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Abstract: The problem of tracking a moving target with a nonholonomic mobile robot, by
using sensor-based control techniques, is addressed. Two control design methods, relying on
the transverse function approach, are proposed. For the first method, sensory signals are
used to calculate an estimate of the relative pose of the robot with respect to the target. This
estimate is then used for the calculation of control laws expressed in Cartesian coordinates.
An analysis of stability and robustness w.r.t. pose estimation errors is presented. The second
method consists in designing the control law directly in the space of sensor signals. Both
methods are simulated, with various choices of the control parameters, for a unicycle-type
mobile robot equipped with a camera. Finally, experimental results are also reported.

Key-words: nonholonomic system, target tracking, sensor-based control, transverse func-
tion



Commande référencée capteur des robots non-holonomes

Résumé : Nous considérons le problème de suivi d’une cible mobile avec un robot mobile
non-holonome, via des techniques de commande référencée capteurs. Deux méthodes de syn-
thèse de lois de commande, basées sur l’approche par fonctions transverses, sont proposées.
Pour la première méthode, les données capteurs sont d’abord utilisées pour la reconstruction
d’une estimée de la pose du robot par rapport à la cible. Cette estimée est ensuite utilisée
pour le calcul de boucles de commande exprimées en coordonnées cartésiennes. Une ana-
lyse de stabilité et de robustesse par rapport aux erreurs d’estimation de la pose du robot
est proposée. La deuxième méthode consiste à synthétiser directement la loi de commande
dans l’espace des signaux capteur. Les deux méthodes sont testées en simulation, avec divers
choix des paramètres de commande, pour un véhicule de type unicycle equippé d’une caméra
embarquée. Enfin, des résultats expérimentaux sont présentés.

Mots-clés : système non-holonome, suivi de cible, commande référencée capteur, fonction
transverse
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4 Maya-Mendez & Morin & Samson

1 Introduction

Sensor-based control, which consists essentially in using exteroceptive measurements in feed-
back loops, is an important technique for robotic applications that require the positioning of
the controlled robotic device with respect to (w.r.t.) some external object/target. It has first
been developed for, and applied to, manipulator arms [13, 12, 5, 6] in order to perform tasks
such as pick and place, welding, or pointing, by using the information about the surrounding
environment provided by exteroceptive sensors. Many sensor-based applications have also
emerged from the more recent development of mobile robotics. For example, visual servoing
is used for path following, target tracking, or platooning tasks [11, 4]. The present study is
devoted to the sensor-based control of nonholonomic mobile robots with a focus on robotic
tasks which rely on the regulation of both the position and orientation of the robot, i.e.,
on the control of the complete posture of the mobile platform. An abundant literature has
been devoted to the control of nonholonomic systems in order to tackle various challenging
issues associated with the problem. Two of the authors of the present paper have worked on
these questions for years and the reader is referred to [10] where these issues are surveyed
in some detail. Among them, the problem of stabilizing state trajectories which are not
necessarily feasible for the system has received little attention, whereas we believe that it is
very relevant for a number of applications, an example of which is treated further. The fact
that non-feasible trajectories cannot, by definition, be asymptotically stabilized, combined
with other difficulties and impossibilities (see [10] and [7], for instance) related to Brockett’s
theorem [3] according to which asymptotic stabilization of a fixed point is not solvable by
using smooth pure-state feedback, and also the common experience that infinite precision in
the posture control of a mobile robot is seldom necessary in practice, suggests that, for non-
holonomic systems, the classical objective of asymptotic stabilization of a desired (reference)
state or trajectory is not best suited to qualify what can be achieved with feedback control.
By contrast, the slightly weaker objective, considered in [8], of asymptotic stabilization of
a set contained in an arbitrarily small neighborhood of the reference state allows to avoid
all theoretical obstructions associated with the former objective. Its satisfaction guarantees,
for instance, that the tracking error can be ultimately bounded by a pre-specified (non-zero)
value, whether the reference trajectory is, or is not, feasible (provided only that it is smooth
enough). The Transverse Function (TF) approach, the basics of which are described in [8],
provides a way of designing smooth feedback laws which satisfy this objective. Experimental
validations of this approach for the tracking of an omnidirectional target have been reported
in [1, 2]. The present paper goes in the same direction, with the complementary preoccu-
pation of studying the robustness of the control when the target is observed with sensors
whose characteristics are either imperfectly modeled or purposefully simplified. Two control
strategies are considered. The first one is based on a pose estimation (in the sense of e.g.
[6]), and one of the contribution of the paper is the derivation of sufficient conditions upon
the pose estimation method under which closed-loop stability is granted. In particular, we
prove that a crude pose estimation obtained by using an estimate of the sensor’s interaction
matrix can yield good tracking precision. The second strategy consists in designing feedback
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Sensor-based control of nonholonomic mobile robots 5

laws in the space of the sensor signals (i.e. without having to estimate the robot’s pose).
The analysis is illustrated and complemented by simulation and experimental results.

The paper is organized as follows. The studied control problem is presented in Section 2.
Kinematic models and basic results about the application of the TF approach to the design
of practical stabilizers are recalled in Section 3. Combining sensor-based pose estimation
and control is addressed in Section 4, along with stability conditions for the resulting sensor-
based controllers. Finally, the control design approach in the signal space is presented in
Section 5.

2 Problem statement

Consider the setup depicted on Fig. 1. The non-holonomic mobile robot (on the left-side)
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Figure 1: Mobile robot (l), reference situation (m), and target (r)

is equipped with a sensor (a camera, for instance) providing information about its relative
situation w.r.t. a moving object, called the target. For simplicity, all bodies are represented
by their projections on the robot’s plane of motion. A frame Fm � �

0m, � �ım, � �m � is attached
to the mobile platform, and gom denotes the situation of this frame w.r.t. some fixed frame
F0. This is an element of the Special Euclidean group SE

�
2 � , itself isomorphic to R

2 �
S

1.
Another frame Fs � �

0s, ��ıs , ��s � is attached to the sensor, and gos denotes the situation
of this frame w.r.t. F0. The relative situation gms of the sensor w.r.t. the platform is
parameterized by the pan angle ξ. The control of this angle can be performed on the basis
of the simple kinematic model �ξ � vξ, with vξ the associated velocity control variable. The
sensor delivers a vector-valued signal s � R

3 which only depends on the relative situation gts
of the sensor frame w.r.t. a frame Ft � �

0t, �� ıt , ��t � attached to the target i.e. s � ϕ
�
gts � .

This implies the standard hypothesis that the target is rigid. It is assumed that gts is
uniquely defined by s, at least within some operating domain. In fact, we will make the
stronger assumption that ϕ is a diffeomorphism from an open domain of SE

�
2 � to an open

domain of R
3. The control objective is to stabilize the platform at a reference situation

gor, depicted in the middle of the figure, with the relative situation gtr of the reference
frame w.r.t. the target frame being predefined and constant. This is clearly equivalent to
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6 Maya-Mendez & Morin & Samson

stabilizing at zero the relative situation g � grm between the frames Fm and Fr. Note that
maintaining this “tracking error” at zero permanently is obviously not possible in all cases,
due to the nonholonomic constraint on the robot which forbids any instantaneous lateral
motion. In fact, there are not many motions of the target for which this is possible. This
is one of the reasons why practical stabilization, allowing for small tracking errors, is here
preferred to the non-attainable classical objective of asymptotic stabilization which requires
convergence of the error to zero.

3 Modeling and Preliminary recalls

3.1 Group operation in SE � 2 � and parameterization

Since SE
�
2 � is a Lie group isomorphic to R

2 �
S

1, one can identify an element g of this
group with a three-dimensional “vector”

�
p � , θ ��� , with p � �

x, y ��� � R
2, θ � S

1, and the prime
superscript denoting the transpose operation. When using an element of this group, say
gom � �

p �om, θom ��� , to characterize the situation of a frame, Fm, with respect to another, Fo,
the vector pom is the vector of coordinates of 0m in the frame Fo and θom is the oriented
angle between ��ıo and � �ım.
SE

�
2 � is endowed with the group operation defined by

�
g1, g2 ���� � g1g2 : �

�
p1 � R �

θ1 � p2

θ1 � θ2 	 (1)

with R
�
θ � the rotation matrix of angle θ. The unit element e of this group (such that

ge � eg � g) is e � �
0, 0 � and the inverse g � 1 of g (such that gg � 1 � g � 1g � e) is

g � 1 �
��


R
� 

θ � p

θ 	 (2)

From now on, e will also be denoted as 0. It follows from these relations that the situation
gab of a frame Fb w.r.t. a frame Fa satisfies the relation gab � g � 1

oa gob. Note also that
gab � g � 1

ba and gabgba � 0.

A distance between g � �
p � , θ ��� and 0 is given1 by � g � �� � p � 2 � θ2 with � p � the Euclidean

norm of the vector p, and θ identified with its representative in
� 

π � 2;π � 2 � . Finally, we

denote by Bg

�
δ � the “ball” in SE

�
2 � of radius δ and centered at 0, i.e. Bg

�
δ � � �

g � SE �
2 � :� g ��� δ � .

3.2 Kinematic modeling

With gom � �
xom, yom, θom ��� denoting the situation of the robot’s frame Fm (see Fig. 1)

w.r.t. an inertial frame Fo, the kinematic equations of the mobile platform are given by

�gom � X
�
gom � C �

ζ � v (3)

1with a slight abuse of notation because SE � 2 � is not a vector space and thus cannot be endowed with a
norm
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with

X
�
gom � ���� cos θom



sin θom 0

sin θom cos θom 0

0 0 1

��
(4)

C
�
ζ � a matrix that may depend on the variable ζ of internal states (e.g., steering angles),

and v a vector of instantaneous velocities. When the platform is omnidirectional, C
�
ζ � is

simply the identity matrix and dim
�
v � � 3, v1 and v2 correspond to the components of the

velocity vector of 0m expressed in Fm, and v3 denotes the angular velocity of Fm. When
the mobile platform is of unicycle type, the velocity vector of 0m is bound to be parallel to

� �ım, so that

C
�
ζ � � C � �� 1 0

0 0

0 1

��
(5)

and dim
�
v � � 2 , v1 corresponds to the velocity vector of 0m expressed in Fm, and v2 denotes

the angular velocity of Fm. Eq. (3) then gives the well known equations�� � �xom � v1 cos θom

�yom � v1 sin θom
�θom � v2

(6)

When the mobile platform is a car,

C
�
ζ � ���� 10

δ

��
(7)

with δ � �
tanϕ ��� `, ϕ the steering angle, and ` the distance between the front wheels and

rear wheels axes. In this case dim
�
v � � 1 i.e. v � v1 is the velocity of 0m expressed in Fm.

