(m′)) = ψ(ρ(m−m′)) = ψ(ρ(f(n)) = 0 as ρ(f(n)) = 0, which proves that
ψ is a well-defined morphism.

Moreover, for all m ∈ ker f , we have (ψ ◦ϕ)(m) = ψ(σ(m)) = m− f(m) = m, i.e., ψ ◦ϕ = idker f .

On the other hand, for all σ(m) ∈ cokerf , we have

(ϕ ◦ ψ)(σ(m)) = ϕ(m− f(m)) = σ(m),

i.e., ϕ ◦ ψ = idcoker f , which finally proves the result.
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The next proposition gives a necessary and sufficient condition for the existence of a projector f
of endD(M), i.e., for the existence of a direct summand of the finitely presented left D-module M .

Proposition 8. Let R ∈ Dq×p and M = D1×p/(D1×q R). With the notations of Proposition 6, if
f : M −→M is an endomorphism of M , then the following results are equivalent:

1. f is a projector of endD(M), namely, f2 = f .

2. There exists X ∈ Dp×r satisfying:
P = Ip −X S. (48)

Then, we have the following commutative exact diagram

0
.X
←− ↓

D1×r .S
−→ D1×p κ

−→ coim f −→ 0
↓ .T ↓ .P ↓ f]

D1×q .R
−→ D1×p π

−→ M −→ 0,
↓

kerf
↓
0

where f ] is defined by (47).

Proof. (1 ⇒ 2). By 1) of Lemma 6, the morphism f ] defined by (47) satisfies ρ ◦ f ] = idcoim f , and
thus, we have M = i(ker f) ⊕ f ](coim f). Using the relation S P = T R, we obtain that f ] induces
the following morphism of complexes:

D1×r .S
−→ D1×p κ

−→ coim f −→ 0
↓ .T ↓ .P ↓ f]

D1×q .R
−→ D1×p π

−→ M −→ 0.

Composing the morphisms of complexes corresponding to ρ (see Theorem 1) and f ], we obtain that
the morphism id− ρ ◦ f ] = 0 is defined by the following morphism of complexes

D1×r2
.S2−→ D1×r .S

−→ D1×p

↓ .(Ir − T L) ↓ .(Ip − P )

D1×r2
.S2−→ D1×r .S

−→ D1×p

which must be homotopic to zero. Thus, there exist a matrix X ∈ Dp×r and X2 ∈ D
r×r2 such that:

{
Ip − P = X S,

Ir − T L = S X +X2 S2.

The first equation gives (48).

(2⇒ 1). Using (48) and S P = T R, we obtain

P 2 = (Ip −X S)P = P −X S P = P − (X T )R,

which proves that f is a projector by Lemma 5.
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We remark that, substituting (48) into S P = T R, we obtain:

S (Ip −X S) = T R⇔ S − S X S = T R.

We give a necessary and sufficient condition for a module to be a direct summand of another one.

Proposition 9. Let R ∈ Dq×p and S ∈ Dr×p be two matrices satisfying (D1×q R) ⊆ (D1×r S). Then,
the left D-module M ′ = D1×p/(D1×r S) is isomorphic to a direct summand of M = D1×p/(D1×q R),
i.e., we have

M ∼= M ′ ⊕ ker ρ, (49)

where ρ : M −→M ′ is defined by

∀ λ ∈ D1×p, ρ(π(λ)) = κ(λ),

and κ : D1×p −→M ′ denotes the canonical projection, if and only if there exist two matrices X ∈ Dp×r

and T ∈ Dr×q satisfying the following relation:

S − S X S = T R. (50)

Proof. (⇒). The isomorphism (49) is equivalent to the existence of a morphism g : M ′ −→M which
satisfies ρ ◦ g = idM ′ (see [16, 62]). Following the same techniques as the ones used in the proof
of Proposition 8, (49) is then equivalent to the existence of P ∈ Dp×p, T ∈ Dr×q and X ∈ Dp×r

satisfying: {
S P = T R,

Ip − P = X S,
⇒ S − S X S = T R.

(⇐). From (50), we obtain S (Ip −X S) = T R, and, if we set P = Ip − X S, then we have the
following commutative diagram

D1×r .S
−→ D1×p κ

−→ M ′ −→ 0
↓ .T ↓ .P

D1×q .R
−→ D1×p π

−→ M −→ 0,

which induces a morphism g : M ′ −→M defined by:

∀ λ ∈ D1×p, g(κ(λ)) = π(λP ).

Using κ = ρ ◦ π, for all λ ∈ D1×p, we obtain:

(ρ ◦ g)(κ(λ)) = ρ(π(λP )) = κ(λP ) = κ(λ)− κ((λX)S) = κ(λ).

We then have ρ ◦ g = idM ′ , which shows that the exact sequence 0 −→ kerρ
i
−→ M

ρ
−→ M ′ −→ 0

splits, and thus, we obtain M = kerρ ⊕ g(M ′), i.e., M ∼= M ′ ⊕ ker ρ as g is an injective morphism
(g(m) = 0⇒ m = ρ(g(m)) = 0).

Remark 8. If S has full row rank, i.e., kerD(.S) = 0, using the factorization R = LS, (50) becomes:

(Ir − S X − T L)S = 0⇒ S X + T L = Ir. (51)

Hence, we obtain that the matrix (XT LT )T admits a left-inverse. Note that (51) is nothing else
than the generalization for matrices and non-commutative rings of the classical decomposition of a
commutative polynomial into coprime factors. Indeed, if R belongs to a commutative polynomial ring
D = k[x1, . . . , xn], where k is a field, then (51) becomes X S + T L = 1 (Bézout identity), i.e., the
ideal of D generated by S and L is the whole ring D and we obtain that R = LS is a factorization of
R into coprime factors L and S.
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We have the following corollary of Proposition 8.

Corollary 5. With the hypotheses and notations of Proposition 8, we have the equality:

D1×r S =

(
D1×(p+q)

(
Ip − P
R

))
.

Proof. Using the factorization R = LS and (48), we obtain the following equality

(
Ip − P
R

)
=

(
X
L

)
S,

which proves the first inclusion. The second inclusion is a direct consequence of (50) as we have
X S = Ip − P and:

S = S X S + T R = (S T )

(
X S
R

)
= (S T )

(
Ip − P
R

)
.

Let us state the third main result of the paper.

Theorem 3. Let R ∈ Dq×p and let us assume that the left D-module M = D1×p/(D1×q R) admits a
decomposition of the form M ∼= ker f ⊕ im f , where f ∈ endD(M). Moreover, let us suppose that F is
an injective left D-module. Then, with the notations previously introduced in this section, we obtain
that a solution η ∈ Fp of Rη = 0 has the form η = ζ +X τ , where ζ ∈ Fp is a fundamental solution
of S ζ = 0 and τ ∈ Fr is a fundamental solution of the system:

{
L τ = 0,

S2 τ = 0.
(52)

Hence, the integration of the system Rη = 0 is equivalent to the integration of the two independent
systems S ζ = 0 and (52).

Proof. Applying the functor homD(·,F) to the commutative exact diagram (31) and using the fact
that F is an injective left D-module, we obtain the following commutative exact diagram:

Fq R.
←− Fp ←− kerF(R.) ←− 0

↑ L. ‖ ↑ ρ?

Fr2
S2.
←−− Fr S.

←− Fp ←− kerF (S.) ←− 0.

Let us first prove that an element of the form

η = ζ +X τ,

where ζ ∈ Fp (resp., τ ∈ Fr) satisfies S ζ = 0 (resp., (52)), is a solution of the system Rη = 0. Using
the factorization R = LS and S ζ = 0, we get:

Rη = Rζ +R (X τ) = L (S ζ) + L (S (X τ)) = L (S (X τ)).

Using the fact that τ satisfies the second equation of (52) and the exactness of the last horizontal
exact sequence of the previous commutative exact diagram, there exists η ∈ F p satisfying τ = S η.
Substituting this relation into the first equation of (52), we obtain:

L τ = L (S η) = Rη = 0.

INRIA



Using morphism computations for factoring and decomposing linear functional systems 43

Then, using (50), we obtain:

S η − S (X (S η)) = T (Rη) = 0⇒ S (X τ) = S η ⇒ L (S (X τ)) = L (S η) = Rη = 0.

This last result proves that Rη = 0, and thus, η = ζ +X τ is a solution of the system Rη = 0.

Conversely, let us prove that any solution η ∈ Fp of Rη = 0 has the form of η = ζ +X τ , where
ζ ∈ Fp satisfies S ζ = 0 and τ ∈ Fr satisfies (52). Let us consider η ∈ Fp satisfying Rη = 0, i.e.,
(LS) η = 0. Using the previous commutative exact diagram, we obtain that the element τ ∈ F r

defined by τ = S η satisfies (52). Then, from (50), we obtain:

S η − S (X (S η)) = T (Rη) = 0⇒ S (X τ) = τ.

