
HAL Id: inria-00084004
https://hal.inria.fr/inria-00084004

Submitted on 5 Jul 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Assessment of security extended XML-based
Management

Vincent Cridlig, Humberto Abdelnur, Radu State, Olivier Festor

To cite this version:
Vincent Cridlig, Humberto Abdelnur, Radu State, Olivier Festor. Assessment of security extended
XML-based Management. [Research Report] 2006, pp.18. �inria-00084004�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50441865?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00084004
https://hal.archives-ouvertes.fr

Assessment of security extended XML-based Management

V. Cridlig H. Abdelnur R. State O. Festor

July 5, 2006

Abstract

The emergence of new management paradigms
having XML as a core foundation block demands
a comprehensive analysis of their security and
performance issues. This paper presents an ex-
tension to the existing NetConf protocol. This
extension consists of a security architecture and
some advanced XML specific features. We de-
scribe a series of experiments addressing the per-
formance and operational aspects of our devel-
oped implementation and provide grounded an-
swers to issues of significant relevancy to the re-
search community.

1 Introduction

Flexible management paradigms based on XML
as an underlying core support emerged over the
past years and are currently becoming opera-
tional. This fast paced evolution was possible
due to the XML data-level interoperability as
well as due to the large basis of supporting tools
and libraries existing for most programming lan-
guages. Although much has been done, some
fundamental questions related to the security ar-
chitecture and more advanced XML specific op-
erations are still open. Our work within this
landscape is centered on providing a security
framework for XML enabled management frame-
works, implementing and validating the IETF
endorsed Netconf protocol [10] and validating its
appropriateness for complex network manage-
ment tasks (like for instance the configuration
of the BGP routing plane). This is addressed in
the first section of our paper.

The second section of this paper introduces
some proposed extensions to the Netconf config-
uration protocol. These extensions are related
to a security framework for Netconf, compres-
sion and to the edit-config operation for addi-
tional XSLT support. The third section of the
paper presents the benchmarking results of our
implementation and its security extensions. The
implementation itself is shortly described in sec-

tion 4, highlighting its modular architecture. In
section 5, an overview of the related works is
given. Finally, section 6 concludes the paper.

2 Netconf

2.1 General architecture

Netconf is a XML-based network configuration
protocol, proposed by the IETF in order to
achieve simplicity and management data hierar-
chy. Netconf is stream-oriented and relies on a
Remote Procedure Call (RPC) mechanism. The
client (a Netconf manager) typically issues a re-
quest to a server (a Netconf agent) which re-
turns a reply rpc-reply. An rpc tag always em-
beds a Network Management operation which
can be one of get, get-config, edit-config, copy-
config, lock, unlock, close-session or kill-session.

An important point is that a manager sees
the configuration data as a XML document, thus
giving him a very high, uniform, easy and clear
abstraction level. The operations are conceptu-
ally performed on that virtual or real document.
No other communication channel is even needed
since all services can potentially be configured
through Netconf.

Before sending rpc operations, a manager
must first establish a Netconf session on the
agent. A session is carried over a TCP connec-
tion and remains open until a close-session or
kill-session is issued to the agent. In order to ini-
tialize that session, each party sends a hello mes-
sage containing its capabilities and a session-id is
issued by the agent. This message is exchanged
asynchronously over the TCP connection. Ca-
pabilities are a feature that allows each party
to advertise its supported features (data model,
vendor-specific operations, etc...). Each capabil-
ity is identified using a unique URN identifier.
Netconf defines a set of capabilities like, for in-
stance, #xpath, #startup, #candidate that can
be extended with new ones.

Get and get-config operations allow to retrieve
data from the Netconf agents and come with two

1

possible filtering methods. While the first one,
subtree filtering, is specific to Netconf, the sec-
ond one, XPath, is an independant technology.
Figure 1 shows a very simple example that al-
lows to retrieve the software packages installed
in the agent. This list of RPM packages is part
of the data model. The first request addresses
the desired data with an XPath expression. The
second one is based on subtree filtering.

Each method has its interest. XPath allows to
build fine-grained request like /netconf/system-
/rpm-list/rpm[contains(text(),’java’)] which se-
lects all rpm elements that contain java into
their text value. It is also possible to select the
number of output nodes and the text value at
different XML level using multiple criteria. Sub-
tree filtering allows to build a kind of template
document that is filled by the agent. It is legit-
ime to wonder if one of the methods is more
performant than the other, and this question
has been actively debated in the IETF working
group (see https://psg.com/lists/netconf/). We
have performed a series of experiments on this
issue and the results are discussed in this paper.

2.2 Extended Netconf

The current IETF specifications [10] represent
a pragmatic solutions for XML based network
management, making for commonly agreed on
standard. We extended the IETF proposed
specifications with more advanced features re-
lated to security, efficient data transmission and
agent site filtering and scoping functionalities.
These extensions and their experimental bench-
marking are the main focus of this paper.

2.2.1 Security

Extending the Netconf protocol with advanced
security features is of crucial importance in a
multi-party configuration environment, where
large scale infrastructures are managed by mul-
tiple administrators having different competen-
cies and security clearance levels. An illustra-
tive example can be considered the manage-
ment of the BGP [21] routing plane, used to in-
terconnect routing domains called Autonomous
Systems (AS), where each such domain can be
roughly seen as a standalone administrative do-
main. Within such a domain, a specific rout-
ing policy is implemented to reflect management
and business requirements. Routing information
is exchanged between these domains using an
exterior routing protocol. The most commonly
used is the BGP4, supporting basic route reach-

ability advertisement as well as more advanced
features related to traffic engineering tasks and
policy driven routing. These features are pro-
vided by a set of protocol extensions allowing to
filter route advertisements, tag specific routes in
order to drive the route selection process, and to
signal to a peering router local preferences.

These features allow to define a routing pol-
icy for an AS. There is a central registry where
operators can publish their routing policies and
check the ones published by other operators.
Unfortunately, as it is well known, this informa-
tion is very often obsolete and outdated. These
routing policies are essentially management data
and could be made accessible to peering part-
ners if appropriate access control mechanisms
were defined. The real world practice shows
that operators tend to implement these policies
at the relative low level of abstraction given by
router configurations. The de-facto configura-
tion files store in text format the configuration
commands. Expressing routing policies with
commands (compatible with Command Line In-
terface, CLI [22]) is typically done with route
maps. If appropriate access control were to be
defined, an operator should be able to allow a
peering partner to access in read only mode, only
those policies related to the latter, without leak-
ing additional information related to third party
potential competitors. As of today, such a sce-
nario is impossible, and for illustration purposes
consider the scenario shown in Figure 2. This
network topology consists of three ASs: AS 1,
AS 2 and AS 3. Routers R1, R2 and R3 belong
to autonomous system AS 1, AS 2 and respec-
tively AS 3. Both R1 and R2 are neighbors of
R3.