Equation (3) then gives �� � �xom � v1 cos θom

�yom � v1 sin θom
�θom � v1δ � v1

�
tanϕ � � ` (8)

Let us remark that the kinematic model of a car involves the complementary equation �ϕ � v2

or, equivalently, (i.e. by a change of control variable), �δ � vδ � v2 � �
` cos2 ϕ � .

A characteristic property of System (3) is its left-invariance w.r.t. the group operation on
SE

�
2 � . This property means that the system equations are the same whatever the inertial

frame w.r.t. which they are expressed, i.e. �gap � X
�
gap � C �

ζ � v for any inertial frame Fa.
More generally, given any two smooth curves g1

�
. � , g2

�
. � with �gi � X

�
gi � ci, we have the

following relations (easily derived from (1)):

d
dt

�
g � 1

1
g2 � � d

dt

�
g12 � � X

�
g12 � �

c2



AdX
�
g21 � c1 �

d
dt

�
g1g � 1

2
� � X

�
g1g � 1

2
� AdX

�
g2 � �

c1


c2 �

(9)

RR n° 5944



8 Maya-Mendez & Morin & Samson

with

AdX
�
g � ���� R �

θ �
�
y

x 	

0 1

��
(10)

the matrix associated with the adjoint operator at g � �
x, y, θ � � .

It follows from (3) and (9) that the relative situation g : � g � 1

or gom
� � grm � of the mobile

platform’s frame Fm w.r.t. the reference frame Fr satisfies the following equation:

�g � X
�
g ��� C �

ζ � v 
 AdX
�
g � 1 � cr

�
t ��� (11)

with cr
�
t � the reference frame’s velocity vector (at time t) defined by

�gr
�
t � � X

�
gr � cr

�
t �

Important: From now on, to simplify the notation, g will always stand for grm.

The relative situation g can be viewed as a “tracking error” that the control v is in charge
of stabilizing at zero. Relation (11) points out that it is not possible to keep this error equal
to zero when the reference trajectory is not feasible for the nonholonomic platform, like for
example when the second component of cr

�
t � is different from zero. We recall in the next

section the design of practical stabilizers based on the TF approach.

3.3 Practical stabilization based on the transverse function ap-

proach

The transverse function (t.f.) approach [8] provides a general framework for the practical
stabilization of nonholonomic systems. We recall hereafter some elements of this approach
for systems modeled2 by (3), and refer the reader to [8] for more details and complementary
results.

Definition 1 A smooth function f � �
f �g , f �ζ ��� defined on the p-dimensional torus T

p (with
T � R � 2πZ) is called a transverse function for System (3) if, for any α � T

p, the matrix�
X

�
fg

�
α � � C �

fζ
�
α � � � fg� α

�
α � 	 (12)

is of rang three
� � dim

�
SE

�
2 � � � .

Remark 1 Since X
�
g � is an invertible matrix for any g, there exists a matrix A

�
α � such

that � fg� α
�
α � � X

�
fg

�
α � � A �

α � . With this notation, the matrix (12) is of rank three if and
only if the matrix

C̄
�
α � � �

C
�
fζ

�
α � � 


A
�
α � � (13)

is also of rank three.

2We implicitly assume here that the variable ζ, when it exists, can be viewed as a control variable; note
that this is essentially the case for a car-like vehicle since �δ is directly controlled by the steering velocity.

INRIA



Sensor-based control of nonholonomic mobile robots 9

Example (unicycle): Consider the function f � fg � �
fx, fy, fθ ��� defined on T by

f
�
α � � �� ε sinα

ε2

4
η sin 2α

arctan
�
εη cosα �

��
(14)

From (6) and Definition 1, f is a transverse function for the unicycle kinematic model if the
matrix ���� cos fθ

�
α � 0 � fx� α

�
α �

sin fθ
�
α � 0 � fy� α

�
α �

0 1 � fθ� α
�
α �

�
��
�

is invertible for any α. One easily verifies that this condition is satisfied with the function
f defined by (14) for any ε, η � 0.

Example (car): [10] Consider now the function f � �
f �g, fζ ��� � �

fx, fy, fθ, fδ ��� defined on
T

2 by

f
�
α � �

�
f̄1

�
α � , f̄4

�
α � , arctan

�
f̄3

�
α � � , f̄2

�
α � cos3

�
fθ

�
α � ��� � (15)

with

f̄
�
α � � �����

ε
�
sinα1 � η2 sinα2 �

εη1 cosα1

ε2
�
η1

sin 2α1

4



η3 cosα2 �

ε3 � η1 sin
2 α1 cosα1

6



η2η3

sin 2α2

4



η3 sinα1 cosα2 �

�
���
�

From (8) and Definition 1, f is a transverse function for the car kinematic model if the
matrix ���� cos fθ

�
α � � fx� α1

�
α � � fx� α2

�
α �

sin fθ
�
α � � fy� α1

�
α � � fy� α2

�
α �

fδ
�
α � � fθ� α1

�
α � � fθ� α2

�
α �

�
��
�

is invertible for any α � �
α1, α2 � . One can verify that this condition is satisfied with the

function f defined by (15) for any ε � 0, and any η1, η2, η3 � 0 such that 6η2η3 � 8η3 � η1η2.
The following result shows that the knowledge of a transverse function allows to design
feedback laws that guarantee a) the convergence of the tracking error g to a neighborhood
of the origin, and b) the convergence of g to a fixed value when cr � 0 (i.e. when the
reference trajectory is fixed).

Proposition 1 Let f � �
f �g, f �ζ ��� denote a transverse function for System (3), and let ζ �

fζ
�
α � and z � gfg

�
α � � 1. Then,

i) Along the solutions of the tracking error model (11), and for any smooth curve α
�
. � ,

�z � X
�
z � AdX

�
fg

�
α � � � C̄ �

α � v̄ 
 AdX
�
g � 1 � cr

�
t � � (16)

RR n° 5944



10 Maya-Mendez & Morin & Samson

with v̄ � �
v � , �α � ��� and C̄

�
α � defined by (13).

ii) The matrix C̄
�
α � being of rank three for any α, the change of variable

v̄ � C̄
�
α ��� � AdX

�
fg

�
α � � 1 � vz � AdX

�
g � 1 � cr

�
t � � (17)

with C̄
�
α � � a right-inverse of C̄

�
α � , transforms System (16) into �z � X

�
z � vz.

iii) For any Hurwitz-stable matrix K, and for vz defined by

vz � X
�
z � � 1Kz (18)

a) � g � is ultimately bounded by εf : � maxα � fg �
α � � for any reference trajectory gr

�
. � ,

b) if cr � 0, g and gom exponentially tend to fixed points in SE
�
2 � .

Property i) is a consequence of (9), (11), and (13). Property ii) directly follows from i).
Property iii.a) is easily deduced from the (exponential) convergence of z to zero. Property
iii.b) also follows from this convergence property. Indeed, when cr � 0, v̄ tends to zero
exponentially, so that g, and gom are bound to converge to fixed values.

Note that, with this approach, the derivative �α of the vector of variables (reduced to a
scalar variable in the case of the example (14)) on which the transverse function depends
plays the role of a complementary control vector.

4 Combined pose estimation and control

In order to implement the control (17)-(18) in Prop. 1, g has to be known at each time. In
practice however, this information is often only available via the measurement provided by
exteroceptive sensors embarked on the robot. Moreover, it is not completely accurate due
to well known reasons such as imperfect modeling and calibration of the sensors. We now
examine how the replacement, in the control expression, of g by a pose estimate ĝ calculated
from the sensory signal s modifies the above result.

4.1 Some techniques for pose estimation

Let us first recall that s � ϕ
�
gts � and that we have assumed that ϕ is a (local) diffeomor-

phism, so that ϕ � 1 is also well defined locally. By the group law, one has g � grtgtsgsm, so
that one can also write

g � grtϕ � 1
�
s � gsm (19)

The calculation of an estimate ĝ of g from sensory measurements corresponds to the classical
“pose estimation problem”, which has been widely studied in the robotics literature. Let us
(without any claim of originality) briefly recall a few possible approaches. For example, it
follows from (19) that

s � ϕs
�
g, ξ � : � ϕ

�
gtrggms � (20)

INRIA



Sensor-based control of nonholonomic mobile robots 11

since gtr is constant and gms � gms
�
ξ � . With s chosen so that ϕs

�
0, 0 � � 0, a simple linear

estimate can be obtained from the local approximation s � � ϕs� g
�
0, 0 � g � � ϕs� ξ

�
0, 0 � ξ, i.e.

ĝ �
���
� ϕs� g

�
0, 0 ��� � 1

�
s

 �

� ϕs� ξ
�
0, 0 � ξ � (21)

with

� � ϕs� g
�
0, 0 � and

� � ϕs� ξ
�
0, 0 � some approximations of � ϕs� g

�
0, 0 � and � ϕs� ξ

�
0, 0 � . When the

situation gms of the sensor w.r.t. the platform is known, and a model of ϕ is available, Eq.
(19) can be used to derive nonlinear estimates. However, it is often difficult in practice to
have a very accurate model of ϕ. Furthermore, what is in fact needed for the calculation
of g is ϕ � 1, the inverse of ϕ. Having an analytical expression of ϕ does not imply that
an analytical expression of ϕ � 1 is available. When it is not, one can compute an estimate
of ϕ � 1

�
s � via a gradient search algorithm based on the use of the Jacobian matrix � ϕ� gts

.
Another possibility consists in determining a function ϕ̂ which approximates ϕ in some
domain containing the desired situation g �ts � ϕ � 1

�
0 � , and the inverse of which has an

analytical expression. This yields the estimate

ĝ � grtϕ̂ � 1
�
s � gsm (22)

Finally, even when an analytical expression of ϕ � 1 is known, one may use a simplified
expression for this function, in order to reduce the calculation load. This yields an estimate
of g of the form

ĝ � grt

�
ϕ � 1

�
s � gsm (23)

