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Université des Sciences et Technologies de Lille

59655 - Villeneuve d’Ascq cedex - France

{mezmaz,melab,talbi}@lifl.fr

Thème NUM — Systèmes numériques
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Abstract: Solving exactly large scale instances of combinatorial optimization problems requires a huge
amount of computational resources. In this paper, we propose an adaptation of the parallel Branch

and Bound algorithm for computational grids. We consequently propose new ways to efficiently deal
with some crucial issues, mainly dynamic adaptive load balancing, fault tolerance, global information
sharing and termination detection of the algorithm. A special coding of the work units distributed and
folded/unfolded during the exploration of the search tree allows to optimize the involved communications.
The algorithm has been implemented following a large scale idle time stealing paradigm. It has been
experimented on a Flow-Shop problem instance (Ta056) that has never been solved exactly. The optimal
solution has been found with proof of optimality within 25 days using about 1900 processors belonging to
9 Nation-wide distinct clusters (administration domains). During the resolution, the worker processors
were exploited with an average to 97% while the farmer processor was exploited only 1.7% of the time.
These two rates are good indicators on the parallel efficiency of the proposed approach and its scalability.

Key-words: Branch and Bound, Parallel Computing, Grid Computing, Flow-Shop Problem, Perfor-
mance Evaluation.

∗ This work is part of the CHallenge in Combinatorial Optimization (CHOC) project supported by the National French
Research Agency (ANR) through the High-Performance Computing and Computational Grids (CIGC) programme.



Un algorithme Branch and Bound sur grilles de calcul pour la

résolution de défis en optimisation combinatoire

Résumé : La résolution exacte d’instances de grande taille de problèmes d’optimisation combinatoire
nécessite un nombre important de ressources de calcul. Dans cet article, nous proposons une adaptation
de l’algorithme Branch and Bound parallèle aux grilles de calcul. En conséquence, nous proposons
de nouvelles approches pour la gestion de problèmes cruciaux, notamment la régulation dynamique
adaptative de la charge, la tolérance aux fautes, le partage de l’information globale et la détection de la
terminaison de l’algorithme. Un codage spécial des unités de travail distribuées et sauvegardées/restaurées
pendant l’exploration de l’arbre de recherche permet l’optimisation des communications. L’algorithme a
été implémenté suivant le paradigme Fermier-Travailleurs avec vol de cycles à grande échelle. L’algorithme
a été expérimenté sur l’instance (Ta056) du problème du Flow-Shop, une instance n’ayant jamais été
résolue de manière exacte. La solution optimale a été trouvée avec preuve d’optimalité en 25 jours en
utilisant environ 1900 processeurs appartenant à 9 grappes de processeurs (domaines d’administration)
réparties à l’échelle nationale. Pendant la résolution, les processeurs travailleurs ont été exploités en
moyenne à 97% tandis que le fermier n’a été utilisé que 1.7% du temps. Ces deux taux d’utilisation sont
révélateurs d’une bonne efficacité parallèle de l’approche proposée et de son extensibilité.

Mots-clés : Branch and Bound, Calcul parallèle, Calcul sur grilles, Problème du Flow-Shop, Evaluation
de performances.



A Grid-enabled Branch and Bound Algorithm for Solving Challenging Combinatorial Optimization Problems 31 Introduction

Combinatorial optimization addresses problems for which the resolution consists in finding the (near-
)optimal configuration(s) among a large finite set of possible configurations. In practice, most of these
problems are naturally NP-hard and complex. The Branch and Bound (B&B) algorithm is one of the
most popular methods to solve exactly this kind of problems. This algorithm allows to reduce con-
siderably the computation time required to explore all the solution space associated with the problem
being solved. However, the exploration time remains considerable, and using parallel processing is one
of the major and popular ways to reduce it. Many parallel B&B approaches have been proposed in the
literature [4, 2, 5]. A taxonomy of associated parallel models is presented in [7]. Four models are mainly
identified and studied within the context of grid computing. These models are surveyed in the next
section. In this paper, we focus on the most used and studied of them: the parallel exploration of the
search tree.

We are interested in the exploitation and deployment of this model on a computational grid. The
model poses several issues related to the characteristics of the model itself and the properties of the
grids. The major of these issues are load balancing, fault tolerance, termination detection and global
information sharing (best solution found so far). Indeed, the irregular nature of the tree explored by
the algorithm and the volatile and large scale characteristics of the grid involve a large amount of load
balancing and checkpointing operations. These operations require an exorbitant communication and
storage cost associated with the work units (collections of nodes) dynamically generated. In addition,
the large scale nature of the grid makes it difficult to efficiently exploit the synchronous mode for the
exploration. The asynchronous mode is thus required which makes hard the termination detection of the
algorithm and the global information sharing particularly in a large scale grid.