All the solutions of the inhomogeneous system S η = τ are defined by the sum of the general solution
of S ζ = 0 and a particular solution of S η = τ , i.e., we have η = ζ +X τ , which ends the proof.

We note that the previous result has already been obtained in [57] in the particular case where

M ∼= t(M)⊕ (M/t(M)),

where the torsion submodule t(M) is defined by:

t(M) = {m ∈M | ∃ 0 6= P ∈ D : P m = 0}.

In control theory, the previous result gave a general answer to the question of knowing when a be-
haviour homD(M,F) can be split into the autonomous behaviour homD(t(M),F) and the controllable
behaviour homD(M/t(M),F) ([45, 46, 48, 49, 67, 70]). We refer the reader to [57, 58] for more details
and examples.

Let us illustrate Theorem 3 by means of an example.

Example 15. Let D be the Weyl algebra A1(k), namely, D = k[t]
[
∂; idk[t],

d
dt

]
, where k is a field of

characteristic 0 and let us consider the matrix of differential operators

R =




∂ −t t ∂
∂ t ∂ − t ∂ −1
∂ −t ∂ + t ∂ − 1
∂ ∂ − t t ∂


 ∈ D

4×4, (53)

and the left D-module M = D1×4/(D1×4R) associated with the linear system Ry = 0. We can easily
check that an endomorphism f of M can be defined by means of the following two matrices

P =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 ∈ k

4×4, Q =




t+ 1 1 −1 −t
1 1 −1 0

t+ 1 1 −1 −t
t 1 −1 −t+ 1


 ∈ k[t]

4×4, (54)

i.e., we have RP = QR. With the notations used in this section, we obtain the following matrices:

S =




∂ −t 0 0
0 ∂ 0 0
0 0 1 0
0 0 0 1


 , L =




1 0 t ∂
1 t ∂ −1
1 0 ∂ + t ∂ − 1
1 1 t ∂


 .
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Moreover, we easily check that P 2 = P , i.e., P is an idempotent of D3×3. Then, using (48), we obtain:

X =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


 .

We can also verify that kerD(.S) = 0 which implies S2 = 0 (with the notations of this section).
Theorem 3 then asserts that the integration of Rη = 0 is equivalent to both the integration of
S ζ = 0, which easily gives

ζ1 =
1

2
C1 t

2 + C2, ζ2 = C1, ζ3 = 0, ζ4 = 0,

where C1 and C2 are two arbitrary constants, and the integration of L τ = 0, which can easily be seen
to be equivalent to: 




τ1 = 0,

τ2 = 0,

t τ3 + ∂ τ4 = 0,

∂ τ3 − τ4 = 0.

⇔





τ1 = 0,

τ2 = 0,

∂2 τ3 + t τ3 = 0,

τ4 = ∂ τ3.

The third equation can be integrated by means of the Airy functions Ai and Bi which are the two
independent solutions of ∂2 y(t)− t y(t) = 0 (see [36]). We then have





τ1 = 0,

τ2 = 0,

τ3(t) = C3 Ai(t) + C4 Bi(t),

τ4(t) = C3 ∂ Ai(t) + C4 ∂ Bi(t),

where C3 and C4 are two constants. The general solution of Rη = 0 is then given by

η = ζ +X τ =




1
2 C1 t

2 + C2

C1

C3 Ai(t) + C4 Bi(t)

C3 ∂ Ai(t) + C4 ∂ Bi(t)


 , (55)

where C1, C2, C3 and C4 are four arbitrary constants.

4.2 Idempotents of D
p×p and decompositions

We are now going further by proving that, under certain conditions, the existence of idempotents P of
Dp×p allows us to obtain a system Ry = 0 equivalent to Ry = 0, where R is a block-diagonal matrix
of the same size as R. We shall need the following three lemmas.

Lemma 7. Let R ∈ Dq×p be a full row rank matrix, i.e., kerD(.R) = 0, and P ∈ Dp×p, Q ∈ Dq×q be
two matrices satisfying (13). Then, if P is an idempotent, namely P 2 = P , so is Q, i.e., Q2 = Q.

Proof. Multiplying (13) on the right by P , we obtain RP 2 = QRP . Using again (13), we get
RP 2 = Q2R. Then, the relation P 2 = P implies RP = Q2R, and using again (13), we obtain
Q2R = QR, i.e., (Q2 −Q)R = 0. Finally, the fact that R has full row rank implies Q2 = Q.
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Lemma 8. Let R ∈ Dq×p be a full row rank matrix, i.e., kerD(.R) = 0, and M = D1×p/(D1×q R).
Let us consider a projector f : M −→M defined by two matrices P ∈ Dp×p and Q ∈ Dq×q satisfying
(13), P 2 = P + Z R and Q2 = Q + RZ (see Lemma 5). If there exists a solution Λ ∈ Dp×q of the
following Riccati equation

ΛRΛ + (P − Ip) Λ + ΛQ+ Z = 0, (56)

then the matrices {
P = P + ΛR,

Q = Q+RΛ,
(57)

satisfy RP = QR, i.e., they define an endomorphism of M and they are idempotents, i.e., we have:

P
2

= P , Q
2

= Q.

Proof. By hypothesis, the matrices P and Q satisfy (44) and (46). Let us define P = P + ΛR for a
certain matrix Λ ∈ Dp×q. Then, we have:

P
2

= (P + ΛR) (P + ΛR) = P 2 + P ΛR+ ΛRP + ΛRΛR.

Using (13), we then get:

P
2

= P 2 + (P Λ + ΛQ+ ΛRΛ)R.

Then, from (44) and P = P + ΛR, we finally obtain:

P
2

= P + (Z − Λ + P Λ + ΛQ+ ΛRΛ)R.

Hence, we have P
2

= P if and only if Λ satisfies the following equation

(Z − Λ + P Λ + ΛQ+ ΛRΛ)R = 0,

i.e., since R has full row rank, iff Λ satisfies the Riccati equation (56).
Finally, we have:

Q
2

= (Q+RΛ) (Q+RΛ) = Q2 +QRΛ + RΛQ+RΛRΛ.

Using (13), we get

Q
2

= Q2 +R (P Λ + ΛQ+ ΛRΛ),

and using (46) and Q = Q+RΛ, we finally obtain:

Q
2

= Q+R (Z − Λ + P Λ + ΛQ+ ΛRΛ) = Q.

Remark 9. We are currently not able to understand when the Riccati equation (56) admits a solution.
This problem will be studied with care in the future. However, we can always try to compute a solution
Λ of (56) with fixed order and fixed degrees for numerators and denominators by substituting an ansatz
in (56) and solving the quadratic system obtained on the coefficients of the ansatz.

Example 16. Let D be the Weyl algebra A1(Q), i.e., D = Q[t]
[
∂; id, d

dt

]
, the matrix

R =

(
d2

dt2
− t

d

dt
− 1

)
∈ D1×2
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and the finitely presented left D-module M = D1×2/(DR). Searching for projectors of total order 1
and total degree 2, Algorithm 3 gives P1 = 0, P2 = I2 and





P3 =

(
−(t+ a) ∂ + 1 t2 + a t

0 1

)
,

Q3 = −((t+ a) ∂ + 1),





P4 =

(
(t− a) ∂ −t2 + a t

0 0

)
,

Q4 = (t− a) ∂ + 2,

where a is an arbitrary constant of Q. We can check that P 2
i = Pi + ZiR, i = 3, 4, where:

Z3 = ((t+ a)2 0)T , Z4 = ((t− a)2 0)T .

Using Remark 9, we obtain that (56) admits respectively the following solutions:

Λ3 = (a t a ∂ − 1)T , Λ4 = (a t a ∂ + 1)T .

The matrices (57) are then defined by





P 3 =

(
a t ∂2 − (t+ a) ∂ + 1 t2 (1− a ∂)

(a ∂ − 1) ∂2 −a t ∂2 + (t− 2 a) ∂ + 2

)
,

Q3 = 0,





P 4 =

(
a t ∂2 + (t− a) ∂ −t2 (1 + a ∂)

(a ∂ + 1) ∂2 −a t ∂2 − (t+ 2 a) ∂ − 1

)
,

Q4 = 1,

and we can easily check that we have P
2

i = P i, Q
2

i = Qi, for i = 3, 4.

The next lemma characterizes the kernel and the image of an idempotent P of Dp×p in terms of
projective modules.

Lemma 9. Let P ∈ Dp×p be an idempotent, i.e., P 2 = P . Then, we have the following results:

1. kerD(.P ) and imD(.P ) are two projective left D-modules of rank respectively m and p−m, with
0 ≤ m ≤ p.

2. We have the following equalities:

{
imD(.P ) = kerD(.(Ip − P )),

imD(.(Ip − P )) = kerD(.P ).

Proof. 1. We have the following short exact sequence:

0 −→ kerD(.P ) −→ D1×p .P
−→ imD(.P ) −→ 0.