4.2 Sufficient conditions for ultimate boundedness and convergence

Now, let ẑ : � ĝfg
�
α � � 1. Using ẑ instead of z in the feedback law (17)-(18) yields the

following control:

v̄ � C̄
�
α � � � AdX

�
fg

�
α � � 1 � X �

ẑ � � 1Kẑ � AdX
�
ĝ � 1 � cr

�
t � � (24)

which can be simplified to

v̄ � C̄
�
α � � AdX

�
fg

�
α � � 1 � X �

ẑ � � 1Kẑ (25)

when cr is equal to zero, or is unknown. The question is now to determine the properties
of this control in terms of stability and convergence. To this purpose, we assume that ĝ
depends only on g, i.e. ĝ � ψ

�
g � . This is a natural assumption when the sensor is rigidly

attached to the platform (i.e. ξ � 0), since s only depends on g in this case. The extension to
the case where ξ is actively controlled will be discussed and illustrated through application
examples in the subsequent sections. Besides the requirement of ĝ being a function of g, the
following assumption is also made.
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Assumption 1 There exist some constants δ1 � 0 and γ1 � 1 such that the estimation
error g̃ � gĝ � 1 satisfies the inequality� g̃ ��� γ1 � g � , �

g � Bg

�
δ1 � (26)

Condition (26) means that the relative norm of the estimation error is less than one in
some bounded domain containing g � 0. This is clearly a weak requirement. Indeed, since
ĝ � ψ

�
g � then, provided that ψ

�
0 � � 0 (unbiased estimation at the desired location), one

shows from the group law definition (1) that

g̃ � �
I3

 � ψ� g

�
0 � 	 g (27)

in the neighborhood of g � 0. Therefore, if � I3 
 � ψ� g
�
0 � � � 1, Assumption 1 is satisfied in

some neighborhood of g � 0. For example, when ĝ is defined according to (21) (with ξ � 0),
this relation becomes ����� I3


 � �� ϕs� g
�
0 � 	 � 1 � ϕs� g

�
0 �

����� � 1

This latter relation is reminiscent of a classical requirement upon the interaction matrix
made in the context of sensor-based control of manipulator arms.

The following result, the proof of which is given in the appendix, establishes the ultimate
boundedness of the tracking error g (compare with Property iii.a) in Proposition 1).

Proposition 2 Consider the feedback law (25) with K �


kI3

�
k � 0 � and f a transverse

function. If � g �
0 � � � δ1



2εf and ε̄f : � εf � � cr � max � k

1


γ1

� δ1 (28)

with δ1 and γ1 some constants specified by (26) and � cr � max : � maxt � cr �
t � � , then � g � is

ultimately bounded by ε̄f .

Let us make some comments on this result. First, the choice of the gain matrix K in the
proposition is essentially made in order to simplify the proof and specify an ultimate bound
for � g � . The ultimate boundedness is also guaranteed for other Hurwitz stable matrices, like
e.g. any matrix of the form

K �
� 


Kp 0

0


kθ 	

with Kp a 2 � 2 definite positive matrix and kθ � 0. Then, Condition (28) indicates how
the “size” of the transverse function f influences the ultimate bound of g and the set of
initial conditions g

�
0 � for which the boundedness can be proven. Finally, let us insist on

the contribution of the present result: it points out that for any estimation ĝ of g satisfying
(26), the tracking error with respect to any reference trajectory is ultimately bounded by a
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value that can be made arbitrarily small by a proper choice of the control parameters ε and
k.

When the reference velocity is known, the feedback law (24) can be used to improve the
tracking precision, as shown by the following proposition.

Proposition 3 Assume that the reference’s velocity cr
�
t � is known and consider the dy-

namic feedback law (24) with K �


kI3

�
k � 0 � and f a transverse function. If� g �

0 � � � δ1



2εf and ε̄f : � εf

1


γ1

�
1 � � cr � max � k � � δ1

with δ1 and γ1 some constants specified by (26) and � cr � max : � maxt � cr �
t � � , then � g � is

ultimately bounded by ε̄f .

The proof of this result, similar to the proof of Proposition 2, is left to the reader.
We now address the issue of convergence to a fixed situation when the target is motionless

(compare with Property iii.b) in Proposition 1). In contrast with the above propositions,
the cases of unicycle-like and car-like platforms must be treated separately.

Proposition 4 For the unicycle model (6), consider the feedback law (25) with K �


kI3

�
k �

0 � , and f a transverse function defined by (14). Assume that cr � 0 (i.e., the target is fixed),
and that Condition (28) is satisfied. Let γ2 denote the smallest constant such that

� � ψ� g �
g � 
 � ψ� g

�
0 � � � γ2 � g � , �

g � Bg

�
εf � �

1


γ1 � � (29)

There exist two positive numbers c1 and c2, which only depend on the parameter η of the
transverse function f , such that if

γ̄ : �
�
γ1 � �

γ1 � γ2 � εf

1


γ1 	 �

c1

εf
� c2ε3f 	 � 1 (30)

then ẑ exponentially converges to zero and g exponentially converges to a fixed value.

With respect to Proposition 2, the above result involves the additional condition (30).
Let us discuss how the “size” εf of the transverse function (which is essentially given by
the parameter ε), and the values of γ1, γ2 (which reflect the quality of the pose estimation)
influence the satisfaction of this condition. For εf ��� 0, ε̄� , condition (30) is satisfied if�

γ1 � �
γ1 � γ2 � εf

1


γ1 	 c̄1

εf
� 1 (31)

with c̄1 � c1 � c2ε̄4. It is clear that this condition cannot be satisfied, when εf tends to zero,
unless γ1 � 0. This suggests that very small values of εf , yielding very precise tracking, may
not allow the robot to converge to a resting situation when the target is motionless. This
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14 Maya-Mendez & Morin & Samson

is consistent with the difficulty of achieving both exponential stability of a fixed situation
and robustness of this property w.r.t. modeling errors in the case of nonholonomic vehicles
(see [10] for more details). Nevertheless, the condition (30) shows also that, for any value
of εf , exponential convergence occurs if γ1 and γ2 are small enough. It follows from (27)
that γ1 is small in the neighborhood of g � 0 if the Jacobian of ψ at this point is close to
the identity. For example, when ĝ is given by (21), this condition is satisfied if the Jacobian
of the function ϕs is accurately estimated. In this case, if one assumes, to simplify, that
γ1 � 0, then condition (31) simplifies to γ2c̄1 � 1. The constant c̄1 can be calculated from
the parameters of the transverse function. As for γ2, it is directly related to second order
terms of the function ψ and, thus, to second order terms of the signal function ϕs. For
this reason, unless an analytic model of ϕs is known, it is usually difficult to evaluate γ2.
Let us note, however, that γ2 � 0 when ψ is a linear mapping. Finally, let us remark that
(30) is only a sufficient condition for convergence. Simulation and experimental results, like
those presented in the next sections, tend to indicate that it is quite conservative. In fact,
extensive simulations with various choices of the signal function did not allow us to observe
situations for which the tracking error remained bounded but did not converge to a fixed
value. Whether this property is, or is not, always satisfied thus remains an open question.

For car-like platforms, one obtains the following result similar to Proposition 4, with (30)
replaced by a more restrictive condition.

Proposition 5 For the car model (8), consider the feedback law (25) with K �


kI3

�
k �

0 � , and f a transverse function defined by (15). Assume that cr � 0, and that Condition
(28) is satisfied. Let γ2 denote the smallest constant such that

� � ψ� g �
g � 
 � ψ� g

�
0 � � � γ2 � g � , �

g � Bg

�
εf � �

1


γ1 � � (32)

There exist two positive numbers c1 and c2, which only depend on the parameters ηi of the
transverse function f , such that if

γ̄ : �
�
γ1 � �

γ1 � γ2 � εf

1


γ1 	

�
c1

ε2f
� c2ε4f � � 1 (33)

then ẑ exponentially converges to zero and g exponentially converges to a fixed value.

The proof of this proposition, which is much alike the proof of Proposition 4 is also given in
the appendix. The main difference comes from the term 1 � ε2f in (33), due to the fact that

the third component of the transverse function (15) is homogeneous to ε2, whereas the third
component of the transverse function (14) associated with the unicycle is homogeneous to ε.
Apart from this, the conclusions which can be drawn out from Proposition 5 are qualitatively
the same as for Proposition 4.
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4.3 Simulation results for a vision-based sensor

The simulation results presented below have been obtained with the system depicted on
Fig. 2, composed of a unicycle-like robot equipped with a pan video camera. The target is
materialized by three non-collinear points, labeled as L, M , and R, which are the vertices
of an isosceles triangle of base 2a and height b, with a � b � 0.25. The sensor signal is
s � �

l



l � ,m 

m � , r 
 r � ��� , with l,m, r denoting the y-coordinates (in the camera frame)

of the projection of the points L,M,R on the image plane, and x � the value of the variable
x at the reference position. For all simulations, gtr � � 


2.5, 0, 0 ��� (this corresponds to the
platform being aligned with the target at the reference situation, as shown on the figure),
and gms � �

0.51, 0, ξ � � .

0t

L

R

M
it

jt

b

ξ

js

is

Reference situation

Image plane

l

m

r

a

0s

0r

0m

Figure 2: Unicycle-like robot with a vision-based sensor

4.3.1 Linear pose estimation

We first illustrate the use of the simple linear pose estimate defined by (21). This model
requires to estimate the Jacobian matrices � ϕs� g

�
0, 0 � and � ϕs� ξ

�
0, 0 � . This can be done by

generating small displacements ∆g
�
p � ,∆ξ �

p � �
p � 1, . . . , P � in the neighborhood of g � 0

and ξ � 0, measuring the associated signal variations ∆s
�
p � , and setting for instance (among

other possibilities)� �
� ϕs� g

�
0, 0 �

�
� ϕs� ξ

�
0, 0 � � � �

∆s
�
1 ������� ∆s �

P � �
�

∆g
�
1 ������� ∆g �

P �
∆ξ

�
1 ������� ∆ξ �

P � 	 �

Fixed camera pan angle We first consider the case when ξ � 0. Then both s and
ĝ depend on g solely, so that the analysis of Section 4.2 applies directly. The simulation
results reported on Fig. 3 have been obtained with a fixed target. The norms of g and ẑ
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Figure 3: Linear estimation of g, no pan-control of the camera, fixed target

are displayed on the top sub-figure, and the bottom sub-figure corresponds to the motion
of the origin 0m of the robot’s frame in the plane. The actual motion is drawn in plain
lines whereas the motion deduced from the pose estimate (21) is drawn in dashed lines. The
control law (25) has been applied with K �



0.5I3, and the transverse function defined by

(14) for ε � 0.3 and η � 1. The robot starts from the initial condition g
�
0 � � � 


1.05, 1.24, 0 � �
(upper-left corner of the right sub-figure) and the final position is approximately given by
g

�
30 � � �

0.07,



0.03, 0.24 � � . Despite the poor quality of the estimation of g when the robot
is far from the desired location, the controlled variable ẑ converges to zero and the platform
converges to a fixed situation near the desired one.