In this paper, we propose a grid-oriented approach based on special codings of the explored tree and
the work units. These codings allow to optimize the dynamic distribution and checkpointing mechanisms
on the grid, and to implicitly detect the termination of the algorithm and efficiently share the global
information. The algorithm has been applied to the Flow-Shop scheduling problem, one of the hardest
challenging problems in combinatorial optimization. The problem consists roughly to find a schedule of
a set of jobs on a pool of machines that minimizes the total execution time (makespan). The jobs must
be scheduled in the same order on all machines, and each machine can not be simultaneously assigned
to two jobs. Using our grid-based algorithm, the problem instance (50 jobs on 20 machines) has been
optimally solved for the first time. The method allows not only to improve the best known solution
for the problem instance but it also provides a proof of the optimality of the provided solution. The
experiments have been performed on a grid of over 1889 processors belonging to Grid5000 and different
educational networks of Université de Lille1 (Polytech’Lille, IEEA, IUT ”A”).

The rest of the paper is organized as follows. Section 2 gives an overview of the B&B algorithm and
its parallelization on the computational grid. The proposed parallel approach is described in Section

3. Section 4 presents its implementation based on the farmer-worker paradigm. Section 5 describes the
experiments performed for solving a Flow-Shop problem instance that has never been solved exactly.
Section 6 draws some conclusions and perspectives of this work.

2 The B&B algorithm and Grid Computing

In combinatorial optimization, a cost is associated with each solution of the problem being tackled.
Solving exactly a combinatorial optimization problem consists in finding the solution having the optimal
cost. For this purpose, the B&B algorithm is based on an implicit enumeration of all the solutions of the
considered problem. The space of potential solutions (search space) is explored by dynamically building
a tree whose root node represents the problem being solved and its whole associated search space. The
leaf nodes are the possible solutions and the internal nodes are subspaces of the total solution space.
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4 M. Mezmaz & N. Melab & E-G. TalbiThe size of these subspaces is increasingly reduced as one approaches the leaves.

The construction of such a tree and its exploration are performed using four operators: branching,
bounding, selection and elimination. The algorithm proceeds in several iterations during which the best
found solution is progressively improved. The generated and not yet treated nodes are kept in a list
whose initial content is limited to only the root node. The four operators intervene at each iteration
of the algorithm. The B&B makes it possible to reduce considerably the computation time necessary
to explore the whole solution space. However, this remains considerable and parallel processing is thus
required to reduce the exploration time.

In [7], four parallel models are identified for B&B algorithms: (1) the parallel multi-parametric model,
(2) the parallel tree exploration, (3) the parallel evaluation of the bounds, and (4) the parallel evaluation

of a single bound. The model (1) consists in launching simultaneously several B&B processes. These
processes differ by one or more operators, or have the same operators, but parameterized differently. The
trees explored in this model are not necessarily the same. Model (1) guarantees the implicit exploration
of the whole solution space.

Like model (1), model (2) also consists in launching several B&B processes. However, all the pro-
cesses in model (2) are similar, and explore simultaneously the same tree. Among the four models, this
model is the most popular and studied one. Unlike the two previous models, models (3) and (4) suppose
the launching of only one B&B process. They do not allow to parallelize the whole B&B algorithm as
both models (1) and (2) do, but they parallelize only the bounding operator. In model (3), each process
evaluates the bounds of a distinct pool of nodes, while in model (4) a set of processes evaluate in parallel
the bound of a single node.

In [7], an analysis of these different parallel models is presented within the context of grid computing.
This analysis takes into account the characteristics of the computational grid: its multi-administrative
domain nature, the dynamic availability and heterogeneity of its resources, and its large scaleness. In
this paper, we focus on the parallel model (2) of the B&B algorithm. In addition to the properties of
the computational grid, the characteristics of the model must be considered: the irregular nature of
the explored search tree and its asynchronous exploration. All these characteristics of the grid and the
parallel model make more difficult several issues: load balancing, fault tolerance, termination detection
and global information sharing (best solution found so far). In the next section, we propose a new
approach to deal with these issues.