Let us define the D-morphism i : imD(.P ) −→ D1×p by i(m) = m, for all m ∈ imD(.P ). Now,
for every element m ∈ imD(.P ), there exists λ ∈ D1×p such that m = λP . Therefore, we have
((.P ) ◦ i)(m) = mP = λP 2 and using the fact that P 2 = P , we get ((.P ) ◦ i)(m) = λP = m, i.e.,
((.P ) ◦ i) = idimD(.P ), which shows that the previous short exact sequence splits, and thus, we obtain:

D1×p = kerD(.P )⊕ imD(.P ). (58)

This proves that kerD(.P ) and imD(.P ) are two finitely generated projective left D-modules.
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Finally, we have

rankD(D1×p) = rankD(kerD(.P )) + rankD(imD(.P )),

and using the fact that, by hypothesis, D is a left noetherian ring, and thus, D has the Invariant
Basis Number (IBN) ([33]), we finally get rankD(D1×p) = p, which proves the first result.

2. The fact that P 2 = P implies that P (Ip−P ) = 0, which shows that imD(.P ) ⊆ kerD(.(Ip−P )).
Now, let λ ∈ kerD(.(Ip−P )) and let us prove that λ ∈ imD(.P ). Applying λ on the left of the identity
Ip = P + (Ip − P ), we obtain λ = λP , which proves kerD(.(Ip − P )) ⊆ imD(.P ) and the equality.

The second result can be proved similarly.

We note that if P = 0 (resp., P = Ip) is the trivial idempotent, then we have kerD(.P ) = D1×p and
imD(.P ) = 0 (resp., kerD(.P ) = 0, imD(.P ) = D1×p), i.e., kerD(.P ) and imD(.P ) are two trivial free
left D-modules. We are going to show that the case where kerD(.P ) and imD(.P ) are two non-trivial
free left D-modules plays an important role in the decomposition problem.

The next proposition will play in important role in what follows.

Proposition 10. Let P ∈ Dp×p be an idempotent, i.e., P 2 = P . The following assertions are
equivalent:

1. The left D-modules kerD(.P ) and imD(.P ) are free of rank respectively m and p−m.

2. There exists a unimodular matrix U ∈ Dp×p, i.e., U ∈ GLp(D), and a matrix JP ∈ D
p×p of the

form

JP =

(
0 0
0 Ip−m

)
,

which satisfy the relation:
U P = JP U. (59)

The matrix U has then the form

U =

(
U1

U2

)
, (60)

where the matrices U1 ∈ D
m×p and U2 ∈ D

(p−m)×p have full row ranks and satisfy the conditions:

{
kerD(.P ) = D1×m U1,

imD(.P ) = D1×(p−m) U2.
(61)

In particular, we have the relations U1 P = 0 and U2 P = U2.

Proof. (1 ⇒ 2). Let us suppose that kerD(.P ) (resp., imD(.P )) is a free left D-module of rank m
(resp., p −m) and let U1 ∈ D

m×p (resp., U2 ∈ D
(p−m)×p) be a basis of kerD(.P ) (resp., imD(.P )) ,

i.e., (61) holds. Let us form the matrix U defined by (60).

Now, using (58), for all λ ∈ D1×p, there exist unique λ1 ∈ kerD(.P ) and λ2 ∈ im(.P ) such that
λ = λ1 + λ2. Then, there exist unique µ1 ∈ D

1×m and µ2 ∈ D
1×(p−m) such that λ1 = µ1 U1 and

λ2 = µ2 U2, and thus, a unique µ = (µ1, µ2) ∈ D
1×p satisfying λ = µU . Hence, using the standard

basis {ei}1≤i≤p of D1×p, for i = 1, . . . , p, there exists a unique Vi ∈ D
1×p such that ei = Vi U . The

matrix V = (V T
1 , . . . , V

T
p )T is thus a left-inverse of U . By hypothesis, D is a left noetherian ring, and

thus, D is stably finite ([33]), which implies that we then have U V = Ip, i.e., U ∈ GLp(D).
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Finally, for all µ ∈ D1×p, we have µU2 ∈ imD(.P ), and thus, there exists ν ∈ D1×p such that
µU2 = ν P . Using the fact that P 2 = P , we get:

µU2 P = ν P 2 = ν P = µU2.

In particular, we have fi (U2 P ) = fi U2, for i = 1, . . . , p−m, where {fi}1≤i≤p−m is the standard basis
of D1×(p−m), which proves that U2 P = U2. Using U1 P = 0, we finally obtain:

U P =

(
U1

U2

)
P =

(
U1 P
U2 P

)
=

(
0
U2

)
=

(
0 0
0 Ip−m

)
U.

(2 ⇒ 1). Using the relation (59) and the fact that U is a unimodular matrix, we have the
commutative exact diagram

0 0
↑ ↑

0 −→ kerD(.P ) −→ D1×p .P
−→ D1×p

↑ .U ↑ .U

0 −→ kerD(.JP ) −→ D1×p .JP−→ D1×p,
↑ ↑
0 0

which shows that kerD(.P ) ∼= kerD(.JP ) (more precisely, kerD(.P ) = kerD(.JP )U). Using the fact
that we have trivially kerD(.JP ) = D1×m, we obtain that kerD(.P ) is a free left D-module of rank m.
Similarly, we have imD(.P ) = imD(.JP )U as U is a unimodular matrix and:

∀ λ, µ ∈ D1×p,

{
λP = ((λU−1) Jp)U,

(µJP )U = (µU)P.

Therefore, we have imD(.P ) ∼= imD(.JP ). We now easily check that imD(.JP ) = D1×(p−m), which
proves that imD(.P ) is a free left D-module of rank p−m.

Remark 10. We note that (59) is equivalent to P = U−1 JP U, which means that the two matrices
P and JP are similar.

We shall need the next lemma.

Lemma 10. Let us consider the following two matrices





JP =

(
0 0
0 Ip−m

)
∈ Dp×p,

JQ =

(
0 0
0 Iq−l

)
∈ Dq×q ,

(62)

where 1 ≤ m ≤ p and 1 ≤ l ≤ q, and a matrix R ∈ Dq×p satisfying the following relation:

RJP = JQR. (63)

Then, there exist R1 ∈ D
l×m and R2 ∈ D

(q−l)×(p−m) such that:

R =

(
R1 0
0 R2

)
. (64)
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Proof. If we write

R =

(
R11 R12

R21 R22

)
,

where R11 ∈ D
l×m, R12 ∈ D

l×(p−m), R21 ∈ D
(q−l)×m, R22 ∈ D

(q−l)×(p−m), then, we have:

RJP =

(
R11 R12

R21 R22

) (
0 0
0 Ip−m

)
=

(
0 R12

0 R22

)
,

JQR =

(
0 0
0 Iq−l

) (
R11 R12

R21 R22

)
=

(
0 0
R21 R22

)
.

Therefore, (63) implies that R12 = 0 and R21 = 0, which proves the result.

We are now in position to state the last main result of the paper (the second fairy’s theorem).

Theorem 4. Let R ∈ Dq×p and M = D1×p/(D1×q R). Let f : M −→ M be a projector defined by
two matrices P ∈ Dp×p and Q ∈ Dq×q satisfying (11) and let us assume that:

P 2 = P, Q2 = Q.

If the left D-modules kerD(.P ), imD(.P ), kerD(.Q), imD(.Q) are free of rank respectively m, p−m, l
and q − l (where 1 ≤ m ≤ p and 1 ≤ l ≤ q), then the following results hold:

1. There exist U ∈ GLp(D) and V ∈ GLq(D) satisfying the relations

{
P = U−1 JP U,
Q = V −1 JQ V,

where JP and JQ are the matrices defined by (62).

In particular, the matrices U and V are defined by






U =

(
U1

U2

)
, U1 ∈ D

m×p, U2 ∈ D
(p−m)×p,

V =

(
V1

V2

)
, V1 ∈ D

l×q , V2 ∈ D
(q−l)×q ,

where the matrices U1, U2, V1 and V2 respectively define the bases of the corresponding free left
D-modules, i.e., we have: 




kerD(.P ) = D1×m U1,

imD(.P ) = D1×(p−m) U2,

kerD(.Q) = D1×l V1,

imD(.Q) = D1×(q−l) V2.

2. The matrix R is equivalent to R = V RU−1.

3. If we denote by U−1 = (W1 W2), W1 ∈ D
p×m, W2 ∈ D

p×(p−m), we then have:

R =

(
V1RW1 0

0 V2 RW2

)
∈ Dq×p. (65)
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Proof. 1. The result directly follows from 2) of Proposition 10.

2. Using the fact that the matrices U and V are unimodular, we obtain R = V −1RU , which
proves the result.

3. From Lemma 3, the matrix R = V RU−1 satisfies the relation (63). Then, applying Lemma 10
to R, we obtain that R has the block-diagonal form (64), where R1 ∈ D

l×m and R2 ∈ D
(q−l)×(p−m).