Active control of the camera pan angle In practice, it is often necessary to control
the pan angle ξ so that the target remains inside the field of view of the camera. A simple
control strategy consists in choosing vξ ( � �ξ) in order to stabilize s2 to zero (see Fig. 2). To
this purpose, a simple proportional feedback, with precompensation of the mobile platform’s
rotation, in the form

vξ � kss2


v2

�
ks � 0 � (34)

will usually suffice. Using a relatively large value of the gain ks helps to reduce the drag
resulting from the uncompensated motion of the target. One could also derive more sophis-
ticated control laws in order to better stabilize s2 to zero in all situations, but this is not
necessary since the objective, at this level, is only to maintain the target in the field of view
of the camera.

Fig. 4 illustrates this strategy. The control law (25) has been applied with the same
gain matrix K and transverse function as in the previous simulation, and with the control
vξ defined by (34) for ks � 3 and s expressed in metric coordinates. While the estimation
of the platform’s situation is significantly different from the one obtained for the previous
simulation, the actual platform’s motion is not much different qualitatively.
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‖ẑ‖

‖ · ‖

t

−1.1 −0.9 −0.7 −0.5 −0.3 −0.1 0.1 0.3 0.5

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

xy

̂xy

x

y

Figure 4: Linear estimation of g, pan-control of the camera, fixed target

The same control strategy is illustrated on Fig. 5 in the case of a moving target. The
reference velocity cr is defined as follows:

cr
�
t � �

�
�������
������

�
�
0, 0, 0 ��� �

t ��� 0, 15 ��
0.2, 0, 0 ��� �

t ��� 15, 30 ��
0, 0.2, 0 ��� �

t ��� 30, 45 �� 

0.2, 0, 0 ��� �

t ��� 45, 60 ��
0, 0, 0.2 ��� �

t ��� 60, 75 ��
0, 0, 0 ��� �

t ��� 75, 90 �
(35)

The motions of the robot (plain lines) and reference frame (dashed lines) are shown
on the right sub-figure. One can observe that the robot executes many manœuvres when
t � � 30, 45 � . This is related to the fact that the reference trajectory is not feasible on this
time-interval since cr,2

�
0. As in the case of the two previous simulations, many manœuvres

are also executed in the initial phase, when the target is fixed and the robot is still far from
the target (i.e., t � � 0, 15 � ). The number of these manœuvres can be significantly reduced,
for example by planifying a reference trajectory from the initial robot’s pose to the desired
pose, or by using a nonlinear gain scheduling such as the one proposed in [2]. Due to the non-
measurement of the target’s velocity (on which cr

�
t � depends), the tracking error increases

when cr
�
t � �

0 (as shown on the left sub-figure). The use of feedforward control, when cr
is known or can be accurately measured/estimated, improves this point significantly. One
can also observe small oscillations of the robot’s motion when the target moves along a
straight line in the direction of



~ıt (i.e., on the time-interval � 45, 60 � ). This phenomenon

is a consequence of the non-perfect estimation of the robot’s pose, since it does not occur
when ĝ � g. It tends to occur for backward motions of the target (i.e., in the direction of

~ıt), as a consequence of the reduced distance between the robot and the target, and the

fact that the estimation error increases rapidly when the distance between the camera and
the target becomes small. However, we will see that such oscillations can also occur when
the target moves forward in the direction of ~ıt.
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‖ẑ‖

t

‖ · ‖

−1 0 1 2 3 4

−1

0

1

2

3

4

xy

̂xy

x

y

Figure 5: Linear estimation of g, pan-control of the camera, ĉr � 0
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Figure 6: Car: Linear estimation of g, pan-control of the camera, ĉr � 0

Car Figure 6 illustrates the same control strategy for a car-like vehicle. The linear esti-
mation ĝ of g used for the previous simulation is also utilized, and cr is again defined by
(35). The camera pan-control is also given by (34) with ks � 3. The transverse function is
defined by (15) with ε � 0.17, η1 � 15, η2 � 1.7, η3 � 30. The control law v̄, from which
the velocity v1 of Model (8) can be deduced, is given by (25) with K � I3. The variable δ
is set equal to fδ

�
α � , with the asymptotic stabilization of δ



fδ

�
α � � 0 being granted by

setting vδ � �fδ �
α � 
 k �

δ


fδ

�
α � � with k � 0. The motions of the robot (plain lines) and

reference frame (dashed lines) are shown on the right sub-figure. One can essentially draw
the same conclusions as for the previous simulations. The fact that the number of maneuvers
is smaller than for the previous simulation is only due to the choice of the transverse func-
tions parameters (which are relatively large in the present case). However, one can observe
that the oscillation phenomenon, when the target moves backward, is much stronger. The
reasons of this amplification have not yet been elucidated.
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4.3.2 Nonlinear pose estimation

When an analytical model of the sensor’s output function ϕ (or of its inverse ϕ � 1) is known,
the number of possibilities for the robot’s pose estimation increases significantly. We illus-
trate below, in the case of our vision-based sensor, some possibilities associated with the
expressions (22) and (23) of the estimate ĝ.

Estimation of g from an approximation of ϕ and inversion of ϕ̂ (Eq. (22)): Let
us assume that l,m, r are expressed in metric coordinates. From the target’s geometry (cf.
Fig. 2), we deduce that

l � f
yst � a cos θst

xst


a sin θst

, m � f
yst



b sin θst

xst


b cos θst

, r � f
yst



a cos θst

xst � a sin θst
(36)

with f the focal distance. Note that these relations define the function ϕ (once xst, yst, θst
have been replaced by their expressions in terms of xts, yts, and θts). The fact that θst � 0

at the desired reference situation suggests approximating sin θst by θst, and cos θst by one,
in the above equalities. This yields the following expression of ϕ̂:

ŝ � ϕ̂
�
gts � �

�
f

yst � a
xst



aθst

, f
yst



bθst

xst


b
, f

yst


a

xst � aθst 	 � (37)

Once again, xst, yst, and θst, in the above equation should be replaced by their expressions
in terms of xts, yts, and θts, in order to obtain the analytical expression of ϕ̂. Eq. (37) yields
the following estimation of gst, given s:

ĝst � �� x̂stŷst
θ̂st

��
� P � 1q with P : � �� l



f



al

r


f ar

m


f bf

��
and q : � �� af
 af

mb

��
(38)

and the approximation ϕ̂ � 1
�
s � of ϕ � 1

�
s � :

ϕ̂ � 1
�
s � : � ĝts : � ĝ � 1

st

with ĝ � 1

st the inverse of ĝst w.r.t. the Lie group operation on SE
�
2 � (cf Eq. (2)). The

estimate ĝ is then calculated according to (22). Figures 7 and 8 illustrate this strategy for
a fixed target and a moving target respectively. Except for the choice of the estimate ĝ,
all the control parameters are the same as those used for the simulations of Fig. 4 and
5. As expected, one can observe from Fig. 4 and 7 that, in comparison with the linear
approximation considered before, the nonlinear solution provides a much better estimate,
especially when � g � is large. While this has little influence on the robot’s motion when the
target is fixed, the quality of the estimation contributes to improving the tracking precision
when the target moves (compare the left parts of Fig. 8 and 5), and to the suppression of
the oscillation phenomenon when the target moves backward (compare the right parts of
Fig. 8 and 5).
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Figure 7: Nonlinear estimation of g: estimation of ϕ and inversion of ϕ̂, pan-control
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Figure 8: Nonlinear estimation of g: estimation of ϕ and inversion of ϕ̂, pan-control, ĉr � 0
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Figure 9: Nonlinear estimation of g: approximation of ϕ � 1, pan control

Estimation of g from an approximation of ϕ � 1 (Eq. (23)): We now propose to
directly approximate the pose gts � ϕ � 1

�
s � from the sensor data s. A geometrical method

to determine the function ϕ � 1 is presented in the appendix. It yields the following equalities:�
��
�

� xts �


a

�
f � lr � f �

l � r



rrl cosσ

yts �


rrl sinσ

θts � arctan � yts

xts � b � 
 arctan � m

f
� (39)

with

rrl �
a

� �
f � lr

f
� 2 � �

l



r � 2
l



r
(40)

and σ an angle the value of which is given in Appendix B (see Eq. (85)-(86)). A possible
approximation of σ, also derived in the appendix, is given by

σ̂ � 2 arctan � a
b
� 2m


 �
l � r �

l



r
(41)

The approximation ĝts � ϕ̂ � 1
�
s � that we have considered precisely consists in replacing in

(39) σ by σ̂ and arctan
�
m � f � by m � f . The estimate ĝ is then calculated according to (23).

Like for the previous (nonlinear) pose reconstruction method, this entails the knowledge of
the sensor pose in the mobile platform and the reference position in the target frame.