Figure 2: BGP sample topology

A subset of the BGP configuration for router
R3 is depicted in Figure 3 in a Command Line
Interface (CLI) language. This BGP configura-
tion expresses the following routing policy. First,
R3 allows to route BGP packets only if the AS
of the source is 3. It means that route advertise-
ment from R1 and R2 will never be forwarded

 <get−config>
 <source>
 <running/>
 </source>
 <filter type="subtree">
 <netconf>
 <system>
 <rpm−list/>
 </system>
 </netconf>
 </filter>
 </get−config>
</rpc>

<rpc message−id="2">
 <get−config>
 <source>
 <running/>
 </source>
 <filter type="xpath">
 /netconf/system/rpm−list
 </filter>
 </get−config>
</rpc>

<rpc message−id="2">

<rpc−reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message−id="2">
<netconf>
 <system>
 <rpm−list>
 <rpm>java−1.4.2−gcj−compat−devel−1.4.2.0−40jpp_31rh</rpm>
 <rpm>ant−jmf−1.6.2−3jpp_8fc</rpm>
 <rpm>jdepend−2.6−2jpp_3fc</rpm>
 <rpm>XSV−2.0−3</rpm>
 <rpm>totem−1.0.4−1</rpm>
 [...]
 </rpm−list>
 </system>
</netconf>
</rpc−reply>

netconf

system

rpm−list

rpm rpm rpm rpm rpm

java ant xsv totem xmlsec

XPath Subtree filtering

RESULT

Figure 1: Simple get-config examples for RPM list retrieval

by R3 to other routers. Consequently, R3 will
never give any information to R2 about the exis-
tence of R1 and vice versa. Second, R3 adds 50
to the weight of the route from R1 to R3. Third,
R3 adds 100 to the weight of the route from R2
to R3. Therefore R3 will rather use R1 than R3.

AS2

AS1

R3

router bgp 3
 neighbor 192.68.80.1 remote−as 2
 neighbor 192.68.80.1 route−map ROUTEMAP2 in
 neighbor 192.68.80.1 route−map ROUTEMAP3 out
 neighbor 172.32.20.2 remote−as 1
 neighbor 172.32.20.2 route−map ROUTEMAP1 in
 neighbor 172.32.20.2 route−map ROUTEMAP3 out

route−map ROUTEMAP1 permit 10
 set weight 50

route−map ROUTEMAP2 permit 10
 set weight 100

ip as−path access−list ALLOWED_AS permit ^3_$

route−map ROUTEMAP3 permit 10
 match as−path ALLOWED_AS

Manager m2

Manager m1

Figure 3: Network Sample CLI configuration

This configuration information is difficult to
extend with a flexible access control (at the AS3
site) allowing for instance to allow two managers
from AS1 and respectively AS2 to read only the
policies related to their own domains.

However, the same configuration settings, can
be expressed in an XML data model as shown

in Figure 4. Although XML configuration might
be more difficult to deal with by an experienced
administrator, there are some major advantages
from a security point of view. The hierarchical
structure of an XML document can be used to
implement a flexible access control, where enti-
ties could be allowed a per node or per subtree
access.

For instance in the previous example, we could
allow read only access to the route-map nodes.

Integrated Security Framework Figure 5
shows our integrated security components pro-
posed in [7]. The core is split into four main se-
curity areas: authentication, integrity, confiden-
tiality and access control. Each area is related
to one or more adjacent techniques or concepts.
For instance, XML-Encryption is dedicated to
confidentiality. Access control means a flexible
mechanism to manage access to resources. The
flexibility aspect is evaluated regarding the plat-
form dynamicity and size. While dynamicity im-
plies the capability to frequently modify the ac-
cess rights, the size is dependant on the number
of devices and managers. Authentication is the
mechanism that guarantees that an entity is the
one it claims to be. Integrity is the mechanism
that ensures that the management data in tran-
sit has not been modified.

AS1

 <bgprouter>
 <as−number>3</as−number>
 <neighbors>
 <neighbor>
 <ip−address>172.32.20.2</ip−address>
 <remote−as>1</remote−as>
 </neighbor>
 <neighbor>
 <ip−address>192.68.80.1</ip−address>
 <remote−as>2</remote−as>
 </neighbor>
 </neighbors>
 <address−families>
 <ipv4−address−family>
 <type>unicast</type>
 <neighbors>
 <neighbor>
 <ip−address>172.32.20.2</ip−address>
 <bind−filters>
 <route−map>
 <name>ROUTEMAP3</name>
 <direct>out</direct>
 </route−map>
 </bind−filters>
 </neighbor>
 <neighbor>
 <ip−address>192.68.80.1</ip−address>
 <bind−filters>
 <route−map>
 <name>ROUTEMAP3</name>
 <direct>out</direct>
 </route−map>
 </bind−filters>
 </neighbor>
 </neighbors>
 </ipv4−address−family>
 </address−families>
 </bgprouter>

</bgp>

Manager M1

<bgp>
R3

/bgp/filters/route−map[map−tag=’ROUTEMAP1’]

read only

 <filters>
 <as−path>
 <name>ALLOWED_AS</name>
 <state>permit</state>
 <regexp>^3_$</regexp>
 </as−path>

 <map−tag>ROUTEMAP1</map−tag>
 <sequences>
 <seq−number>10</seq−number>
 <state>permit</state>
 <set>
 <weight>50</weight>
 </set>
 </sequences>

 <route−map>
 <map−tag>ROUTEMAP2</map−tag>
 <sequences>
 <seq−number>10</seq−number>
 <state>permit</state>
 <set>
 <weight>100</weight>
 </set>
 </sequences>
 </route−map>
 <route−map>
 <map−tag>ROUTEMAP3</map−tag>
 <sequences>
 <seq−number>10</seq−number>
 <state>permit</state>
 <match>
 <as−path>
 <as−path−name>ALLOWED_AS</as−path−name>
 </as−path>
 </match>
 </sequences>
 </route−map>
 </filters>

 <route−map>

 </route−map>

Figure 4: Network Sample XML configuration

WAN

RBAC system

XML security

NetConf

role key for encryption and authentication

application level access control

CPa CPb

EQ

Key distribution center

K role

roleK

�� ����

role

Figure 5: Conceptual security components

In order to address an efficient security plane,
we consider a distributed Role Based Access
Control (RBAC [14]) type mechanism, in which
roles are distributed on the fly. However, access
is performed in a non-intermediated way, mean-
ing that the architecture delivers tokens (confi-
dentiality and authentication keys) to principals.
To prove the ownership of tokens, an entity signs
and cyphers the messages with the keys bound
to the roles. In order to manage this dynamicity,
we need a fast mechanism for the key exchange
system. This is particularly obvious if role revo-
cations are considered.