Finally, we have

R = V RU−1 =

(
V1RW1 V1 RW2

V2RW1 V2 RW2

)
∈ Dq×p,

where V1 RW1 ∈ Dl×m, V2 RW1 ∈ D(p−l)×m and V1 RW2 ∈ Dl×(p−m), V2RW2 ∈ D(p−l)×(p−m),
which proves the result.

Example 17. Let us consider again system (6) defined in Example 2. We can easily check that the
matrices

P =
1

2




1 1 0
1 1 0
0 0 2


 , Q =

1

2

(
1 1
1 1

)
,

define a projector f ∈ endD(M) and satisfy P 2 = P and Q2 = Q. As P and Q are two matrices
with rational coefficients, we obtain that kerD(.P ), imD(.P ), kerD(.Q) and imD(.Q) are trivially free
D-modules since we have {

kerD(.P ) = D ⊗D kerQ(.P ),

imD(.P ) = D ⊗D imQ(.P ),

and similarly for kerD(.Q) and imD(.Q). Using linear algebra techniques, we then get






kerQ(.P ) = QU1, U1 =
(

1 −1 0
)
,

imQ(.P ) = Q1×2 U2, U2 =

(
1 1 0
0 0 1

)
,

kerQ(.Q) = QV1, V1 =
(

1 −1
)
,

imQ(.Q) = QV2, V2 =
(

1 1
)
,

and thus, we obtain the following two unimodular matrices:

U =




1 −1 0
1 1 0
0 0 1


 , V =

(
1 −1
1 1

)
.

By Theorem 4, we obtain that the matrix R is equivalent to the following block-diagonal matrix:

R = V RU−1 =

(
∂2
2 − 1 0 0
0 1 + ∂2

2 −4 ∂1 ∂2

)
.

We note that the first scalar diagonal block corresponds to the autonomous (uncontrollable) subsystem

{
z1(t) = y1(t)− y2(t),

z1(t− 2h)− z1(t) = 0,

i.e., z1 is a 2h-periodic function, whereas the second diagonal block corresponds to the controllable
subsystem 





z2(t) = y1(t) + y2(t),

v(t) = u(t),

z2(t) + z2(t− 2h)− 4 v̇(t− h) = 0,

INRIA



Using morphism computations for factoring and decomposing linear functional systems 51

of the system R (y1, y2, u)
T = 0. We note that the controllable subsystem is not flat ([16, 24, 43,

48]) as the corresponding D-module D1×2/(D (1 + ∂2
2 − 4 ∂1 ∂2)) is not projective, and thus, not

free (see [16, 24, 48] for constructive algorithms). Finally, the previous decomposition can be seen
as a generalization of the classical Kalman decomposition of state-space control systems ([46]) for
multidimensional linear systems.

We have the following important corollary of Theorem 4.

Corollary 6. Let us consider R ∈ Dq×p and the finitely presented left D-module M = D1×p/(D1×q R).
Let f : M −→M be a projector defined by two matrices P ∈ Dp×p and Q ∈ Dq×q satisfying (13) and
let us suppose that:

P 2 = P, Q2 = Q.

Assume further that one of the following condition holds:

1. D = A[∂;σ, δ] is a skew polynomial ring over a division ring A (e.g., A is a field) and σ is in-
jective, as, e.g., the ring D = k(t)

[
∂; idk(t),

d
dt

]
of differential operators with rational coefficients

or the ring D = k(n)[∂;σ, 0] of shift operators with rational coefficients (σ(a)(n) = a(n+ 1)),

2. D = A[∂1;σ1, δ1] . . . [∂n;σn, δn] is a commutative Ore algebra where A is either a field k or a
principal ideal domain as, e.g., the ring of differential operators with coefficients in Z, Q, R,

3. D = A[∂1; id, δ1] . . . [∂n; id, δn] is a Weyl algebra (∀ a ∈ A, δi(a) = ∂a/∂xi, 1 ≤ i ≤ n), where
A = k[x1, . . . , xn] or k(x1, . . . , xn) and k is a field of characteristic 0, and:





rankD(kerD(.P )) ≥ 2,

rankD(imD (.P )) ≥ 2,

rankD(kerD(.Q)) ≥ 2,

rankD(imD (.Q)) ≥ 2.

Then, there exist U ∈ GLp(D) and V ∈ GLq(D) such that R = V RU−1 is a block-diagonal matrix of
the form

R =

(
R1 0

0 R2

)
∈ Dq×p,

where R1 ∈ D
l×m, R2 ∈ D

(p−l)×(p−m) and:

m = rankD(kerD(.P )), l = rankD(kerD(.Q)).

Proof. 1. By Lemma 9, we know that kerD(.P ), kerD(.Q), imD (.P ) and imD (.Q) are projective
D-modules. By ii) of Theorem 1.2.9 of [42], D is a left principal ideal domain. Therefore, kerD(.P ),
kerD(.Q), imD (.P ) and imD (.Q) are free left D-modules of rank respectively m, l, p −m and q − l
(see [16, 42, 62]). The result directly follows from Theorem 4.

2. By Lemma 9, we obtain that kerD(.P ), kerD(.Q), imD (.P ) and imD (.Q) are projective D-
modules. As D is a commutative polynomial ring over a field k or a principal ideal domain A, by
the famous Quillen-Suslin theorem, we know that they are free D-modules of rank respectively m, l,
p−m and q − l. See [24, 62] for more details. Then, the result directly follows from Theorem 4.

3. By Lemma 9, we obtain that kerD(.P ), kerD(.Q), imD (.P ) and imD (.Q) are projective left
D-modules. A result of J. T. Stafford asserts that projective modules of rank at least 2 over the Weyl
algebras An(k) and Bn(k), where k is a field of characteristic 0, are free. For more details, we refer
to [59, 60, 65]. The result directly follows from Theorem 4.
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Remark 11. In order to constructively obtain the unimodular matrices U and V defined in Corol-
lary 6, we need to compute bases of the free left D-modules kerD(.P ) and imD (.P ), kerD(.Q) and
imD (.Q). In the first case of Corollary 6, we can use Smith or Jacobson forms in order to compute
bases of these modules over D = A[∂;σ, δ] (see [42, 46]). In the second case of Corollary 6, we can
use constructive versions of the famous Quillen-Suslin theorem of Serre’s conjecture ([62]). For more
details, we refer to [40] and references therein. See also [24] for an implementation. In the last case of
Corollary 6, we can use the constructive algorithm recently obtained in [59, 60] and its implementation
in the package Stafford of OreModules available in [15].

Remark 12. Let D = A[∂;σ, δ] be a skew polynomial ring over a ring A, a matrix E ∈ Ap×p,
R = (∂ Ip − E) ∈ Dp×p and M = D1×p/(D1×pR) the left D-module associated with the linear
functional system ∂ y = E y. In Example 4, we proved that we could always suppose with any
restriction that f ∈ endD(M) is defined by P ∈ Ap×p and Q ∈ Aq×q satisfying (16) where F = E.
By Lemma 5, we obtain that any projector f of endD(M) is defined by a matrix P ∈ Ap×p satisfying
P 2 = P + Z R, where Z ∈ Dp×q . Using the fact that R is a first order matrix in ∂ and P is a zero
order matrix in ∂, we obtain that Z = 0, i.e., P 2 = P . Now, the fact that R has full row rank, i.e.,
kerD(.R) = 0, by Lemma 7, we obtain that Q2 = Q. Hence, if, for instance, A is division ring and σ
is injective, then the hypotheses of 1) of Corollary 6 are satisfied, and thus, there exist U ∈ GLp(D)
and V ∈ GLq(D) such that the matrix R = V RU−1 is block-diagonal. We can then consider again
each of the blocks separately. If A is a field, then the matrices U and V can easily be obtained
by linear algebra as we have kerA(.P ) = Am×p U1, imA(.P ) = A(p−m)×p U2, kerA(.Q) = Al×q V1,
imA(.P ) = A(q−l)×q V2 and U = (UT

1 UT
2 )T ∈ GLp(A), V = (V T

1 V T
2 )T ∈ GLq(A).

Example 18. Let us consider again Example 15, i.e., let us consider the Weyl algebraD = A1(Q), the
matrix R ∈ D4×4 of differential operator defined by (53) and the left D-module M = D1×4/(D1×4R).
Using the algorithm for computing projectors of endD(M), we obtain that the matrices P and Q
defined by (54) generates a projector f , which proves that M is decomposable. Moreover, we easily
check that P 2 = P , i.e., P is an idempotent of D3×3. Now, using the fact that the entries of P belong
to the field k, we can easily compute bases of kerk(.P ) and imk(.P ) = kerk(.(I4 − P )). This way, we
obtain that the following unimodular matrices (see Theorem 4):

U =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 .