Figures 9 and 10 illustrate this strategy for a fixed target and a moving target respectively.
The control parameters have been defined as for the previous simulations. One can see on
Fig. 9 that ĝ provides a very good estimation of g, even for relatively large tracking errors.
The resulting robot motion is very similar to the one obtained with the previous nonlinear
estimation of g (compare with Fig. 7 and 8).
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Figure 10: Nonlinear estimation of g: approximation of ϕ � 1, pan control, ĉr � 0

4.3.3 Generalized transverse functions

We now illustrate the possibility of using other transverse functions for the control design, in
order to add flexibility in the regulation of the tracking errors. Following [9], a “generalized
transverse function” is a function f

�
α, β � � �

f �g , f �ζ ��� �
α, β � such that, for any

�
α, β � , the

matrix �
X

�
fg

�
α, β � � C �

fζ
�
α, β � � � fg� α

�
α, β � 	

is of rank three. The interest of making the transverse function depend on an extra variable
β is that this variable provides extra degrees of freedom which can be used to achieve
complementary objectives. Proposition 1 is easily extended to this more general framework.
With z � gfg

�
α, β � � 1, we obtain, instead of (16),

�z � X
�
z � AdX

�
fg

�
α, β � ��� C̄ �

α, β � v̄ 
 B �
α, β � �β 


AdX
�
g � 1 � cr

�
t � � (42)

with v̄ � �
v � , �α � ��� , C̄ �

α, β � � �
C

�
fζ

�
α, β � ��� 
 A �

α, β � � , and A
�
α, β � , B �

α, β � the matrices
such that

�fg � X
�
fg

�
α, β � � �

A
�
α, β � �α � B �

α, β � �β � (43)

This suggests to define v̄ as (compare with (17)–(18))

v̄ � C̄
�
α, β � � � AdX

�
fg

�
α, β � � 1 � X �

z � � 1Kz � B �
α, β � �β � AdX

�
g � 1 � cr

�
t ��� (44)

in order to obtain the closed-loop equation �z � Kz and, subsequently, the exponential
convergence of z to zero when choosing K Hurwitz-stable. In the present context, z, g, and
cr, are of course replaced in the above control expression by their respective estimates ẑ, ĝ,
and ĉr. There remains to specify generalized transverse functions and determine a control
expression for �β. Consider the function (compare with (14))
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fg
�
α, β � � �� ε

�
sin

�
α � β � 
 ρ sinβ �

ε2η
2

� �
sin

�
α � β � 
 ρ sinβ � �

cos
�
α � β � 
 ρ cosβ � 
 ρ sinα �

arctan
�
εη

�
cos

�
α � β � 
 ρ cosβ � �

��
(45)

It is simple to verify (see also [2]) that fg is a generalized transverse function for the kine-
matic model (6) of the unicycle, for any ε, η � 0. The extra constant parameter ρ can be
chosen arbitrarily. The rationale for the parameter ρ and the variable β are the follow-
ing. When ρ � � 0, 1 � , one has max � α,β � � fg �

α, β � � � 2 � �
ε, ε2η, εη � � and maxβ � fg �

0, β � � ��
1


ρ � � �

ε, ε2η � 4, εη � � . The first inequality points out that, independently of ρ, the upper-
bound of � fg �

α � � can be adjusted via the choice of the parameters ε and η. The second
inequality indicates that, when choosing ρ close or equal to one then, by making α tend
to zero, one can keep the size of fg small whatever the values of β and the choice made

for ε and η. This suggests to use �β as a control variable to make α tend to zero when the
reference frame is motionless or when its motion is feasible for the mobile platform, in order
to reduce the tracking error in these cases. On the other hand, when the motion of the
reference frame is not feasible, α should be allowed to grow in order to reduce the tracking
precision and, subsequently, the number of manœuvres. The following expression has been
proposed in [2]:

�β � 1

1 � ρ2



2ρ cosα

�
kt tan

� α
2

� � 2

εη

�
tan

�
f3 � �

cr,3f2


cr,1 � � cr,3f1 � 	 (46)

with kt � 0, ρ � � 0, 1 � , and cr,i denoting the i-th component of cr.
The simulation results reported on Fig. 11 for the tracking of a moving target illustrates

this control strategy. The reference velocity cr is chosen as in (35). The control law is
given by (44) with K �



0.5I3. It is assumed that the reference velocity cr is known

(either via estimation or measurement), and z, g are replaced by their estimated values ẑ, ĝ,
with ĝ the linear estimation of g given by Eq. (21) (as for the simulations of Fig. 4 and
5). The control of the camera pan angle is defined by (34) with ks � 1. The generalized

transverse function (45) is used with ε � 0.3, η � 1, and ρ � 0.8. The auxiliary control �β
is defined by (46) with kt � 1. To illustrate the improvement in tracking precision which
can result from using a “generalized” transverse function, we have included in Fig. 11 (top)
the simulation corresponding to the “simple” transverse function (14) (with ε � 0.3 and
η � 1). As anticipated, one can observe on Fig. 11 that the tracking error obtained with the
generalized transverse function is very small during the phases when the reference trajectory
is feasible (i.e. t � � 0, 30 ��� � 45, 90 � ), and that it grows otherwise (i.e. t � � 30, 45 � ), so that
the manœuvres are performed at a low frequency. One can also remark that the knowledge
of the target’s velocity cr improves the tracking precision significantly, and suppresses the
oscillation phenomenon for backward motions of the target (compare Fig. 5 and the top of
Fig. 11).
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Figure 11: Linear estimation of g, pan control of the camera, simple (top) vs generalized
(bottom) transverse function
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4.4 Experimental results

Some experiments have been carried out with ANIS: a unicycle type mobile platform carrying
a 6-DOF manipulator arm with a video camera mounted at its extremity. More details on
the robot’s architecture can be found on [14]. The robotic setup is the same as the one
described by Fig. 2 and the geometric parameters which specify the tracking task are
also those considered in the simulations, i.e. gtr � �

2.5, 0, 0 ��� , gms � �
0.51, 0, ξ ��� , and

a � b � 0.25. Since we do not have sensors measuring the target’s situation w.r.t. an
inertial frame, only experiments with a fixed target are reported here.

The linear estimation ĝ given by (21) is used in the control law, with the Jacobian
matrices

� � ϕs� g
�
0, 0 � , � ϕs� ξ

�
0, 0 � � being estimated via the procedure described in Section 4.3.1,

and the displacements ∆g
�
p � measured by odometry. The components of the signal vector

s are given in pixels. A low-pass filter has been applied to the visual data in order to reduce
the measurement noise.

Experiment with a simple transverse function The control law for the unicycle is
given by (25) with K �



0.5I3, and f defined by (14) with η � 1 and ε � 0.3. The control

for the camera pan angle is given by (34) with 1 � ks �

�� � ϕs,2� ξ

�
0, 0 � . The motion of the robot

in the Cartesian plane is shown on Fig. 12 (right). The “pseudo-true” data corresponds to
a calculation of g based on the geometric reconstruction of gts given in the appendix (see
Eq. (39)). This data, purposefully not used in the control law in order to test its robustness
w.r.t. large pose estimation errors, provides a more accurate estimation of the actual robot’s
pose.
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Figure 12: Experimental results with a “simple” transverse function

Experiment with a generalized transverse function The control law for the unicycle
is given by (44) with K �



0.5I3, and the generalized transverse function fg is given by
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(45) with ε � 0.3, η � 1, ρ � 0.8, and �β given by (46) with kt � 1. The control for the
camera pan angle is the same as for the previous experiment.
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Figure 13: Experimental results with a generalized transverse function

5 Control in the space of sensor signals

We now investigate the possibility of designing stabilizing feedback laws directly in the space
of sensor signals, i.e., without the intermediary calculation of an estimate of the platform’s
situation g. To this purpose, a first step consists in showing that the control design recalled
in Section 3.3 can also be carried out in the signal space. This adaptation relies on the fact
that the differential geometry properties associated with Lie groups are intrinsic, and thus
independent of any choice of coordinates.

5.1 Design of practical stabilizers

Throughout this section, we assume that the signal s only depends on the relative situation
g of the mobile platform w.r.t. the target, as in the case of a sensor rigidly attached to
the platform, so that Eq. (20) can be written as s � ϕs

�
g � . The case of a relative motion

between the sensor and the mobile platform will be considered further on, via an application
example. Let us recall that, by assumption, ϕ and thus ϕs are diffeomorphisms.

Lemma 1 In the coordinates s � ϕs
�
g � ,

1. The system (3) is given by3

�s � Y
�
s � C �

ζ � v (47)

with

Y
�
s � : � � ϕs� g

�
ϕ � 1

s

�
s � � X �

ϕ � 1

s

�
s � � (48)

3To be consistent with the notation, one must set in (3) gom

� grm

� g.
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This system is left-invariant w.r.t. the group operation � on R
3 defined by s1

� s2 �
ϕs

�
ϕ � 1
s

�
s1 � ϕ � 1

s

�
s2 � � .

2. The system (11) is given by

�s � Y
�
s ��� C �

ζ � v 
 AdY
�
s � 1 � cr

�
t � � (49)

with AdY
�
s � the matrix associated with the adjoint operator, and such that

�
s, AdY

�
s � � AdX

�
ϕ � 1

s

�
s � � (50)

3. If f � �
f �g , f �ζ ��� is a transverse function for System (3), then fs : � �

f �sg , f �ζ ��� , with
fsg : � ϕs

�
fg � , is a transverse function for System (47).

The proof involves elementary calculations which are not reproduced here.
In view of this lemma, it is not difficult to extend Proposition 6 to signal coordinates.

Proposition 6 Let f � �
f �g, f �ζ � � denote a transverse function for System (3), let ζ � fζ

�
α � ,

and define

zs : � s � fsg
�
α � � 1 with fsg � ϕs

�
fg �

� ϕs
�
ϕ � 1

s

�
s � fg

�
α � � 1 � (51)

Then,

i) Along the solutions of the tracking error model (49), and for any smooth curve α
�
. � ,

�zs � Y
�
zs � AdX

�
fg

�
α � � � C̄ �

α � v̄ 
 AdY
�
s � 1 � cr

�
t � � (52)

with v̄ � �
v � , �α � ��� and C̄

�
α � defined by (13).

ii) The matrix C̄
�
α � being of rank three for any α, the change of variable

v̄ � C̄
�
α � � � AdX

�
fg

�
α � � 1 � vzs � AdY

�
s � 1 � cr

�
t � � (53)

with C̄
�
α � � a right-inverse of C̄

�
α � , transforms System (52) into �zs � Y

�
zs � vzs

.

iii) For any Hurwitz-stable matrix K, and for vzs
defined by

vzs � Y
�
zs � � 1Kzs (54)

a) � s � is ultimately bounded by εfs
: � maxα � fsg �

α � � , and � g � is ultimately bounded
by εf : � maxα � fg �

α � � � for any reference trajectory gr
�
. � ,

b) if cr � 0, s (and thus g and gom) converge to fixed points exponentially.
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The proof of this proposition follows the same lines as the proof of Proposition 1 (note that
the relation (50) in Lemma 1 is also used to establish (52)).