We consider in this article an XML-based
management environment where agents use the
Netconf protocol. We will give only a high level
presentation of the general architecture. A de-
tailed description can be found in [7]. There-
fore, we propose the use of already defined XML
security paradigms (XML-Signature [3], XML-
Encryption [13]) to perform data access control.

Our security model for Network configuration
is built around several main entities depicted on
Figure 5. While configuration providers (CP)
act like a data configuration source, the man-
aged devices (EQ) run a Netconf agent which
receives RPC requests from the different config-

uration providers. For instance, CPa and CPb

can load different partial configurations onto an
agent configuration making for a multi-source
configuration. These configurations are loaded
with respect to different access rights; an agent
must be able to decrypt incoming configurations
and to bind them to some access rights. We will
describe in this section the mechanisms needed
to meet these requirements. An RBAC man-
ager is responsible for security mediation among
configuration providers and managed devices.
This entity provides the different security ser-
vices: authentication, data integrity, confiden-
tiality and access control. The RBAC manager
hosts RBAC policies which are dynamically de-
ployed on our network entities.

RBAC allows high level and scalable access
control process and configuration. The RBAC
model consists in a set of users, roles, per-
missions (operations on resources) and sessions.
The originality of the RBAC model is that per-
missions are not granted to users but to roles,
thus allowing an easy reconfiguration when a
user changes his activity. A role describes a
job function or a position within an organiza-
tion. The RBAC model allows the description
of complex access control policies while reducing
errors and administration costs. Introduction of
administrative roles and role hierarchies makes
it possible to considerably reduce the amount
of associations representing permissions to users
allocation.

All agents store an RBAC policy describing
the permissions that a role is allowed to perform.
Figure 16 is an example of such a permission set.
In this model, the managers send their requests
on behalf of a role. Therefore an agent is able to
authenticate and decrypt the requests because it
knows the role in use. For each role, the archi-
tecture provides one key for authentication and
one key for encryption.

After the role authentication and decryption,
an agent can start the access control step. Ac-
cording to its local policy and to the role used,
it can decide if the request is allowed or not.

In the following, a scenario showing security
usage, interests and consequences will be pre-
sented in a BGP context. We will consider the
topology illustrated in Figure 4. In the sce-
nario, the administrator of AS 3 defined two
roles: roleR1 for the router R1 and roleR2 for
the router R2. In order to allow R1 to read the
route-map ROUTEMAP1, a permission must be
added to the RBAC policy (see Figure 6). Next,
this permission is associated to role roleR1.

There are some other XML-based access con-

<roles>
 <role id="5">
 <name>roleR1</name>
 <junior−roles/>
 </role>
</roles>
<permission−assignements>
 <permission−assignement roleRef="5" permRef="10" id="1"/>
 [...]
</permission−assignements>
<permissions>
 <permission id="10" type="+" op="r">
 <scope>/bgp/filters/route−map[map−tag="ROUTEMAP1"]</scope>
 </permission>
 [...]
</permissions>

Permission
"route−map"

Role
"R1"

Figure 6: XML-based RBAC policy

trol languages like, for instance, OASIS eXtensi-
ble Access Control Markup Language (XACML)
[25]. This standard allows to describe access
control policies. OASIS also provides a spe-
cific profile for RBAC [24]. The reason why
we did not write our policy with RBAC profile
of XACML is that it has an important restric-
tion compared with the original RBAC model.
RBAC profile of XACML does not allow dynam-
icity. It is not yet possible to activate and deac-
tivate roles within a session. It means that all
available roles for a given user are activated by
default. Therefore, dynamic separation of duty
is not supported.

Our approach allows to grant privileges to
some entities and describes the protected re-
sources with XPath language. All requests are
authenticated and encrypted with a key. Each
key is bound to a role and a key distribution
mechanism is leveraged. This architecture is
benchmarked later in the paper. A complete re-
view of the security architecture can be found in
our paper [7].

Another alternative is SSH ([27]), which how-
ever does not include an access control mecha-
nism. SSH is the candidate transport protocol
for Netconf, endorsed by the IETF. It is based
on PKI and therefore, allows authentication, in-
tegrity and encryption. Like XML-Encryption,
SSH supports many encryption algorithms like
3DES or AES. A negotiation is used between
the client and server to choose the best available
algorithm.

2.2.2 Extended filtering and scoping

If we consider the required Netconf request to
modify the filters configuration, illustrated in
Figure 7.a, such that a final sequence has to be
added to every route-map whose map-tag is dif-
ferent than ROUTEMAP2, then the possible
solutions offered by the current Netconf specifi-
cations are either to make several requests, (one

for each route-map see Figure 7.b) or to create a
more complex request (as shown in Figure 7.c).
Obviously, as more route-map and/or sequences
are to be added, the requests become very com-
plex and cumbersome.

Our first extension to the default filtering
mechanisms is to extend the syntax of the edit-
config to allow a ”xpath” attribute in every XML
node inside the <config> tag. For example, the
equivalent request for the previous example is
shown in Figure 8 (Looking into the Values).

Note that the number of route-maps in the
configuration does not affect the size of the re-
quest. So rather than explicitly use every value
that has to match with the configuration, our
approach allows to specify it in a XPath expres-
sion.

Our second extension is to design a new op-
eration similar to edit-config accepting a XSLT
document rather than a XML as input. In this
case the XSLT document will create a valid edit-
config by transforming the actual XML configu-
ration document in an standard edit-config XML
request. The equivalent configuration of the pre-
vious example should look like shown in Fig-
ure 8 (Pushing XSLT to generate the edit-config
XML).

Note that this proposal has the same advan-
tages than the first extension mechanism. The
resulting request document, which will be a stan-
dard edit-config, is similar to the one shown in
Figure 7 (XML Possible Request 2).

A variation of the second extension is to mod-
ify the XML configuration by an XSLT request,
but in this case, the input XSLT document will
transform the current XML configuration to the
desired one. An example is illustrated in Figure
8 (Modify the XML configuration by an XSLT).
Such an approach suits well for configuration
deployement task in large scale networks, espe-
cially when a master configuration file stored
in XML (in an XML proprietary format like
JunosScript [18]) has to be adapted to a given
network device. From a conceptual point of
view, this approach is a limited active network-
ing scheme, where only XSLT expressed code is
injected to be executed on an agent.