Moreover, if we denote by

V1 =

(
1 0 −1 0
0 1 −1 1

)
, V2 =

(
1 0 0 −1
0 1 −1 1

)
,

then we have {
kerk[t](.Q) = (k[t]1×2 V1),

imk[t](.Q) = kerk[t](.(I4 −Q)) = (k[t]1×2 V2),

and the matrix V = (V T
1 V T

2 )T ∈ GL4(k[t]). Hence, the matrix R is equivalent to the following
block-diagonal matrix:

R = V RU−1 =




−∂ 1 0 0
t (∂ − 1) −(∂ + t) 0 0

0 0 0 −∂
0 0 ∂ (t+ 1) ∂ − t


 .
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Moreover, if we denote by

E =




−1 0 0 0
−t −1 0 0
0 0 t+ 1 1
0 0 −1 0


 ∈ GL4(k[t]),

and W = E V , we easily check that we have:

R = W RU−1 =




∂ −1 0 0
t ∂ 0 0
0 0 ∂ −t
0 0 0 ∂


 .

The diagonal blocks of the matrix R are equivalent to the two systems that we had to solve in
Example 15 in order to integrate the solutions of Rη = 0. Hence, we find again that the general
solution of Rη = 0 is given by (55).

Finally, if we denote by W = (W T
1 W T

2 )T , where W1 ∈ D
2×4 and W2 ∈ D

2×4, we then have

kerk[t](.Q) = (k[t]1×2W1), imk[t](.Q) = (k[t]1×2W2),

i.e., W1 (resp., W2) defines a basis of kerD(.Q) (resp., imD(.Q)) with coefficients in k[t], whereas V1

(resp., V2) defines a basis with coefficients in k. Hence, this result explains why we can use the matrix
W instead of V .

Example 19. If we consider the idempotent P 3 ∈ D
2×2 defined in Example 16, whereD = A1(Q), we

have rankD(kerD(.P 3)) = 1 and rankD(imD(.P 3)) = 1. Hence, we cannot use 1) or 3) of Corollary 6
in order to conclude that R = (∂2 − t ∂ − 1) is equivalent to R = (α 0), α ∈ D, by means of
unimodular matrices over D. Indeed, we easily prove that kerD(.P 3)) = D (∂ − t) , which implies
that kerD(.P 3)) is a free left D-module of rank 1. However, we have imD(.P 3) ∼= D1×2/(D (∂ − t))
and it was proved in [59] that the last left D-module was not free. A similar comment holds for P 4 as
we have kerD(.P 4) ∼= D1×2/(D (∂ − t)). Of course, if we consider the Weyl algebra B1(Q) instead of
D, namely, B1(Q) = Q(t)

[
∂; id, d

dt

]
, using a computation of a Jacobson form, we can easily prove that

R is equivalent to R = (∂ 0) (see 1) of Corollary 6). However, we point out that some singularities
then appear in the matrices U and V defined in Theorem 4.

Example 20. Let us consider the differential time-delay model of a flexible rod with a torque devel-
oped in [43]: {

ẏ1(t)− ẏ2(t− 1)− u(t) = 0,

2 ẏ1(t− 1)− ẏ2(t)− ẏ2(t− 2) = 0.
(66)

Let us define the Ore algebra D = Q
[
∂1; 1,

d
dt

]
[∂2;σ2, 0] of differential time-delay operators with

rational constant coefficients defined in 4) of Example 1 and the corresponding matrix of the system
(66) defined by:

R =

(
∂1 −∂1 ∂2 −1

2 ∂1 ∂2 −∂1 ∂
2
2 − ∂1 0

)
∈ D2×3.

Let M = D1×3/(D1×2R) be the left D-module associated with (66). Using Algorithm 3, we obtain
that the following matrices

P =




1 + ∂2
2 − 1

2 ∂
2
2 (1 + ∂2) 0

2 ∂2 −∂2
2 0

0 0 1


 , Q =

(
1 − 1

2 ∂2

0 0

)
,
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define a projector f ∈ endD(M). Moreover, we can check that P 2 = P and Q2 = Q, i.e., P and Q
are idempotents. Then, using 2) of Corollary 6, we obtain that R is equivalent to a block-diagonal
matrix. Let us compute it. Using the implementation of the Quillen-Suslin theorem developed in [24]
or the heuristics given in [16], we obtain the following unimodular matrices:

U =



−2 ∂2 ∂2

2 + 1 0

−2 ∂2 0

0 0 1


 ∈ GL3(D), V =

(
0 −1

2 −∂2

)
∈ GL2(D).

Using the fact that the inverse of U is then defined by

U−1 =



− 1

2 ∂2 − 1
2 (∂2

2 + 1) 0

1 −∂2 0

0 0 1


 ,

we finally obtain that R is equivalent to the following block-diagonal matrix:

R = V RU−1 =

(
∂1 0 0

0 ∂1 (∂2
2 − 1) −2

)
.

As in Example 17 for the tank model, we obtain that the first scalar diagonal block corresponds to the
autonomous (uncontrollable) subsystem, whereas the second diagonal block defines the controllable
subsystem (see also [43]).

More examples of decomposable modules coming from mathematical physics and control theory
can be given. For instance, we refer the interested reader to [58] for some examples of PDEs.

5 Appendix: the Morphisms package

In this appendix, we illustrate the main features of the Maple package Morphisms ([22]) which uses
the OreModules library ([15]). We consider again the examples developed in the paper and show
how to compute explicitly the different results. We refer the reader to the library of examples of
Morphisms ([22]) for more details and examples.

5.1 Example 6 (Euler-Tricomi equation)

> Alg:=DefineOreAlgebra(diff=[D1,x1],diff=[D2,x2],polynom=[x1,x2]):

> R:=evalm([[D1^2-x1*D2^2]]);

R :=
[

D12 − x1 D22
]

> End_[0,0]:=Morphisms(R,R,Alg,0,0):

> End_[0,0][1]; End_[0,0][2];
[
a1

]

[
a1

]

> End_[1,1]:=Morphisms(R,R,Alg,1,1):

> End_[1,1][1]; End_[1,1][2];
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[
a1 + a3 D2 +

3

2
a2 x2 D2 + a2 x1 D1

]

[
3

2
a2 x2 D2 + a2 x1 D1 + 2 a2 + a1 + a3 D2

]

> End_[2,0]:=Morphisms(R,R,Alg,2,0):

> End_[2,0][1]; End_[2,0][2];
[
a1 + a2 D2 + a3 D22

]

[
a1 + a2 D2 + a3 D22

]

> End_[2,1]:=Morphisms(R,R,Alg,2,1):

> End_[2,1][1]; End_[2,1][2];
[
a6 x1 D1D2 +

3

2
a6 x2 D22 + a3 D22 + a4 x1 D1 +

3

2
a4 x2 D2 + a2 D2 + a1

]

[
a6 x1 D1 D2 +

3

2
a4 x2 D2 +

3

2
a6 x2 D22 + 2 a4 + a1 + 2 D2 a6 + a2 D2 + a3 D22 + a4 x1 D1

]

5.2 Example 7 (quadratic first integral)

> Alg:=DefineOreAlgebra(diff=[D,t],polynom=[t],comm=[alpha,omega]):

> E:=evalm([[0,1,0,0],[-omega^2,0,alpha,0],[0,0,0,1],[0,0,-omega^2,alpha]]);

E :=




0 1 0 0
−ω2 0 α 0

0 0 0 1
0 0 −ω2 α




> R:=evalm(D-E);

R :=




D −1 0 0
ω2 D −α 0
0 0 D −1
0 0 ω2 −α+ D




> MorphismsConst(Involution(R,Alg),R,Alg);




p1 ω
4 p2 ω

2 −ω2 (p1 α+ p2) p1 ω
2

−p2 ω
2 p1 ω

2 −p1 ω
2 + p2 α −p2

−ω2 (p1 α− p2) −p1 ω
2 − p2 α p1 (α2 + ω2) −p1 α+ p2

p1 ω
2 p2 −p1 α− p2 p1


 ,




−p1 ω
4 −p2 ω

2 p1 αω
2 + p2 ω

2 −p1 ω
2

p2 ω
2 −p1 ω

2 p1 ω
2 − p2 α p2

p1 αω
2 − p2 ω

2 p1 ω
2 + p2 α −p1 (α2 + ω2) p1 α− p2

−p1 ω
2 −p2 p1 α+ p2 −p1


 ,

[Ore algebra , [“diff”], [t], [D], [t], [p1, p2, α, ω], 0, [], [], [t], [], [], [diff = [D, t]]]

> V:=QuadraticFirstIntegralConst(R,[x[1](t),x[2](t),x[3](t),x[4](t)],Alg);
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V := p1 ω
4 x1(t)

2 − 2x1(t)ω
2 x3(t) p1 α+ 2x1(t) p1 ω

2 x4(t) + x2(t)
2 p1 ω

2

− 2x2(t) p1 x3(t)ω
2 + p1 x3(t)

2 ω2 + p1 x3(t)
2 α2 − 2x3(t)x4(t) p1 α+ p1 x4(t)

2

5.3 Example 9 (linearized Euler equations for an incompressible fluid)

> Alg:=DefineOreAlgebra(diff=[D1,x1],diff=[D2,x2],diff=[D3,x3],diff=[Dt,t],
> polynom=[x1,x2,x3,t]):