In order to calculate the feedback law (53)–(54), zs, Y
�
zs � and AdY

�
s � 1 � have to be

known or estimated. From Lemma 1, this in turn requires to estimate the functions ϕs,
ϕ � 1

s , and � ϕs� g . Given such estimates (see the next section for illustrating examples), one can

derive approximations ẑs,
�

Y
�
zs � , and

�

AdY
�
s � 1 � of zs, Y

�
zs � , and AdY

�
s � 1 � respectively,

simply by replacing ϕs, ϕ � 1
s , and � ϕs� g in (48), (50), and (51), by their respective estimates

ϕ̂s,

�
ϕ � 1
s , and

� � ϕs� g . The control law v̄ is then given by

v̄ � C̄
�
α � �

�
AdX

�
fg

�
α � � 1 �

�

Y
�
zs � � 1

Kẑs � �

AdY
�
s � 1 � ĉr

�
t � 	 (55)

with ĉr
�
t � an estimation of cr

�
t � which, as in Section 4, may simply be set equal to zero.

5.2 Examples of estimates for zs, Y � zs � , and AdY � s � 1 �
In a way similar to the problem of pose estimation, we consider two types of estimates based
either on linear, or on nonlinear, approximations of the functions ϕs, ϕ � 1

s , and � ϕs� g .

Estimates based on linear approximations: A simple choice consists in using the
following linear approximations:

ϕ̂s
�
g � �

�
� ϕs� g

�
0 � g,

�
ϕ � 1
s

�
s � �

���
� ϕs� g

�
0 � � � 1

s,

�
� ϕs� g

�
g � �

�
� ϕs� g

�
0 �

with

� � ϕs� g
�
0 � an estimate of the jacobian matrix � ϕs� g

�
0 � . Then, by using these approximations

in (48), (50), and (51), one obtains the following estimates for zs, Y
�
zs � , and AdY

�
s � 1 � :�

��������
�������

�
ẑs � s


 � � ϕs� g
�
0 � X �

θ̂s


θfg

� fg
�

Y
�
zs � �

� � ϕs� g
�
0 � X

� � � � ϕs� g
�
0 � 	 � 1

ẑs �
�

AdY
�
s � 1 � � AdX

� � � � � ϕs� g
�
0 � � � 1s 	 � 1 � (56)

with θ̂s the third component of
� � � ϕs� g

�
0 � � � 1s and θfg

the third component of fg . The above
expressions can be further simplified as follows:�

���
��

� ẑs � s

 � � ϕs� g

�
0 � fg

�

Y
�
zs � �

� � ϕs� g
�
0 � X �

0 � �
� � ϕs� g

�
0 �

�

AdY
�
s � 1 � � AdX

�
fg

�
α � � 1 �

(57)
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and one can verify that ẑs then corresponds to the first order approximation of zs viewed as

a function of the variables s and fg (see (51)), that
�

Y
�
zs � is the zero order approximation

of Y
�
zs � at zs � 0, and that

�

AdY
�
s � 1 � is the zero order approximation of AdY

�
s � 1 � �

AdY
�
fsg

�
α � � 1z � 1

s � at zs � 0.

Estimates based on nonlinear approximations: When analytical expressions for
�
ϕs

and

�
ϕ � 1
s are available, one can derive an analytical expression of � �ϕs� g , and use (48), (50),

and (51), to form the following estimates:�
����
���

� ẑs � �
ϕs

� �
ϕ � 1
s

�
s � f � 1

g �
�

Y
�
zs � � � �ϕs� g

� �
ϕ � 1
s

�
ẑs � � X � �

ϕ � 1
s

�
ẑs � �

�

AdY
�
s � 1 � � AdX

� � �ϕ � 1
s

�
s � � � 1 	 (58)

A slightly simpler expression of ẑs is obtained by using the fact that, for any Lie group
operation and system of coordinates such that the identity element of the group is associated
with the nul vector, one has in the neighborhood of the origin xy � x � y � higher order
terms. This yields zs � s � fsg

�
α � � 1 � s



ϕs

�
fg � and the estimate ẑs � s



ϕ̂s

�
fg � . Replacing

ths first equality in (58) by this latter relation gives:�
���
��

� ẑs � s

 �
ϕs

�
fg �

�

Y
�
zs � � � �ϕs� g

� �
ϕ � 1
s

�
ẑs � � X � �

ϕ � 1
s

�
ẑs � �

�

AdY
�
s � 1 � � AdX

� � �ϕ � 1
s

�
s � � � 1 	 (59)

If an analytical expression of

�
ϕ � 1
s is available whereas an analytical expression of ϕ̂ is

not, one can define for example

� � ϕs� g
�
g � �

�
� �ϕ � 1

s� s
�
s � 	 � 1

, and use the linear approximation

of ϕs given by ϕ̂s
�
g � �

� � ϕs� g
�
0 � g. Combining these relations with (48), (50), and (51), gives:�

������
�����

� ẑs �
� � ϕs� g

�
0 ��� �ϕ � 1

s

�
s � f � 1

g �
�

Y
�
zs � �

�
� �ϕ � 1

s� s
�
ẑs ��� � 1

X
� �
ϕ � 1
s

�
ẑs � �

�

AdY
�
s � 1 � � AdX

� � �ϕ � 1
s

�
s � � � 1 	

(60)
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Other possible combinations are�
�������
������

�
ẑs � s � �

� �ϕ � 1

s� s
�
0 � � � 1

f � 1

g

�

Y
�
zs � �

�
� �ϕ � 1

s� s
�
ẑs � � � 1

X
� �
ϕ � 1
s

�
ẑs � �

�

AdY
�
s � 1 � � AdX

� � �ϕ � 1
s

�
s � � � 1 	

(61)

and �
�������
������

�
ẑs � s


 �
� �ϕ � 1

s� s
�
0 � � � 1

fg

�

Y
�
zs � �

�
� �ϕ � 1

s� s
�
ẑs � � � 1

X
� �
ϕ � 1
s

�
ẑs � �

�

AdY
�
s � 1 � � AdX

� � �ϕ � 1
s

�
s � � � 1 	

(62)

Obviously, there are many other possibilities which can be obtained, for instance, by sim-
plifying or combining the above expressions.

5.3 Stability conditions and comparison with Section 4

To extend the stability analysis of Section 4, we would like to derive sufficient conditions on
the estimates of ϕs, ϕ � 1

s , and � ϕs� g that guarantee the ultimate boundedness of s (or g), and
its convergence to a fixed value when cr � 0. This extension is hampered by the fact that
more terms need to be estimated. Due to this first complication, stability conditions cannot,
in the general case, be expressed as easily as in Section 4. Nevertheless, locally (i.e. in the
neighborhood of ẑs � 0), one can derive boundedness and convergence conditions similar
to those of Section 4.2. Moreover, and unsurprisingly, there are strong connections between
the two control design methods (i.e. design in the Cartesian space versus design in the space
of sensor signals). For instance, let us consider the estimates given by (56) and compare
the expression of the associated control laws with the expression of some of the control laws
derived in Section 4. Take the control law (24) with ĝ given by (21). Since ẑ � ĝfg

�
α � � 1,

we deduce from the group law definition (1) that

ẑ � ĝ


X

�
θ̂s


θfg

� fg

�
� �
� ϕs� g

�
0 � � � 1

ẑs

Therefore, it follows from (56) that

ẑs �
�
� ϕs� g

�
0 � z,

�

Y
�
zs � �

�
� ϕs� g

�
0 � X �

ẑ � ,
�

AdY
�
s � 1 � � AdX

�
ĝ � 1 �
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so that the control expression (55) becomes

v̄ � C̄
�
α ��� � AdX

�
fg

�
α � � 1 � X �

ẑ � � 1K̄ẑ � AdX
�
ĝ � 1 � cr

�
t � �

with

K̄ �
� �
� ϕs� g

�
0 � � � 1

K

� �
� ϕs� g

�
0 � �

This is the same control as (24), except that K is replaced by K̄. When K �


kI3, the two

control laws are exactly the same and thus, they share the same conditions for boundedness
and convergence.

5.4 Simulation results for a vision-based sensor

To provide comparison elements between the control solutions of Sections 4 and 5, simulation
results for the system of Section 4.3 (see Fig. 2), obtained with the control law defined by

(55), for different choices of the estimates ẑs,
�

Y
�
zs � , and

�

AdY
�
s � 1 � , are now presented.

5.4.1 Estimates based on linear approximations

When there is no pan control of the camera, and the estimates (56) are used in the control
law (55) with K a diagonal matrix, we have shown above that the control expression is
the same as the one obtained with the control law of Section 4 with a linear estimate of g.
Therefore, we only consider here the case when the camera is actively controlled. One can
imagine different ways of extending the control design of Section 5.1 to this more general
setting. One of them consists in calculating from the signal and the camera pan angle ξ, the
“virtual signal” s � that would be obtained if the camera were fixed to the mobile platform
(i.e., with a fixed pan angle ξ � 0). To this purpose, let us assume, for simplicity, that the
origin of the camera frame Fs � �

0s,~ıs, ~s � is located on the camera’s pan axis (see Figure
14).
The frame associated with the “virtual camera” is denoted as F �s � �

0s,~ıs� , ~s� � , and the
oriented angle between ~ıs� and ~ıs is ξ. A 3D point P projects into the image points p and p �
in the real and virtual image planes respectively. Let γ (resp. γ � ) denote the oriented angle

between ~ıs (resp. ~ıs� ) and � � �OsP . Then, tan γ � c1py � c2 and tan γ � � c1p �y � c2, with py and
p �y the y coordinates of the image points p, p � in the camera frames Fs and F �s, and c1 � 0

and c2 some constants depending on the camera intrinsic parameters and the unit in which
p and p � are expressed (i.e. metric or pixel coordinates). From the expressions of γ and γ � ,
the fact that ξ � γ � γ � , and the fact that each component si of the signal vector s is given
by si � piy



p �iy with piy � �

l,m, r � , it comes that

s �i � 1

c1

�
tan

�
ξ � arctan

�
c1

�
si � p �iy � � c2 � � 
 c2 � 
 p �iy �

i � 1, 2, 3 � (63)
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Figure 14: Projection of a 3D point in two image planes —pure rotation—

A simplification is obtained by approximating the tan and arctan functions in the above
equations by the identity function. This yields

s � w s � ξ

c1
(64)

Figures 15 illustrates the use of this latter relation in the case of a fixed target. The
control law is given by (55) with s in the control expression replaced by s � defined by (64)
with c1 � 1 (signal expressed in metric coordinates). The gain matrix is K �



0.5I3 and

the transverse function fg is given by (14) with ε � 0.3 and η � 1. The estimates ẑs,
�

Y
�
zs � ,

and

�

AdY
�
s � 1 � , are defined according to (57). The camera control is given by (34) with

ks � 5. The robot’s motion is very similar to the one observed on Fig. 4 (i.e., with a control
design in Cartesian coordinates and a linear pose estimation).