One issue that is not well specified in the Net-
conf specification is how an agent should deal
with an edit-config request in the search of the
nodes which have one ancestor with attribute
operation. Consider the example illustrated in
Figure 9 (Ambiguity in the request).

The activated-group and the description may
be added to every neighbor or the description
may be added to all the neighbors that have set

Figure 9: Proposal for resolve the Ambiguity Ex-
ample

an activated-group as Group.
Our extension is to resolve this ambiguity by

extending the specification of the edit-config and
introduce an attribute searchnode, in order to
make the request explicit. With this extension,
the edit-config request for the example shown in
Figure 9 (Ambiguity in the request) will merge
to every neighbor the activated-group and the
description. The example of Specifying Search
Nodes in the same figure adds the description to
all the neighbors whose activated-group is equal
to group.

2.2.3 Compression extension

As XML language introduces a potentially huge
verbosity (see Figure 4), use of compression can
dramatically save network bandwidth consump-
tion. Moreover, it gives a simple way to avoid
clear text transmissions.

Using compression is of interest, in particular
in combination with security features. Since pro-
cessing time for encryption increases fast with
the message size, compression before encryption
can reduce encryption processing cost. These is-
sues are illustrated and discussed on the basis
of the performance tests presented in the next
section.

3 Experimental perfor-

mance evaluation

To validate and evaluate the proposed security
architecture and the compression module, a pro-
totype [8] has been implemented. The bench-
marking tests are done locally on a Pentium 4
3.2GHz with 2 Go RAM, see Table 1.

In order to give an overview of the global
performances, the agent can manage up to 17
get-config requests per second when no logging
mechanism and no security is deployed. When
security (encryption, RBAC) and compression
are enabled, the performance decreases to 8 re-

Figure 7: Motivation XML Example

Figure 8: XML Advanced Configuration Proposal

Description Caracteristics

RAM memory 2 Gigabytes

CPU Pentium 4, 3.2 GHz

OS Linux FC 4, kernel 2.6.12

python 2.4

security libraries PyXMLSec, paramiko

crypto. keys length 128 bits

Table 1: Test environment caracteristics

quests per second. For the benchmarking, we
used only get-config operations. These repre-
sent the worst case for security performance be-
cause they require a low CPU consumption. If
the tests are done on complex requests, the CPU
consumption dedicated for security will be neg-
ligible compared with the time to perform the
Netconf request. With fast requests, it is possi-
ble to highlight the influence of security mecha-
nisms on the global processing time. However,
we compare compression and encryption perfor-
mances for both large as well as small sized XML
documents.

Figure 10 illustrates different use cases: (1)
encryption + compression, (2) encryption, (3)
compression, (4) default. The measures are done
within the agent. For this test, 7 different get-
config requests, applying either subtree filtering
or XPath, are performed. Each of them is eval-
uated 64 times and an average of the processing
time is computed. This average is represented
on the figure. Each column relates to the total
processing time of a get-request.

The results show that compression and de-
compression time is insignificant compared with
the global request processing time. Also RBAC
processing takes roughly 6% of the global
time. Encryption represents 9.5% and decryp-
tion 3.6%. Using both cryptography, compres-
sion and access control consumes about 20% of
the global time.

Figure 10: Global request processing time

Note that the total processing time increases
by a factor 60 if a XML Schema validator sys-
tematically checks the received messages with
the Netconf XML schema. The total average
processing time is changing from 11 ms to 650
ms. In such a case, the proportion of CPU
time dedicated to compression and security de-
creases. CPU or memory consumption due to
XPath technology is of minor importance com-
pared with the use of a XML schema valida-
tor. Filtering with XPath takes less then 1 ms.
Checking the validity of a Netconf message with
XML Schema takes more than 600 ms. These
results give an overview of the global perfor-
mances of this implementation as well as the
performance of each functionnality relatively to
the others.

Table 2 displays the result response time for
different typical data retrieval tests. The agent
and the manager are located on two devices con-
nected to a hub and communicate over SSH. For
this test only, the agent is located on a laptop
centrino 1.6GHz with 1 Gigabytes of memory
and runnning Fedora Core 4. The global request
processing time per agent remains the same as
the previous results, but on the manager side,
the results are as follows. The manager is send-
ing 1000 get-config requests using XPath capa-
bility and then, the average response time is
computed for each. The tested BGP configu-
ration is realistic enough to be used in a real
network. While a test on a sample BGP config-
uration gives a response time of 58.40 ms, a re-
alistic BGP configuration is retrieved in around
200 ms. These results assess the suitability of
Netconf for such tasks.

Management data Response time

network interfaces 38.73
network routes 49.71
BGP configuration 200.08
RBAC policy 43.05

Table 2: Average response time in ms

3.1 On the use of compression

To illustrate the interest of compression, Fig-
ure 11 considers different examples for several
message sizes. Please note that this scale is not
uniform-sized. Due to the very heterogeneous
distribution of XML document sizes, a uniform-
sized scale would have not fitted in the figure
layout. The sizes of many Netconf requests (get-

config using XPath, ok rpc-reply, copy using
ftp) range roughly between 100 and 300 bytes.
These Netconf messages don’t really take advan-
tage of compression. We approximate to at least
50% the pourcentage of such Netconf messages
among all processed messages. The size of a
hello message with 6 capabilities is 500 bytes.
However, the size of a very small RBAC con-
figuration (three users, four roles, 6 permissions
and few relationships between them) as well as a
extremely basic network interface configuration
are about 2500 bytes. Comparatively, the size of
a sample BGP configuration is about 5000 bytes
but can easily grow to 10000 bytes. The size
of the full list of rpms on a typical machine is
25000 bytes. The response size of a get-config
on a Netconf agent implementing a larger data
model can be evaluated to hundreds of kilobytes.
While Figure 11 gives an overview of some typi-
cal Netconf message or configuration sizes, some
of them can be much greater than the given val-
ues. For instance, an edit-config request could
reach more than 30 kilobytes.

Figure 12 shows the compression results on ar-
bitrary XML documents. We limited our mea-
surements to the original document size of 25
kilobytes for which the compression rate reaches
65%. These measurements prove the high inter-
est in using compression, since compression sig-
nificantly decreases the size of transported XML
configurations.

Figure 12 also gives the CPU time consump-
tion of compression and decompression, depend-
ing on the document size. The average time for
compression is 5 times greater than decompres-
sion and increases slowly with the document size.
In the worst case, which is when the processing
time request is very small (simple get-config for
instance), compression and decompression pro-
cessing time take less than 1% of the total mes-
sage processing.