> R:=evalm([[D1,D2,D3,0],[Dt,0,0,D1],[0,Dt,0,D2],[0,0,Dt,D3]]);

R :=




D1 D2 D3 0
Dt 0 0 D1
0 Dt 0 D2
0 0 Dt D3




> Morph:=GenMorphismsConst(R,R,Alg):

> P:=Morph[1,1];

P :=




0 0 0 0

0 D32 −D3D2 0
0 −D3D2 D22 0
0 0 0 0




> Q:=Morph[2,1];

Q :=




0 0 0 0
0 0 0 0
0 0 D32 −D3D2

0 0 −D3 D2 D22




> TestInj(R,R,P,Q,Alg);

NotInj

> S:=CoimMorphism(R,R,P,Q,Alg)[1];

S :=




1 0 0 0
0 D2 D3 0
0 −Dt 0 0
0 0 Dt 0
0 0 0 1




> L:=Factorize(R,S,Alg);

L :=




D1 1 0 0 0
Dt 0 0 0 D1
0 0 −1 0 D2
0 0 0 1 D3




> Param:=evalm([[0],[-D3],[D2],[0]]);

Param :=




0
−D3
D2
0



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> Sol:=ApplyMatrix(Param,[xi(x1,x2,x3)],Alg);

Sol :=




0

−( ∂
∂x3

ξ(x1 , x2 , x3 ))
∂

∂x2
ξ(x1 , x2 , x3 )

0




> ApplyMatrix(R,Sol,Alg);



0
0
0
0




5.4 Example 10 (Killing operator and its Spencer operator)

> Alg:=DefineOreAlgebra(diff=[D1,x1],diff=[D2,x2],polynom=[x1,x2]):

> R:=matrix(3,2,[D1,0,1/2*D2,1/2*D1,0,D2]);

R :=




D1 0
D2

2

D1

2

0 D2




> R1:=evalm([[D1,0,0],[D2,-1,0],[0,D1,0],[0,1,D1],[0,0,D2],[0,D2,0]]);

R1 :=




D1 0 0
D2 −1 0
0 D1 0
0 1 D1
0 0 D2
0 D2 0




> Morph:=GenMorphismsConst(R,R1,Alg);

Morph :=

[
[

[
0 0 0
0 −2 0

]
,

[
0 0 0
0 2 0

]
,

[
0 0 0
0 2 0

]
,

[
0 −2 0
0 0 0

]
,

[
0 2 0
0 0 0

]
,

[
2 0 0
0 0 2

]
],

[


0 0 0 0 0 0
0 0 −1 0 0 0
0 0 0 0 0 −2


 ,




0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 2


 ,




0 0 0 0 0 0
D2 −D1 0 0 0 0
0 0 0 0 0 2


 ,




0 0 −2 0 0 0
0 0 0 0 0 −1
0 0 0 0 0 0


 ,




0 0 2 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0


 ,




2 0 0 0 0 0
0 1 0 1 0 0
0 0 0 0 2 0




]]

> P:=evalm(1/2*Morph[1,6]);

P :=

[
1 0 0
0 0 1

]
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> Q:=evalm(1/2*Morph[2,6]);

Q :=




1 0 0 0 0 0

0
1

2
0

1

2
0 0

0 0 0 0 1 0




> TestBij(R,R1,P,Q,Alg);

Bij

5.5 Example 12 (linearized bipendulum)

> Alg:=DefineOreAlgebra(diff=[D,t],polynom=[t],comm=[g,l1,l2]):

> R:=evalm([[D^2+g/l1,0,-g/l1],[0,D^2+g/l2,-g/l2]]);

R :=




D2 +
g

l1
0 −

g

l1

0 D2 +
g

l2
−
g

l2




> Morph:=GenMorphismsConst(R,R,Alg);

Morph :=












0 0 g l2
0 −g (l1 − l2 ) g l1
0 0 l2 l1 D2 + g l2



 ,




1 0 0
0 1 0
0 0 1







 , [

[
0 0
0 −g l1 + g l2

]
,

[
1 0
0 1

]
]





> P:=Morph[1,1];

P :=




0 0 g l2
0 −g (l1 − l2 ) g l1
0 0 l2 l1 D2 + g l2





> Q:=Morph[2,1];

Q :=

[
0 0
0 −g l1 + g l2

]

> U1:=SyzygyModule(P,Alg);

U1 :=
[

D2 l1 + g 0 −g
]

> SyzygyModule(U1,Alg);

INJ(1)

> Ext:=Exti(Involution(U1,Alg),Alg,1);

Ext :=


[ 1

]
,
[

D2 l1 + g 0 −g
]
,




g 0
0 1

D2 l1 + g 0






> U2:=LeftInverse(Ext[3],Alg);

U2 :=




1

g
0 0

0 1 0




> U:=linalg[stackmatrix](U1,U2);

INRIA
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U :=




D2 l1 + g 0 −g
1

g
0 0

0 1 0




> V1:=SyzygyModule(Q,Alg);

V1 :=
[

1 0
]

> ext:=Exti(Involution(V1,Alg),Alg,1);

ext := [
[

1
]
,
[

1 0
]
,

[
0
1

]
]

> V2:=LeftInverse(ext[3],Alg);

V2 :=
[

0 1
]

> V:=linalg[stackmatrix](V1,V2);

V :=

[
1 0
0 1

]

> J_P:=Mult(U,P,linalg[inverse](U),Alg);

J P :=




0 0 0

−
l2

g
l2 (D2 l1 + g) 0

−l1 g l1 (D2 l1 + g) −g l1 + g l2




> J_Q:=Mult(V,Q,linalg[inverse](V),Alg);

J Q :=

[
0 0
0 −g l1 + g l2

]

> R_bar:=Mult(V,R,linalg[inverse](U),Alg);

R bar :=




1

l1
0 0

1

l2
−

(D2 l1 + g) g

l2

D2 l2 + g

l2




5.6 Example 13 (linear elasticity)

> Alg:=DefineOreAlgebra(diff=[D1,x1],diff=[D2,x2],polynom=[x1,x2],comm=[alpha,beta]):

> R:=matrix(1,2,[(D1^2+D2^2)^2,(2*beta)/(alpha+2*beta)*(D1^2+D2^2)]);

R :=

[
(D12 + D22)2

2β (D12 + D22)

α+ 2β

]

> Morph:=GenMorphismsConst(R,R,Alg);

Morph := [[

[
0 0

(α+ 2β) D22 + (α+ 2β) D12 2β

]
,

[
0 −2β
0 (α + 2β) D22 + (α+ 2β) D12

]
,

[
1 0
0 1

]
], [
[

2β
]
,
[

0
]
,
[

1
]
]]
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> P:=Morph[1,2];

P :=

[
0 −2β
0 (α+ 2β) D22 + (α+ 2β) D12

]

> Q:=Morph[2,2];

Q :=
[

0
]

> U1:=SyzygyModule(P,Alg);

U1 :=
[

D22 α+ 2 D22 β + D12 α+ 2 D12 β 2β
]

> SyzygyModule(U1,Alg);

INJ(1)

> Ext:=Exti(Involution(U1,Alg), Alg, 1);

Ext := [
[

1
]
,
[

D22 α+ 2 D22 β + D12 α+ 2 D12 β 2β
]
,

[
−2β

D22 α+ 2 D22 β + D12 α+ 2 D12 β

]
]

> U2:=LeftInverse(Ext[3],Alg);

U2 :=

[
−

1

2β
0

]

> U:=linalg[stackmatrix](U1,U2);

U :=




D22 α+ 2 D22 β + D12 α+ 2 D12 β 2β

−
1

2β
0




> V1:=SyzygyModule(Q,Alg);

V1 :=
[

1
]

> R_bar :=Mult(V1,R,linalg[inverse](U),Alg);

R bar :=

[
D12 + D22

α+ 2β
0

]

5.7 Examples 15 and 18

> Alg:=DefineOreAlgebra(diff=[D,t],polynom=[t]):

> R:=evalm([[D,-t,t,D],[D,t*D-t,D,-1],[D,-t,D+t,D-1],[D,D-t,t,D]]);

R :=




D −t t D
D tD− t D −1
D −t D + t D− 1
D D− t t D




> Morph:=Morphisms(R,R,Alg,0,0);

INRIA
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Morph :=







a2 a1 0 0
0 a2 0 0
0 0 a3 0
0 0 0 a3


 ,




−t a3 + t a2 − a1 + a2 −a3 + a2 −a2 + a3 −t a2 + t a3 + a1

a2 − a3 − a1 a2 −a2 + a3 a1

−t a3 + t a2 + a2 − a3 − a1 −a3 + a2 2 a3 − a2 −t a2 + t a3 + a1

−t a3 + t a2 − a1 −a3 + a2 −a2 + a3 −t a2 + t a3 + a1 + a2


 ,

[Ore algebra , [“diff”], [t], [D], [t], [a1, a2, a3], 0, [], [], [t], [], [], [diff = [D, t]]]