The same control strategy, with the same control parameters, is illustrated on Fig. 16
in the case of a moving target. The reference velocity cr is defined by (35), and ĉr � 0.
Unsurprisingly, the robot’s motion is also very similar to the one of Fig. 5.

5.4.2 Estimates based on nonlinear approximations

We now illustrate the use of nonlinear approximations of ϕ̂s,

�
ϕ � 1
s , and

� � ϕs� g , for the calculation

of the estimates ẑs,
�

Y
�
zs � , and

�

AdY
�
s � 1 � . For all the simulation results reported in this

section, K �


I3, ĉr � 0, the transverse function parameters are given by ε � 0.3 and

η � 1, the pan control of the camera is given by (34) with ks � 5. The signal s � , defined by
(64) with c1 � 1, replaces s in the control expression.
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Figure 15: Estimates (57), pan control of the camera, fixed target
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‖ẑs‖

‖ · ‖

t
−1 0 1 2 3 4

−1

0

1

2

3

4

xyactual

xyref

x

y

Figure 16: Estimates (57), pan control of the camera, ĉr � 0

Figure 17 shows a simulation result obtained with the estimates (58). The function ϕ̂s
is defined from (37) and (20), i.e., ϕ̂s

�
g � � ϕ̂

�
gtrggms � with ϕ̂ defined by (37). The function�

ϕ � 1
s is defined from (38), i.e.

�
ϕ � 1
s

�
s � � ĝ � grtĝtsgsm with ĝts � ĝ � 1

st and ĝst given by (38).
Figure 18 shows what happens when the estimates (58) are replaced by the slightly

simpler expressions (59). The robot’s motion is not much different. However, one can
observe a degradation of the tracking precision for purely rotational motions of the reference
frame (when t � � 60, 75 � ), and the appearance of the oscillation phenomenon evoked before
when the reference frame moves backward (i.e., when t � � 45, 60 � ).

Figure 19 illustrates the use of the estimates (61), with the function

�
ϕ � 1
s derived accord-

ing to (39)–(41) and (23). While the tracking precision is comparable to the one associated
with the previous simulations, the oscillation phenomenon for backward motions of the tar-
get is amplified. Moreover, some oscillations also occur now when the target moves forward.
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Figure 17: Estimates (58), pan-control of the camera, ĉr � 0
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Figure 18: Estimates (59), pan-control of the camera, ĉr � 0

Finally, Figure 20 illustrates the use of the estimates (62) (where only the definition of

ẑs changes w.r.t. the previous simulation), with the function

�
ϕ � 1
s again derived according

to (39)–(41) and (23). One can note how this single modification suffices to reduce the
oscillation phenomenon significantly.

5.4.3 Generalized transverse function

The extension of the control design of Section 5.1 to the use of generalized transverse
functions f

�
α, β � � �

f �g �
α, β � , f �ζ �

α, β � � � such as (45) is straightforward. By setting zs �
s � fsg

�
α, β � � 1 with fsg � ϕs

�
fg � , one obtains (compare with (42) and (52)):

�zs � Y
�
zs � AdX

�
fg

�
α � � � C̄ �

α, β � v̄ 
 B �
α, β � �β 


AdY
�
s � 1 � cr

�
t � �
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Figure 19: Estimates (61), pan-control of the camera, ĉr � 0
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Figure 20: Estimates (62), pan-control of the camera, ĉr � 0

This suggests a control law in the following form (compare with (53)–(54)):

v̄ � C̄
�
α � �

�
AdX

�
fg

�
α � � 1 �

�

Y
�
zs � � 1

Kẑs � Bs �
α, β � �β � �

AdY
�
s � 1 � ĉr

�
t � 	 (65)

with K a stable matrix and ẑs,
�

Y
�
zs � , and

�

AdY
�
s � 1 � , some estimates of zs, Y

�
zs � , and

AdY
�
s � 1 � , defined for example as in Section 5.2.

Figure 21 illustrates this design choice. The control law is given by (65) withK �



0.5I3.

The estimates ẑs,
�

Y
�
zs � , and

�

AdY
�
s � 1 � , are defined by (57), and �β is given by (46) with

ĉr � cr defined by (35) and kt � 1. The generalized transverse function is defined by (45)
with ε � 0.3, η � 1, and ρ � 0.8. The pan control of the camera is given by (34) with
ks � 5. The signal s � , defined by (64) with c1 � 1, is used in the control law, instead of s.
The robot’s motion is very similar to the one shown on the bottom part of Fig. 11 (obtained
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with a control design in the Cartesian space and a generalized transverse function). As a
matter of fact, the tracking precision is even slightly better when the target performs purely
rotational motions (time interval � 60, 75 � ).
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Figure 21: Generalized transverse function, pan control of the camera, ĉr � cr

Conclusion

We have addressed in this report the problem of tracking, in both position and orientation,
a moving target with a nonholonomic mobile robot, based on sensory measurements. Two
control design approaches have been investigated. The first one consists in reconstructing,
from the sensory data, the robot’s Cartesian pose w.r.t. the target, and using this recon-
struction in control laws devised for stabilization in the Cartesian space. The transverse
function approach has been used for the control design and we have shown (theoretically
and through various simulation results) that a stable practical tracking of the target can
still be obtained when using a relatively crude model of the sensor’s response (like, for ex-
ample, an approximate jacobian of the sensor’s output function evaluated at the reference
position). This illustrates the robustness of this type of control w.r.t. modeling errors. With
the example of a visual sensor (camera), we have compared different ways of reconstructing
the robot’s pose. While this study has confirmed the usefulness of a precise global model
of the sensor, when such a model is available, it has also pointed out that good results can
still be obtained with a simplified model and adequately chosen control parameters, and by
compensating for the target’s velocity via its estimation. The second approach consists in
designing the control laws directly in the space of the sensor signals. We have shown how the
transverse function approach can be extended to this sensor-based framework. The calcula-
tion of the associated control laws requires the estimation of several functions which can be
expressed in terms of the sensor’s output function. Simulation results do not demonstrate a
definite advantage of one control design approach w.r.t. the other.
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A Proofs

A.1 Proof of Proposition 2

We deduce from (16) and (25) that

�z � X
�
z � X �

ẑ � � 1Kẑ


X

�
z � AdX

�
f � AdX

�
g � 1 � cr

By using the fact that, for any g1, g2, AdX
�
g1 � AdX

�
g2 � � AdX

�
g1g2 � , X �

g1 � X �
g2 � �

X
�
g1g2 � , and X

�
g1 � � 1 � X

�
g � 1

1
� , we obtain that

�z � X
�
zẑ � 1 � Kẑ 
 X �

z � AdX
�
z � 1 � cr

� X
�
g̃ � Kẑ 
 X �

z � AdX
�
z � 1 � cr

(66)

We deduce from (10) that

X
�
z � AdX

�
z � 1 � cr �

�
I2 Spz
0 1 	 cr (67)

with

S �
�
0



1

1 0 	
and pz the position component of z (i.e. z � �

p �z , θz ��� ). One can also verify from (1) and (4)
that

ẑ � g̃ � 1z � g̃ � 1 � X �
g̃ � � 1z (68)

Since K �


kI3, we deduce from (66), (67), and (68), that

�z �


kz



kX

�
g̃ � g̃ � 1 � �

I2 Spz
0 1 	 cr (69)

Let us now show that g
�
t � stays in Bg

�
δ1 � , i.e. � g �

t � � � δ1 for all t. We proceed by
contradiction. Let us assume that g

�
t � leaves Bg

�
δ1 � . Then, since � g �

0 � � � δ1



2ε, there
exists t0 � 0 such that � g �

t0 � � � δ1 and � g �
t � � � δ1 for all t � � 0, t0 � . In this interval, we

deduce from (26) that � g̃ � 1
�
t � � � � g̃ �

t � �� γ1 � g �
t � �� γ1

� � z � � � f � �� γ1

� � z � � ε �
Let V

�
z � � � z � 2. We deduce from the above inequality and from (69) that

�V �
z � � 


2k � z � 2 � 2k � z � �
γ1 � z � � γ1ε � � 2 � z � � cr � max� 


2k � z � � �
1


γ1 � � z � 
 γ1ε


 � cr � max � k �

� 0,
� � z � � γ1ε � � cr � max � k

1


γ1

(70)
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It follows from (28) that δ1


ε � γ1ε ��� cr � max � k

1 � γ1 . Therefore, since � z �
0 � ��� � g �

0 � � � ε � δ1


ε,

we deduce from (70) that � z �
t � � � δ1



ε,

�
t � � 0, t0 � , so that� g �

t0 � � � � z �
t0 � � � ε � δ1

which shows the contradiction.
It follows from (70) that � z � is ultimately bounded by

�
γ1εf � � cr � max � k � � �

1


γ1 � . This

readily implies that � g � is ultimately bounded by ε̄f , by using the inequality � g ��� � z � � � f � �� z � � εf . �

A.2 Proof of Propositions 4 and 5

Let us first establish the dynamic equation of ẑ. Since ĝ � ψ
�
g � , we deduce from (11) (with

cr � 0) that

�̂g � � ψ� g
�
g � �g

� � ψ� g
�
g � X �

g � C �
ζ � v

� X
�
ĝ � Ĉ �

g, ζ � v
with

Ĉ
�
g, ζ � � X

�
ĝ � � 1 � ψ� g

�
g � X �

g � C �
ζ �

Since ẑ � ĝf � 1

g

�
α � and ζ � fζ

�
α � , we deduce from the above equalities and from (9) that

�̂z � X
�
ẑ � AdX

�
fg

�
α � ��� Ĉ �

g, fζ
�
α � � v 
 A �

α � �α �
� X

�
ẑ � AdX

�
fg

�
α � �

�
C

�
fζ

�
α � � v 
 A �

α � �α � �
X

�
ĝ � � 1 � ψ� g

�
g � X �

g � 
 I3 � C �
fζ

�
α � � v 	

� X
�
ẑ � AdX

�
fg

�
α � �

�
C̄

�
α � v̄ � �

X
�
ĝ � � 1 � ψ� g

�
g � X �

g � 
 I3 � C �
fζ

�
α � � v 	

(71)

Now, v can also be written as v � P v̄ with P a projection matrix: for the unicycle,