To conclude on the use of compression, we
observed that bandwidth is used efficiently and
CPU time consumption is not significant when
compared to the global processing time.

3.2 Integrity and confidentiality

Figure 13 gives the sizes of encrypted and de-
crypted Netconf requests, depending on the orig-
inal document size. The encryption algorithms
are tripledes-cbc and aes128-cbc and both use
a 128 bits key. For the tests, we considered a
set of sample XML documents having various
sizes, and applied 100 times each encryption al-
gorithms for each document. Then, an average

is computed for each document. Applying these
algorithms on our document set, we observe that
the encrypted document size increases linearly
with the original document size. While the en-
crypted document size is the same for both en-
cryption algorithms, aes128-cbc consumes less
CPU than tripledes-cbc for both encryption and
decryption. Therefore, aes128-cbc, which is rec-
ommended by NSA for strength reasons, is the
best choice.

Figure 13 also gives the CPU time consump-
tion of the encryption and decryption process,
depending on the document size. Encryption
and decryption take less than 3 ms for docu-
ments sizes less than 10000 bytes. In the worst
case, the sum of these times represents 13% of
the global Netconf processing time. Again, the
worst case occurs when the time to build the
XML response is very low. In that case, the
CPU consumption proportion of encryption and
decryption is maximal.

3.3 Using both compression and

encryption

An experiment comparing the processing time
of compression, encryption and compres-
sion+encryption on XML documents having dif-
ferent sizes led us to the following conclusion:
when the size of the document reaches a thresh-
old, it is faster to perform first compression and
then encryption than to only encrypt the docu-
ment. It means that beyond this threshold, us-
ing both compression and encryption allows not
only to save network bandwidth but also to de-
crease the agent CPU consumption at the same
time.

Figure 14 shows that
compression+encryption line is crossing
the encryption line. This event happens when
the document size reaches roughly 4 kilobytes,
which is actually the size of a very simple BGP
configuration.

3.4 Performance of XPath versus

subtree filtering

In order to compare the performances of
both node selection methods, XPath and sub-
tree filtering, we prepared 8 get-config re-
quests with subtree filtering and their equiv-
alent XPath based requests. The requests
are available in http://www.loria.fr/∽cridligv/-
xpathSubtree.html. We used as many different
options as possible in subtree filtering requests:
selection nodes, content match nodes, element

document
size (bytes)

0 100 200 300 400 500 1000 2000 3000 4000 5000 10000 20000 30000

BGP
configuration

RBAC
policyhello

delete−
config
request

Installed
RPM
list

config
interfaces
network
simple

copy−config

errorok

edit−config request

XPath subtree filtering

get−config request

Figure 11: Overview of Netconf message sizes

 0

 5000

 10000

 15000

 20000

 25000

 0 5000 10000 15000 20000 25000

do
cu

m
en

t s
iz

e
(b

yt
es

)

document size (bytes)

Document size with compression

with compression
without compression

 0

 500

 1000

 1500

 2000

 2500

 0 5000 10000 15000 20000 25000

pr
oc

es
si

ng
 ti

m
e

(1
0^

-6
 s

)

document size (bytes)

CPU time consumption for compression/decompression

compression time
decompression time

Figure 12: Compression results

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 5000 10000 15000 20000 25000

do
cu

m
en

t s
iz

e
(b

yt
es

)

document size (bytes)

tripledes-cbc encryption
aes128-cbc encryption

without encryption

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 0 5000 10000 15000 20000 25000

pr
oc

es
si

ng
 ti

m
e

(1
0^

-6
 s

)

document size (bytes)

Encryption time tripledes-cbc
Decryption time tripledes-cbc
Encryption time aes128-cbc
Decryption time aes128-cbc

Figure 13: Encryption results

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 5000 10000 15000 20000 25000

pr
oc

es
si

ng
 ti

m
e

(1
0^

-6
 s

)

document size (bytes)

compression time
encryption time

Compression/Encryption time

Figure 14: CPU time consumption with different
combinations

nodes. Each request is sent 10 times and then
an average time is computed. This experiments
showed us how subtree filtering is adapted to
build a customized document and how XPath is
efficient to select nodes on more complex crite-
ria (for instance, conditions on text node value
or node number). Subtree filtering is somewhere
between XPath and XSLT: it allows to select
nodes but also to apply a mask to the configura-
tion. It is always possible to translate a subtree
filtering request to XPath but the philosophy is
different and both methods are useful and com-
plementary.

The results displayed on Table 3 show that
subtree filtering and XPath have similar aver-
age processing time. Each request is made 1000
times and an average is computed afterwards.
The two filtering approaches are slightly dif-
ferent. When XPath is adapted to select iso-
lated data items, subtree filtering is more suit-
able to build complex views made of different
parts of the config and to visualize them pre-
viously in a template-like document. In order
to build a document made of completely dif-
ferent parts with Xpath, a manager has to use
a | symbol to join the various parts of the se-
lected nodes. However, the subtree filtering can
only use absolute addressing while XPath allows
both relative and absolute expressions like, for
instance, //iface[name=’eth0’] or /netconf/net-
work/interfaces/iface[name=’eth0’]. The advan-
tages of XPath are 1) it consumes less bandwidth
since the requests are much more compact than
subtree filtering and, 2) it does not require an
important effort from the managers.

To weight these results, it is important to note
that the total request processing time is much
higher than the filtering processing time, what-

ever be the selection method. To conclude on
filtering, both approaches have their advantages
and are complementary.

3.5 RBAC model benchmarking

We have also assessed the impact of access con-
trol on CPU time consumption. We imple-
mented a RBAC policy with XPath as a resource
addressing scheme. In our model, a Netconf re-
quest is sent on behalf of a role. The agent is
able to build the list of permissions for that role
and all its junior roles. The model implements
a role hierarchy: a role inherits the permissions
of all its junior roles. The results, illustrated on
Figure 15, show the additional processing time
needed for the access control mechanism. These
values also outline the effect of access control
mechanism and the number of permissions. The
experiments were performed with 0 to 9 permis-
sions. As expected, the CPU time increases lin-
early with the number of rules.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 1 2 3 4 5 6 7 8 9

pr
oc

es
si

ng
 ti

m
e

(1
0^

-6
 s

)

permissions number

encryption time

Figure 15: Influence of permissions number

Figure 16 illustrates the set of permissions
used for the benchmarking. They are expressed
using the XPath syntax. As shown with the per-
mission 1 (allowing read and write operations on
all permissions with id equal to 5), the access
control can also be performed on the access con-
trol policy itself.