5.7.1 Factorization (Example 15)

> P:=subs({a[1]=0,a[2]=1,a[3]=0}, evalm(Morph[1]));

P :=




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0




> Q:=Factorize(Mult(R,P,Alg),R,Alg);

Q :=




t+ 1 1 −1 −t
1 1 −1 0

t+ 1 1 −1 −t
t 1 −1 −t+ 1




> S:=CoimMorphism(R,R,P,Q,Alg)[1];

S :=




D −t 0 0
0 D 0 0
0 0 1 0
0 0 0 1




> L:=Factorize(R,S,Alg);

L :=




1 0 t D
1 t D −1
1 0 D + t D− 1
1 1 t D




> X:=Factorize(evalm(1-P),S,Alg);

X :=




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1




> simplify(evalm(Mult(P,P,Alg)-P));



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



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> simplify(evalm(Mult(Q,Q,Alg)-Q));



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




> SyzygyModule(S,Alg);

INJ(4)

> U1:=SyzygyModule(P,Alg);

U1 :=

[
0 0 1 0
0 0 0 1

]

> SyzygyModule(U1,Alg);

INJ(2)

> Ext:=Exti(Involution(U1,Alg),Alg,1);

Ext :=




[
1 0
0 1

]
,

[
0 0 1 0
0 0 0 1

]
,




1 0
0 1
0 0
0 0







> U2:=LeftInverse(Ext[3],Alg);

U2 :=

[
1 0 0 0
0 1 0 0

]

> U:=linalg[stackmatrix](U1,U2);

U :=




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




> V1:=SyzygyModule(Q,Alg);

V1 :=

[
1 0 −1 0
0 1 t− 1 −t

]

> SyzygyModule(V1,Alg);

INJ(2)

> ext:=Exti(Involution(V1,Alg),Alg,1);

ext :=



[

1 0
0 1

]
,

[
1 0 −1 0
0 1 t− 1 −t

]
,




1 0
1 t
1 0
1 1







> V2:=LeftInverse(ext[3],Alg);

V2 :=

[
0 0 1 0
0 0 −1 1

]

> V:=linalg[stackmatrix](V1,V2);
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V :=




1 0 −1 0
0 1 t− 1 −t
0 0 1 0
0 0 −1 1




> R_bar:=Mult(V,R,linalg[inverse](U),Alg);

R bar :=




−D 1 0 0
tD− t −D− t 0 0
D + t D− 1 D −t
−D 1 0 D




5.7.2 Decomposition (Example 18)

> Idem:=Idempotents(R,Morph[1],Alg,Morph[3]);

Idem :=







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 ,




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 ,




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1







> P:=Idem[1];

P :=




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0




> Q:=Factorize(Mult(R,P,Alg),R,Alg);

Q :=




t+ 1 1 −1 −t
1 1 −1 0

t+ 1 1 −1 −t
t 1 −1 −t+ 1




> U1:=SyzygyModule(P,Alg);

U1 :=

[
0 0 1 0
0 0 0 1

]

> SyzygyModule(U1,Alg);

INJ(2)

> U2:=SyzygyModule(evalm(1-P),Alg);

U2 :=

[
1 0 0 0
0 1 0 0

]

> U:=linalg[stackmatrix](U1,U2);

U :=




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




> V1:=SyzygyModule(Q,Alg);
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V1 :=

[
1 0 −1 0
0 1 −1 + t −t

]

> SyzygyModule(V1,Alg);

INJ(2)

> V2:=SyzygyModule(evalm(1-Q),Alg);

V2 :=

[
1 0 0 −1
0 1 −1 1

]

> V:=linalg[stackmatrix](V1,V2);

V :=




1 0 −1 0
0 1 −1 + t −t
1 0 0 −1
0 1 −1 1




> linalg[inverse](V);



−t −1 t+ 1 1
−1 0 1 1
−t− 1 −1 t+ 1 1
−t −1 t 1




> R_bar :=Mult(V,R,linalg[inverse](U),Alg);

R bar :=




−D 1 0 0
tD− t −D− t 0 0

0 0 0 −D
0 0 D tD− t+ D




> E:=evalm([[-1, 0, 0, 0],[-t, -1, 0, 0],[0, 0, t+1, 1],[0, 0, -1,0]]);

E :=




−1 0 0 0
−t −1 0 0
0 0 t+ 1 1
0 0 −1 0




> W:=Mult(E,V,Alg);

W :=




−1 0 1 0
−t −1 1 t
t+ 1 1 −1 −t
−1 0 0 1




> R_barbar:=Mult(W,R,linalg[inverse](U),Alg);

R barbar :=




D −1 0 0
t D 0 0
0 0 D −t
0 0 0 D




5.8 Examples 16 and 19

> Alg:=DefineOreAlgebra(diff=[D,t],polynom=[t]):
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> R:=evalm([[D^2,-t*D-1]]);

R :=
[

D2 −tD− 1
]

> Morph:=Morphisms(R,R,Alg,1,2);

Morph := [
[
−2 a4 + a3 + a6 t

2 − a1 D + (−a2 + a4) tD + a5 t
2 D a1 t+ a2 t

2

2 a6 + 2 a5 D + a6 tD a3 + a5 t+ a4 tD + a5 t
2 D

]
,

[
−a1 D + 2 a5 t− 2 a2 + a3 + a5 t

2 D− tD a2 + a4 tD
]
,

[Ore algebra , [“diff”], [t], [D], [t], [a1, a2, a3, a4, a5, a6], 0, [], [], [t], [], [], [diff = [D, t]]]]

> Proj:=Projectors(R,Morph[1],Alg,Morph[3]);

Proj := [

[
0 0
0 0

]
,

[
1− a1 D− tD a1 t+ t2

0 1

]
,

[
−a1 D + tD a1 t− t

2

0 0

]
,

[
1 0
0 1

]
]

> P1:=Proj[2];

P1 :=

[
1− a1 D− tD a1 t+ t2

0 1

]

> Z1:=Factorize(evalm(Mult(P1,P1,Morph[3])-P1),R,Morph[3]);

Z1 :=

[
a1

2 + 2 a1 t+ t2

0

]

> Q1:=Factorize(Mult(R,P1,Morph[3]),R,Morph[3]);

Q1 :=
[
−tD− a1 D− 1

]

> Lambda1:=Riccati(R,P1,Q1,Z1,Morph[3],1,1);

Λ1 := [[

[
a1 t

−1 + a1 D

]
], [Ore algebra , [“diff”], [t], [D], [t], [a1], 0, [], [], [t], [], [], [diff = [D, t]]]]

> PP1:=evalm(P1+Mult(Lambda1[1,1],R,Morph[3]));

PP1 :=

[
1− a1 D− tD + a1 tD

2 a1 t+ t2 − a1 t (tD + 1)
(−1 + a1 D) D2 2 + tD− a1 tD

2 − 2 a1 D

]

> QQ1:=Factorize(Mult(R,PP1,Morph[3]),R,Morph[3]);

QQ1 :=
[

0
]

> verif1:=simplify(evalm(Mult(PP1,PP1,Morph[3])-PP1));

verif :=

[
0 0
0 0

]

> P2:=Proj[3];

P2 :=

[
−a1 D + tD a1 t− t

2

0 0

]

> Z2:=Factorize(evalm(Mult(P2,P2,Morph[3])-P2),R,Morph[3]);

Z2 :=

[
a1

2 − 2 a1 t+ t2

0

]
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> Q2:=Factorize(Mult(R,P2,Morph[3]),R,Morph[3]);

Q2 :=
[
tD− a1 D + 2

]

> Lambda2:=Riccati(R,P2,Q2,Z2,Morph[3],1,1);

Λ2 := [[

[
a1 t

1 + a1 D

]
], [Ore algebra , [“diff”], [t], [D], [t], [a1], 0, [], [], [t], [], [], [diff = [D, t]]]]

> PP2:=evalm(P2+Mult(Lambda2[1,1],R,Morph[3]));

PP2 :=

[
−a1 D + tD + a1 tD

2 a1 t− t
2 − a1 t (tD + 1)

(1 + a1 D) D2 −tD− 1− a1 tD
2 − 2 a1 D

]

> QQ2:=Factorize(Mult(R,PP2,Morph[3]),R,Morph[3]);

QQ2 :=
[

1
]

> verif2:=simplify(evalm(Mult(PP2,PP2,Morph[3])-PP2));

verif2 :=

[
0 0
0 0

]

5.9 Examples 2, 5, 14 and 17 (fluid in a tank subjected to a 1-dimensional
horizontal move)

> Alg:=DefineOreAlgebra(diff=[D1,t],dual_shift=[D2,s],polynom=[t,s]):

> R:=evalm([[D2^2,1,-2*D1*D2],[1,D2^2,-2*D1*D2]]);

R :=

[
D22 1 −2 D1D2
1 D22 −2 D1D2

]

> Morph:=MorphismsConst(R,R,Alg);