P �
�
1 0 0

0 1 0 	
whereas P � �

1 0 0 � for the car. Therefore, we deduce from (71) that

�̂z � X
�
ẑ � AdX

�
fg

�
α � �

�
C̄

�
α � v̄ � �

X
�
ĝ � � 1 � ψ� g

�
g � X �

g � 
 I3 � C �
fζ

�
α � � P v̄ 	

By applying the feedback law (25) to this equation, and by using the fact that K �


kI3,

we get
�̂z �



k

�
I3


M

�
ẑ, g, ĝ, α � � ẑ (72)
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with

M
�
ẑ, g, ĝ, α � �

X
�
ẑ � AdX

�
fg

�
α � �

�
I3


X

�
ĝ � � 1 � ψ� g

�
g � X �

g � 	 C �
fζ

�
α � � PC̄ �

α ��� AdX
�
fg

�
α � � 1 � X �

ẑ � � 1 (73)

From (the proof of) Proposition 2, g exponentially converges to Bg

�
ε � �

1


γ1 � . Therefore,

in view of (72), a sufficient condition for the exponential convergence of ẑ to zero is that� M �
ẑ, g, ĝ, α � � � 1

� �
ẑ, ĝ, α � , �

g � Bg

�
ε � �

1


γ1 � � (74)

There remains to show that this property is satisfied. From (4) and (10), one deduces that
for all z,� X �

z � � � � X �
z � � 1 � � 1, � AdX

�
z � ��� �

1 � � z � � , and � AdX
�
z � 1 � � � �

1 � � z � �

Therefore, it follows from the above definition of M
�
ẑ, g, ĝ, α � and from the definition of ε

that � M �
ẑ, g, ĝ, α � � � �

1 � ε � 2

����

�
I3


X

�
ĝ � � 1 � ψ� g

�
g � X �

g � 	 C �
fζ

�
α � � PC̄ � �

α �
���� (75)

Then,

I3


X

�
ĝ � � 1 � ψ� g

�
g � X �

g � � X
�
ĝ � � 1

�
X

�
ĝ � 
 � ψ� g

�
g � X �

g � 	
� X

�
ĝ � � 1

�
X

�
ĝ � 
 X �

g � � �
I3

 � ψ� g

�
g � � X �

g � 	
� X

�
ĝ � � 1

�
X

�
ĝ � 
 X �

g � � �
I3

 � ψ� g

�
0 � � X �

g � 
 � � ψ� g
�
g � 
 � ψ� g

�
0 � � X �

g � 	
It follows from this relations that

���� I3


X

�
ĝ � � 1 � ψ� g

�
g � X �

g �
���� � � X �

ĝ � 
 X �
g � � � � I3 
 � ψ� g

�
0 � � � � � ψ� g �

g � 
 � ψ� g
�
0 � �� γ1 � g � � γ1 � γ2 � g �� γ1 � �

γ1 � γ2 � � g �
with the second inequality obtained from (26) and (29). We deduce from this inequality and
from (75) that

� �
ẑ, ĝ, α � and

�
g � Bg

�
ε � �

1


γ1 � � ,

� M �
ẑ, g, ĝ, α � ��� �

1 � ε � 2
�
γ1 � �

γ1 � γ2 � ε

1


γ1 	 � C �

fζ
�
α � � PC̄ � �

α � �
� �

γ1 � �
γ1 � γ2 � ε

1


γ1 	 �

1 � ε � 2 � C �
fζ

�
α � � PC̄ � �

α � � (76)
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We now distinguish the unicycle and car-like cases.

Unicycle: In this case,

C
�
fζ

�
α � � � C � �� 1 0

0 0

0 1

��
, P �

�
1 0 0

0 1 0 	 , C̄ � �� 1 0


a11

�
α �

0 0


a21

�
α �

0 1


a31

�
α �

��
with (cf. Proposition 1)

�� a11

�
α �

a21

�
α �

a31

�
α �

��
� A

�
α � � X

�
fg

�
α � � � 1 � fg� α

�
α � (77)

Therefore,

C
�
fζ

�
α � � PC̄ � �

α � � CPC̄
�
α � � 1 � �� 1 


a11

a21

�
α � 0

0 0 0

0


a31

a21

�
α � 1

��
(78)

By using (14), (77), and (78), one can show that

ε � CPC̄ �
α � � 1 ��� δ

�
η � �

1 � ε2 � �
α (79)

with δ
�
η � some value which only depends on η. We deduce from (76) and (79) that

� �
ẑ, ĝ, α �

and
�
g � Bg

�
ε � �

1


γ1 � � ,

� M �
ẑ, g, ĝ, α � � � �

γ1 � �
γ1 � γ2 � ε

1


γ1 	 δ̄

�
η � �

1 � ε4 �
ε

with δ̄
�
η � another value. It follows from (14) that

ε � εf � max
α

� fg �
α � � � δ2

�
η � ε �

1 � ε � � δ2
�
η � ε �

1 � εf �

for some δ2
�
η � . By using these inequalities, one deduces that there exist some c1, c2, which

only depend on η such that

� M �
ẑ, g, ĝ, α � � � �

γ1 � �
γ1 � γ2 � εf

1


γ1 	 �

c1

εf
� c2ε3f 	

so that (74) is satisfied if (30) is verified.

Car: The analysis, similar to the previous case, is left to the reader.

B Geometric reconstruction of g used in Section 4.3.2

The objective of this section is to derive Eq. (39). Let us consider Fig. 22 which depicts,
among other things, the sensor and target frames. The two lines passing by the points L,M
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Figure 22: Camera pose reconstruction

and R,M delimit four complementary convex domains. We will assume that the origin Os
of the sensor frame is always strictly inside the convex domain opposite to the triangle LMR

(as depicted on the figure). One of the reasons for this restriction is that, when Os is on the
line passing by L,M (resp. R,M), then the projections of L and M (resp. R and M) in
the image plane coincide so that it is no longer possible to match each point of the target
with its projection.

It is known that there is exactly one circle passing by any three non-aligned points. Let
us consider the circle passing by L, Os, and R, and denote by Crl its center and rrl its
radius (see Fig. 22). We also denote by L � (resp. R � ) the points at the intersection of
this circle and the line passing by L and M (resp. R and M). To provide an expression
for the coordinates of Os in the target’s frame, let us define some complementary notation.
We denote by αi

�
i � �

l,m, r � � the oriented angles between the axis ~ıs of the sensor frame

and the vector � �Osi. It satisfies the relation tanαi � i � f . The non-oriented angles
�

LOsM ,
�

LOsR, and
�

MOsR are denoted by αlm, αlr, and αmr respectively. These angles satisfy the
relations

tanαij � � j 
 i �
� f � � ij � � f �

with f the focal distance.
By using the Inscribed Angle Theorem, which implies that αlr is half the angle

�

LCrlR,
one easily verifies that the coordinates

�
Cxrl, Cyrl � of Crl in the target frame are given by

Cxrl �

 a

tanαlr
, Cyrl � 0 (80)
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and the radius rrl of the circle is given by

rrl �
a

� �
f � lr

f
� 2 � �

l



r � 2
l



r
(81)

The problem now amounts to locating the point Os on the arc L � R � . We can parameterize

this point with σ, the oriented angle between the vectors


~ıt and � � � �CrlOs. With this notation,

the coordinates of Os in the target frame are given by

xts � Cxrl


rrl cosσ

yts �


rrl sinσ

(82)

There remains to calculate σ. One has

rrl sinσ � sin

�
αlm � �

OsLM



arctan
� a
b

� � � � � � �OsM �
� Dlm sin � αlm � �

OsLM



arctan
� a
b

� � sin
�

OsLM
(83)

with

Dij : � � � �IJ �
sinαij

(84)

for i, j � �
l,m, r � . Note that the law of sines has been used to obtain the second equality

in (83). Note also that the Dij are completely determined by the target’s geometry and the
angles αij . It follows from the law of sines that

sin
�

OsLM � Dmr

Dlm

sin
�

OsRM

and one easily verifies on Fig. 22 that
�

OsRM � 2 arctan
� a
b

� 
 αlr 
 �

OsLM

By combining these two equalities, one obtains that

�

OsLM � arctan

�
Dmr

sin
�
2 arctan

�
a
b

� 
 αlr �
Dlm � Dmr cos

�
2 arctan

�
a
b

� 
 αlr � 	 (85)

It follows from (83) that

σ �



arcsin

�
Dlm

rrl
� sin �

αlm � �

OsLM



arctan
� a
b

� � sin
�

OsLMDlm � 	 (86)

Equations (85) and (86) provide an expression of σ in terms of the sensor signals, the focal
distance, and the target’s geometry. Various approximations σ̂ of the above expression
can be derived. Based on some very simple arguments, it is in fact possible to obtain an
approximation of σ without using (86) explicitly. To this purpose, let us remark that:
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• σmax � max � σ � corresponds to the case where Os coincides with L � or R � . By using

the Inscribed Angle Theorem, one can verify that σmax �
�

R � LL � �
�

R � RL � . Moreover,
σmax � π



β


αrl with β �

�

R �ML �
�

L �MR � π



2 arctan
�
a � b � . When the ratio

of the distance between the target and reference frames to the target size is large, αrl
is small at the reference position, and tends to diminish as the distance between the
robot and the target increases, thus σmax w π



β.

• due to the restriction assumption on the location of Os, we have that αlm, αmr �
� 0, αrl � . Furthermore, σ � 0 �

�
αlm � αmr � αrl

2
, σ �



σmax �

�
αmr � 0, and

σ � σmax �
�
αlm � 0.

• if the camera is pointing towards the target, the angle αm � arctan
�
m � f � � 0, so that

around this position, αm w m � f .

Based on these remarks, we propose an approximation σ̂ of σ of the form σ̂ � ρσmax,
with ρ � � 
 1, 1 � such that αlm � αmr � αrl

2
�

�
ρ � 0, αmr � 0 �

�
ρ � 1, and

αlm � 0 �
�
ρ �



1. One possibility is given by:

σ̂ �

 αlm 


αmr

αlr

�
π


β �

� 2 arctan
� a
b

� αmr


αlm

αlr

Another possibility, directly expressed as a function of l,m, r, is

σ̂ � 2 arctan
� a
b

� 2m

 �

l � r �
l



r
(87)

Finally, to complete the camera pose calculation, we need the orientation angle θts. It is
easily obtained from the coordinates of Os and the signal values. For example,

θts � arctan

�
yts

xts � b 	 

αm

� arctan

�
yts

xts � b 	 

arctan

� m
f

�
(88)
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