3.6 Integrated security vs SSH

In order to compare the performances between
the two different underlying secure application
protocols (our extended XML-based security
framework and SSH), a Netconf manager is us-
ing both protocols and sending 1000 times the
8th get-config requests using XPath of the Table

Filtering 1 2 3 4 5 6 7 8 9 10 11 12

Subtree 1171 1482 694 463 477 1503 2114 1371 919 775 1733 863

Xpath 1173 1039 1219 194 687 1286 2828 1973 852 916 1332 2368

Table 3: Performances of node selection methods in µs

<permissions>

<permission id="1" type="+" op="rw">

<scope>/netconf/security/rbac/permissions

/permission[@id=’5’]</scope>

</permission>

<permission id="2" type="+" op="rw">

<scope>/netconf/interfaces</scope>

</permission>

<permission id="3" type="+" op="rw">

<scope>/netconf/routing/bgp</scope>

</permission>

<permission id="4" type="+" op="rw">

<scope>/netconf/system</scope>

</permission>

<permission id="5" type="+" op="r">

<scope>/netconf/log</scope>

</permission>

<permission id="6" type="+" op="rw">

<scope>/netconf/security/test/users

</scope>

</permission>

<permission id="7" type="+" op="rw">

<scope>/netconf/security/test/roles

/role[@id=’2’]</scope>

</permission>

<permission id="8" type="+" op="rw">

<scope>/netconf/security/test/roles

/role[@id=’1’]/junior-roles</scope>

</permission>

Figure 16: Set of permissions

3. When running over SSH, the total time be-
tween the emission of the first request and the
reception of the last response is 16.77 seconds.
When running over XML-Encryption, it takes
15.62 seconds. Therefore, processing times are
quite similar.

SSH session establishment is not taken into ac-
count. Similarly, key distribution time for XML-
Encryption is not measured here, since this is a
stationary phase test.

4 Prototyping of a Netconf

framework

This section gives an overview of the Netconf
test platform. It consists of a command line
manager, a web-based manager and an agent.
Only the implementation design of the two last
ones is presented. In order to allow a more
and more completed data model, the architec-
ture can be easily extended with plugins that
are called modules in this implementation. A
detailed overview of the implementation can be
found in [6].

4.1 Netconf agent implementation

Figure 17 illustrates the architecture of our Net-
conf agent. The agent is organized into sev-
eral functional blocks. The Socket layer is in
charge of assembling the incoming Netconf mes-
sages and also sending prepared messages. The
RPC layer checks the <rpc> level, optionally
compress/decompress and encrypt/decrypt the
messages. The Request layer function is to ex-
tract the Netconf operation embedded in the
<rpc> node. Then it calls the related method
(get-config, edit-config, ...) from the Dispatcher
block.

The Dispatcher block is responsible for per-
forming the requested operation. It uses three
functional blocks that are called serially. The
Modules Resolver is able to retrieve the list of
modules that can handle the Netconf opera-
tion. A Module Register Table, storing XPath
expressions related to each module, is parsed to
bind the data received to the right XPath(). A
modules list is returned to the Dispatcher. All

WAN

Netconf operation

module (Content)

Singleton

Generic server

Operation

Server

Module

Rpcxmlsec_serverSSH_server

netconfdSession
Manager

Session

module
resolver

response
builder

response
filter

Easy_Module route_Moduleif_Module

rbac_Module

asteriks_Module

...

bgp_Module

design pattern

Command
design pattern

module inheritance
tree

Vendor_Module

multi−socket
SSH or XMLSec

Get_config Edit_config Close_session Vendor_operation

Figure 17: Netconf agent functional architecture

these modules are queried by the XML Response
Builder to perform the operation. In the case
of a get-config and if security is activated, the
XML Response Filter removes all the data that
the role is not allowed to read.

In order to extend our agent with a new mod-
ule, a developer must provide a class that in-
herits a generic Module class and overrides the
Netconf operations implemented in Module. The
Module class defines the methods signatures and
returns Netconf errors in case the method (for
instance get-config) is not implemented in that
particular new module. The modules hierarchy
is illustrated in Figure 18. The top level class is
the generic module implementation. In order to
make development of new modules easier, copy-
config is generic and is implemented using edit-
config. Other methods generate <rpc-error>

by default, in case the inheriting module does
not implement the current method (even if it
should). A set of operational modules inherit
directly from the Module class: one is dedicated
to network interfaces management, one enbales
BGP router management and one is for firewall
rules. Easy Module is a more specific imple-
mentation that can be inherited to help Netconf
module developers. All modules must be regis-
tered in a configuration file in order to be loaded
into memory at startup.

Figure 19 illustrates the code of a ”route”
module. It inherits from Module class and im-
plements a getConfig method. EnSuite soft-
ware, which consists of the manager and the
clients, is freely available in our web page:
http://madynes.loria.fr/ensuite. For a complete
presentation, the reader is refered to [6].

5 Related works

In an XML environment, the first network man-
agement protocol to propose security mecha-
nisms was Junoscript [18]. It relies on Secure
Shell (SSH [27]) to provide authentication and
encryption independently of the XML applica-
tion layer. It also provides mechanisms to man-
ager identity authentication through a login/-
password process. The main difference with our
approach is that we provide an integrated se-
curity management. ACL rules are integrated
directly in the XML device configuration docu-
ment and bound to RBAC roles instead of users
for scalability issues. Contrary to SSH, where
keys are independent of the application level, the
keys for authentication and confidentiality are
deeply bound to roles and exchanged dynami-
cally in our architecture. In our approach, a
message emitted under a role is encrypted and
authenticated with the keys corresponding to
that role. This provides a flexible way to inte-
grate authentication, confidentiality and access
control in the same architectural plane.

Some intermediate solutions for XML man-
agement were proposed with XML/SNMP gate-
ways [26] [20]. These gateways allow XML-
based managers to interact transparently with
SNMP agents. This provides a quite flexible way
to build management application with all the
panel of XML tools. However, no security con-
cerns were taken into account apart from using
HTTPS between the managers and the gateway.
The use of SNMPv3 implies to define user ac-
counts, key distribution and access control poli-
cies. In [9], we extend these gateways with secu-
rity features and provide an end-to-end security

Interface_Module

+ Public Method
Protected Method
− Private Method

Firewall_Module

+ Public Method
Protected Method
− Private Method

RBAC_Module

+ Public Method
Protected Method
− Private Method

BGP_Module

+ Public Method
Protected Method
− Private Method

Module

+ Public copy−config
+ Public get−config
+ Public edit−config

Easy_Module

+ Public Method
Protected Method
− Private Method

Module
Resolver

register to

if if if if

Module XPath expression

BGP_Module

Firewall_Module /security/firewall

/config/network/bgp

Module Register Table

... ...