Morph :=




p1 p2 2 p3 D1D2

2 p4 D1 + p2 p1 − 2 p4 D1 2 p3 D1D2
p4 D2 −p4 D2 p3 D22 + p1 + p2 + p3



 ,
[
p1 − 2 p4 D1 2 p4 D1 + p2

p2 p1

]
,

[Ore algebra , [“diff”, “dual shift”], [t, s], [D1, D2], [t, s], [p1, p2, p3, p4], 0, [], [], [t, s], [], [],

[diff = [D1, t], dual shift = [D2, s]]]

> Morph1;

[




0 0 0
2 D1 −2 D1 0
D2 −D2 0


 ,




0 0 2 D2D1
0 0 2 D2D1

0 0 1 + D22


 ,




0 1 0
1 0 0
0 0 1


 ,




1 0 0
0 1 0
0 0 1




 ,

[

[
−2 D1 2 D1

0 0

]
,

[
0 0
0 0

]
,

[
0 1
1 0

]
,

[
1 0
0 1

]
]

]

5.9.1 Factorization (Example 14)

> P_subs:=subs({p[1]=0,p[2]=0,p[3]=0,p[4]=D2,p[5]=0},eval(Morph[1]));

P subs :=




0 0 0

2 D1D2 −2 D1D2 0

D22 −D22 0




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> Q_subs:=subs({p[1]=0,p[2]=0,p[3]=0,p[4]=D2,p[5]=1},eval(Morph[2]));

Q subs :=

[
−2 D1D2 2 D1D2

0 0

]

> Lambda:=evalm([[0,0],[0,0],[-1,1]]);

Λ :=




0 0
0 0
−1 1




> P:=simplify(evalm(P_subs+Mult(Lambda,R,Alg)));

P :=




0 0 0
2 D1 D2 −2 D1D2 0

1 −1 0




> Q:=simplify(evalm(Q_subs+Mult(R,Lambda,Alg)));

Q :=

[
0 0

2 D1D2 −2 D1D2

]

> U1:=SyzygyModule(P,Alg);

U1 :=

[
1 0 0
0 −1 2 D1D2

]

> SyzygyModule(U1,Alg);

INJ(2)

> Ext:=Exti(Involution(U1,Alg),Alg,1);

Ext :=




[

1 0
0 1

]
,

[
1 0 0
0 −1 2 D1D2

]
,




0

2 D1D2
1









> U2:=LeftInverse(Ext[3],Alg);

U2 :=
[

0 0 1
]

> U:=linalg[stackmatrix](U1,U2);

U :=




1 0 0
0 −1 2 D1D2
0 0 1





> V1:=SyzygyModule(Q,Alg);

V1 :=
[

1 0
]

> ext:=Exti(Involution(V1,Alg),Alg,1);

ext := [
[

1
]
,
[

1 0
]
,

[
0
1

]
]

> V2:=LeftInverse(ext[3],Alg);

V2 :=
[

0 1
]

> V:=linalg[stackmatrix](V1,V2);
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V :=

[
1 0
0 1

]

> R_bar:=Mult(V,R,linalg[inverse](U),Alg);

R bar :=

[
D22 −1 0
1 −D22 2 D1D23 − 2 D1D2

]

5.9.2 Decomposition (Example 17)

> Morph1:=GenMorphismsConst(R,R,Alg);

Morph1 :=

[






0 0 0

2 D1 −2 D1 0
D2 −D2 0



 ,




0 0 2 D2D1
0 0 2 D2D1

0 0 1 + D22



 ,




0 1 0
1 0 0
0 0 1



 ,




1 0 0
0 1 0
0 0 1







 ,

[

[
−2 D1 2 D1

0 0

]
,

[
0 0
0 0

]
,

[
0 1
1 0

]
,

[
1 0
0 1

]
]

]

> Idem:=IdempotentsConst(R,Morph1[1],Alg,0);

Idem :=










1

2

1

2
0

1

2

1

2
0

0 0 1



,




1

2

−1

2
0

−1

2

1

2
0

0 0 0



,




0 0 0
0 0 0
0 0 0


 ,




1 0 0
0 1 0
0 0 1






,

[Ore algebra , [“diff”, “diff”], [x1 , x2 ], [D1, D2], [x1 , x2 ], [], 0, [], [], [x1 , x2 ], [], [],

[diff = [D1, x1 ], diff = [D2, x2 ]]]




> P:=Idem[1,1];

P :=




1

2

1

2
0

1

2

1

2
0

0 0 1




> Q:=Factorize(Mult(R,P,Alg),R,Alg);

Q :=




1

2

1

2
1

2

1

2




> U1:=SyzygyModule(P,Alg);

U1 :=
[

1 −1 0
]

> SyzygyModule(U1,Alg);

INJ(1)

> U2:=SyzygyModule(evalm(1-P),Alg);
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U2 :=

[
1 1 0
0 0 1

]

> U:=linalg[stackmatrix](U1,U2);

U :=




1 −1 0
1 1 0
0 0 1





> V1:=SyzygyModule(Q,Alg);

V1 :=
[

1 −1
]

> V2:=SyzygyModule(evalm(1-Q),Alg);

V2 :=
[

1 1
]

> V:=linalg[stackmatrix](V1,V2);

V :=

[
1 −1
1 1

]

> R_bar:=Mult(V,R,linalg[inverse](U),Alg);

R bar :=

[
−1 + D22 0 0

0 1 + D22 −4 D2D1

]

5.10 Example 20 (flexible rod with a torque)

> Alg:=DefineOreAlgebra(diff=[D1,t],dual_shift=[D2,s],polynom=[t,s]):

> R:=evalm([[D1,-D2*D1,-1],[2*D2*D1,-D1-D2^2*D1,0]]);

R :=

[
D1 −D1 D2 −1

2 D1 D2 −D1−D22 D1 0

]

> Morph:=GenMorphismsConst(R,R,Alg):

> Idem:=IdempotentsConst(R,Morph[1],Alg,2);

Idem :=











0 0 0
0 0 0
0 0 0


 ,




1 0 0
0 1 0
0 0 1


 ,




1 + D22 −
D2 (1 + D22)

2
0

2 D2 −D22 0
0 0 1


 ,



−D22 D2 (1 + D22)

2
0

−2 D2 1 + D22 0
0 0 0





 ,

[Ore algebra , [“diff”, “dual shift”], [t, s], [D1, D2], [t, s], [], 0, [], [], [t, s], [], [],

[diff = [D1, t], dual shift = [D2, s]]]




> P:=Idem[1,3];
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P :=




1 + D22 −
D2 (1 + D22)

2
0

2 D2 −D22 0
0 0 1




> Q:=Factorize(Mult(R,P,Alg),R,Alg);

Q :=


 1 −

D2

2

0 0




> U1:=SyzygyModule(P,Alg);

U1 :=
[
−2 D2 1 + D22 0

]

> SyzygyModule(U1,Alg);

INJ(1)

> U2:=SyzygyModule(evalm(1-P),Alg);

U2 :=

[
−2 D2 0

0 0 1

]

> U:=linalg[stackmatrix](U1,U2);

U :=



−2 D2 1 + D22 0
−2 D2 0
0 0 1




> U_inv:=linalg[inverse](U);

U inv :=




D2

2
−

1

2
−

D22

2
0

1 −D2 0
0 0 1




> V1:=SyzygyModule(Q,Alg);

V1 :=
[

0 1
]

> V2:=SyzygyModule(evalm(1-Q),Alg);

V2 :=
[
−2 D2

]

> V:=linalg[stackmatrix](-V1,-V2);

V :=

[
0 −1
2 −D2

]

> R_bar:=map(factor,Mult(V,R,U_inv,Alg));

R bar :=

[
D1 0 0
0 D1 (D2− 1) (D2 + 1) −2

]

6 Conclusion

Within a constructive homological algebra approach developed in this paper, we have obtained new and
general results on the factorization and decomposition problems of linear systems over Ore algebras.
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We point out that no particular assumption on the linear functional systems was required. Hence,
the different results of the paper can be applied to under-determined or over-determined as well as
D-finite ([14]) or general determined linear systems. In particular, we have shown how some classical
results of the literature of the factorization and decomposition problems such as the ones using the
concept of the eigenring ([4, 11, 64, 28, 26, 17]) could be seen as particular cases of Theorems 1, 2, 3
and 4.

Moreover, we have shown how our results could be applied in mathematical physics (e.g., Galois
symmetries of the linearized Euler equations, quadratic first integrals of motion, quadratic conservation
laws, equivalence of linear systems appearing in linear elasticity) and in control theory (controllability,
autonomous elements, decoupling the autonomous and the controllable subsystems of a tank and a
flexible rod).

Finally, all the algorithms presented in the paper have been implemented in the package Mor-

phisms ([22]) of OreModules (see [15]). This package is available on the authors’ web pages as well
as the ones of OreModules (see [15] for the precise address). A library of examples, including the
ones of the paper, is also available and it illustrates the main results obtained in this paper and the
main functions of Morphisms.
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