XML
configuration

Figure 18: Module inheritance in YencaP

continuum.

We give in this paragraph an overview of the
XML security concepts which have been devel-
oped mostly for the security needs of web ser-
vices. Over the past years, some XML languages
have been defined to address a set of security re-
quirements. Many existing security mechanisms
have been adapted to XML languages so that it
is now possible not only to encrypt but also to
digitally sign all or parts of an XML document.
The World Wide Web consortium published a
set of recommendations that describe the syntax
of XML tokens and the way of handling such el-
ements. In particular, XML-DigitalSignature [3]
describes the syntax for digital signature and its
linked information such that the algorithms and
keys to use or the way to retrieve them. More-
over, XML-Encryption [13] provides the guide-
lines to generate encrypted XML elements and
to link them with security credentials. XML-
Canonicalization aims at describing the prepro-
cessing of an XML element before it is either en-
crypted or authenticated. Indeed, some equiv-
alent XML elements can be written in differ-
ent ways depending on the application that han-
dles it. Several parts such as white spaces and
namespaces can be changed during the different
processes. This introduces some problems when
XML elements need to be hashed for authentica-
tion. XML-Canonicalization [4] defines a set of

rules to format the elements in such a way that
it will always produce the same hash. Since we
also address distributed XML applications, we
use the XML security framework ([3, 13, 4]) to
protect Netconf messages.

Our approach differs from a centralized RBAC
policy in the sense that the policy is distributed.
There is no central RBAC server evaluating all
the requests to perform access control on XML
documents. We rather use some rules integrated
in XML documents. This approach is inspired
from SyncML [12] [2]. A similar approach has
been submitted recently in the Netconf mailing
list [1].

Lupu et al. presented in [17] [15], [16] some
policy-based approaches to address the access
control and organization issue in the context of
distributed systems. The authors described in
particular the use of hierarchical roles to orga-
nize the principals interacting with a system.
They also described the relationships between
these roles. Our approach differs in that it uses
an existing RBAC model, there is no central au-
thorization server and it is deeply bound to cryp-
tography.

Issues concerning SNMP protocol are pre-
sented in [23]. The authors highlight three main
problems arising when a manager is retrieving
large amounts of MIB data. These problems are
latency, network overhead and table retrieval.

import os, string

from Ft.Xml.Domlette import NonvalidatingReader, implementation

from Ft.Xml import XPath, EMPTY_NAMESPACE

from Ft.Xml.Domlette import NonvalidatingReader, PrettyPrint

from Modules.modulereply import ModuleReply

from Modules.module import Module

class Route_Module(Module):

""" Main class of Route module. Allows routing table management. ""

def __init__(self,parameters):

""" Create an instance and initialize the structure needed by it."""

self.dict = ["Destination", "Passerelle", "Genmask", "Indic",

"Metric", "Ref", "Use", "Iface"]

def getConfig(self):

route = self.getRoute()

self.doc = implementation.createDocument(EMPTY_NAMESPACE, None, None)

element = self.doc.createElementNS(EMPTY_NAMESPACE,"route")

self.doc.appendChild(element)

for routeEntry in route:

entryelement = self.doc.createElementNS(EMPTY_NAMESPACE,"route-entry")

element.appendChild(entryelement)

for data in self.dict:

datanode = self.doc.createElementNS(EMPTY_NAMESPACE,data)

textNode = self.doc.createTextNode(routeEntry[data])

datanode.appendChild(textNode)

entryelement.appendChild(datanode)

modulereply = ModuleReply(replynode=self.doc.documentElement)

return modulereply

def getRoute(self):

route = []

res = os.popen3("route")

Read stdout output

resultat = res[1].read()

lignes = string.split(resultat, "\n")

lignes = lignes[2:]

for ligne in lignes:

entry = string.split(ligne,’ ’)

for i in range(0,entry.count(’’)):

entry.remove(’’)

if entry != []:

routeEntry = {}

for i in range(0, len(self.dict)):

routeEntry[self.dict[i]] = entry[i]

route.append(routeEntry)

return route

Figure 19: Sample module code example

These are mainly due to the way operations such
as get-next and get-bulk are defined and also to
the data encoding. To deal with these issues, the
authors propose some alternative approaches by
considering other encodings, compression, pro-
tocols and an new get-subtree operation in or-
der to optimize network bandwidth and CPU
consumption and easiness to build management
application.

In [5], the authors proposed a security per-
formance analysis of SNMPv3. This analysis
proves the expected performance degradation
when moving from SNMPv2c to SNMPv3. This
relative degradation, due to the introduced se-
curity features, is to be compared with the huge
improvement introduced by security support.

In [19], some performances analysis related
to Web Services to SNMP gateways are made.
They also studied the influence of using secu-
rity (HTTP vs HTTPS) and compression (zlib
algorithm) on the network bandwidth consump-
tion. The authors propose an interesting study
by comparing protocol-level (Get, GetNext) and
object-level (GetIfTable) gateways and their in-
fluence on bandwidth consumption.

In [11], a comparison between SNMP and
CORBA is achieved. The study shows that
CORBA is more suitable (bandwidth consump-
tion) for large data retrieval, while SNMP
has better performance for a context of small
amount of data exchange and limited device
memory.

6 Conclusion

This paper proposes a set of extensions for Net-
conf configuration protocol along with a real life
performance evaluation. These extensions ad-
dress security issues and introduce a new ap-
proach for the edit-config operation.

The security framework that was proposed in
a previous publication [7] is applied for a BGP
context. It illustrates a flexible access control
policy that grants well-defined and controlled
privileges on BGP router configurations. This
access control policy assesses who can read or
write the configuration data expressed in XML
encoding and illustrates the suitability of XPath
to address and protect such hierarchical XML re-
sources. The architecture relies on a distributed
encryption key system, each key being bound to
a role. This means that the access control pol-
icy is deeply integrated with the confidentiality
and authentication service deployed with XML
security standards in a full security framework

for Netconf.
The second extension is relative to the use of a

existing XML technology to edit XML configu-
ration data. It reviews the edit-config operation
and more particularly the merge attribute and
points out the advantages of using XSLT instead
or complementarily. XSLT, which is specialized
in transforming XML documents, is popular in
the developpers community and therefore could
be enforced more easily by administrators or net-
work management platform developers.

In the second part of the paper, the perfor-
mance evaluation of the model is fully detailed.
The results ensure the feasability of such a secu-
rity framework, comparing the influence of dif-
ferent options: encryption, compression, access
control with our proposed security model and a
brief comparison with SSH. The CPU time con-
sumption dedicated to security is acceptable and
compression not only dramatically decreases the
network overhead introduced by XML encoding
but also speeds up the encryption processing
time. A comparison with another Netconf im-
plementation would be helpful but no such other
open-source implementation exists.

The last part overviews the design and archi-
tecture of our free Netconf software suite (En-
Suite, http://madynes.loria.fr/ensuite) which
consists of a web-based manager and the agent
itself. The agent allows plugins addition thanks
to a modular architecture and supports SSH as
well as our own security model. It also sup-
ports network interface, route, BGP configura-
tion management.

References

[1] Sandeep Adwankar. NetConf Data Model.
Internet Draft, July 2004.

[2] Open Mobile Alliance. SyncML Consor-
tium. http://www.syncml.org.

[3] Mark Bartel, John Boyer, Barb Fox, Brian
LaMacchia, and Ed Simon. XML-Signature
Syntax and Processing. W3C Recommen-
dation, February 2002.

[4] John Boyer, Donald E. Eastlake, and
Joseph Reagle. Exclusive XML Canonical-
ization Version 1.0. W3C Recommendation,
July 2002.

[5] A. Corrente and L. Tura. Security Perfor-
mance Analysis of SNMPv3 with Respect
to SNMPv2c. In Proceedings of the 2004

IEEE/IFIP Network Operations and Man-
agement Symposium, NOMS 2004, pages
729–742, 2004.

[6] V. Cridlig, H. Abdelnur, J. Bourdellon, and
R. State. A NetConf Network Management
Suite: ENSUITE. In Proceedings of the5th
IEEE International Workshop on IP Oper-
ations & Management (IPOM 2005), Octo-
ber 2005.

[7] V. Cridlig, R. State, and O. Festor. An
Integrated Security Framework for XML
based Management. In Proceedings of
the Ninth IFIP/IEEE International Sym-
posium on Integrated Network Management
(IM 2005), IFIP Conference Proceedings,
May 2005.

[8] Vincent Cridlig and Radu State. Yencap.
http://madynes.loria.fr/ensuite.

[9] Vincent Cridlig, Radu State, and Olivier
Festor. Role based access control for XML
based management gateway. In Submit-
ted to the 15th IFIP/IEEE Distributed Sys-
tems: Operations and Management, DSOM
2004, December 2004.

[10] R. Enns. NETCONF Configuration Proto-
col. Internet Draft, February 2005.

[11] Q. Gu and A. Marshall. Network Manage-
ment Performance Analysis and Scalability
Tests: SNMP vs. CORBA. In Proceedings
of the 2004 IEEE/IFIP Network Operations
and Management Symposium, NOMS 2004,
pages 701–714, 2004.

[12] Uwe Hansmann, Riku Mettala, Apra-
tim Purakayastha, and Peter Thomp-
son. SyncML: Synchronizing and Managing
Your Mobile Data. Prentice Hall PTR; 1st
edition, September 2002.

[13] Takeshi Imamura, Blair Dillaway, and
Ed Simon. XML Encryption Syntax and
Processing. W3C Recommendation, De-
cember 2002.

[14] R. Kuhn. Role Based Access Control. NIST
Standard Draft, April 2003.

[15] E. Lupu, Z. Milosevic, and M. Sloman. Use
of Roles and Policies for Specifying, and
Managing a Virtual Enterprise. In Ninth
IEEE International Workshop on Research
Issues on Data Engineering: Information
Technology for Virtual Enterprises (RIDE-
VE’99), March 1999.

[16] E. Lupu and M. Sloman. Reconciling Role
Based Management and Role Based Access
Control. In Second ACM Workshop on Role
Based Access Control (RBAC’97), pages
135–142. ACM Press, November 1997.

[17] E. Lupu and M. Sloman. Towards a Role
Based Framework for Distributed Systems
Management. Journal of Network and Sys-
tems Management, 5(1):5–30, 1997.

[18] Tony Mauro. JUNOScript API Guide
for JUNOS Release 6.1. Juniper Net-
works, 1194 North Mathilda Avenue. Sun-
nyvale, CA 94089, USA, sonia saruba edi-
tion, September 2003.

[19] Ricardo Neisse, Ricardo Lemos Vianna,
Lissandro Zambenedetti Granville, Maria
Janilce Bosquiroli Almeida, and Liane Mar-
garida Tarouco. Implementation and Band-
width Consumption Evaluation of SNMP
to Web Services Gateways. In Proceedings
of the 2004 IEEE/IFIP Network Operations
and Management Symposium, NOMS 2004,
pages 715–728, 2004.

[20] Yoon-Jung Oh, Hong-Taek Ju, Mi-Jung
Choi, and James Won-Ki Hong. Inter-
action Translation Methods for XML/S-
NMP Gateway. In Metin Feridun, Peter G.
Kropf, and Gilbert Babin, editors, Proceed-
ings of the 13th IFIP/IEEE International
Workshop on Distributed Systems: Opera-
tions and Management, DSOM 2002, vol-
ume 2506 of Lecture Notes in Computer Sci-
ence, pages 54–65. Springer, October 2002.

[21] Y. Rekhter and T. Li. A Border Gate-
way Protocol 4 (BGP-4). STD 62,
http://www.ietf.org/rfc/rfc1771.txt,
March 1995.

[22] G. Sackett. Cisco Router Handbook.
McGraw-Hill Companies; 2nd edition, De-
cember 2000.

[23] Ron Sprenkels and Jean-Philippe Martin-
Flatin. Bulk Transfers of MIB Data. The
Simple Times, 7(1):1–7, March 1999.

[24] OASIS Standard. Core and hierarchi-
cal role based access control (RBAC)
profile of XACML v2.0. http://docs.oasis-
open.org/xacml/2.0/access control-xacml-
2.0-rbac-profile1-spec-os.pdf, February
2005.

[25] OASIS Standard. XACML 2.0 Core: eX-
tensible Access Control Markup Language
(XACML) Version 2.0. http://www.oasis-
open.org, February 2005.

[26] Frank Strauß and Torsten Klie. To-
wards XML Oriented Internet Manage-
ment. In Germán S. Goldszmidt and
Jürgen Schönwälder, editors, Proceedings of
the Eighth IFIP/IEEE International Sym-
posium on Integrated Network Management
(IM 2003), volume 246 of IFIP Conference
Proceedings, pages 505–518. Kluwer, March
2003.

[27] T. Ylonen and C. Lonvick. SSH Transport
Layer Protocol. Internet Draft, June 2004.