3 The Proposed Approach: Concepts and Operators

The proposed approach is based on the parallel tree exploration model using a depth first search strategy.
In this approach, a list of active nodes is considered. Active nodes are nodes generated during the
exploration but not yet visited. During the search, this list evolves continuously and the algorithm stops
once this list becomes empty. The list of active nodes covers a set of tree nodes made up by all the
nodes which can be explored from each node of the list. The principle of the approach is based on the
assignment of a number to each node of the tree. The numbers of any set of nodes, covered by a list of
active nodes, always form an interval (two numbers). The approach thus defines a relation of equivalence
between the concept of list of active nodes and the concept of interval. Knowing one the two should
make it possible to deduce the other. As its size is reduced, the interval is used for communications and
check-pointing, while the list of active nodes is used for exploration. In order to pass from one concept
to the other, the approach defines two additional operators: the fold operator and the unfold operator.
The fold operator deduces an interval from a list of active nodes, and the unfold operator deduces a list
of active nodes from an interval. To define these two operators, three new concepts are introduced: the
node weight, the node number and the node range.

INRIA



A Grid-enabled Branch and Bound Algorithm for Solving Challenging Combinatorial Optimization Problems 53.1 Node weight

The weight of a given node n, noted weight(n), is the number of leaves of the sub-tree of which n is
the root node. The equation (1) defines the weight of a node in a recursive way. The weight of a leaf is
equal to 1, and the weight of an internal node is equal to the sum of the weights of its node sons. This
definition is at the same time general and inapplicable. Indeed, it is general since it defines the weight
of a node for any tree, and inapplicable since the size of the tree is exponential.

weight(n) =

{

1 if sons(n) = φ
∑

i∈sons(n) weight(i) otherwise
(1)

However, the knowledge of the structure of a tree makes it possible to simplify this definition. The
equations (2) and (3) define in a simpler way the weight of a node for respectively a binary tree and a
permutation tree. In these two definitions, the depth of a node n, noted depth(n), is the number of nodes
which separate it from the root node. P is the depth associated with the leaves. A binary tree is a tree
where except the leaves each node has two son nodes. A permutation tree is the tree associated with
problems where the goal is to find a permutation among a finite set of elements.

weight(n) = 2(P−depth(n)) (2)

weight(n) = (P − depth(n))! (3)

Several problems of combinatorial optimization result in a permutation tree. In this kind of tree, any
node n, except the root node, satisfies the condition (5).

|sons(n)| = |sons(father(n))| − 1 (4)

In a binary tree, a permutation tree or any other tree of regular structure, the nodes of the same
depth have the same weight. Consequently, instead of associating the weights to the nodes, it is simpler
to associate them to the depths, and to deduce the weight of a node from its associated depth. At the
beginning of the B&B algorithm, a vector which gives the weight associated with each depth is calculated.
Using this vector, it is possible to find the weight of a node knowing its depth. Figure 1 gives an example
of the weights associated with the depths in a permutation tree.

Figure 1: Weight of a node

3.2 Node number

For each node n of the tree, a number noted number(n) is assigned. As the equation (5) indicates it, the
number of a node n can be obtained using the nodes of its path. The path of a node n, noted path(n),
is the set of nodes met while going from the root node to the node n. The node n and the root node are
always included in path(n). To find the number of a node n, it is sufficient to know the ‘precedents’ of
each node in path(n). The ’precedents’ of a node n, noted precedents(n), is the set of brother nodes of
n which are generated before n.

number(n) =
∑

i∈path(n)

∑

j∈precedents(i) weight(j) (5)
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6 M. Mezmaz & N. Melab & E-G. TalbiThe definition (5) can be applied to any tree independently of its structure. Equation (6) gives a
simpler definition for the trees of regular structure such as the binary or the permutation trees. This
definition is based on the fact that, in this kind of trees, nodes of the same depth have a similar weight.
It is sufficient to know the path of a node and the rank of each node of this path. The rank of a node n,
noted rank(n), is the position of n among its brother nodes. During the generation of son nodes of a
given node, the rank of the first generated node is 0, the rank of the second generated node is 1, and
so on. Figure 2 gives an example of numbers obtained in a permutation tree. These numbers are inside
their associated nodes.

number(n) =
∑

i∈path(n) rank(i) ∗ weight(i) (6)

Figure 2: Illustration of the node number

3.3 Node range

The range of a node n, noted range(n), is the interval to which belong the node numbers of the sub-tree
of which n is the root node. Figure ?? gives an example of the range associated with each node of
a permutation tree. As equation (7) indicates it, the beginning of the range of a node is equal to its
number, and its end is equal to the sum of its number and its weight.

range(n) = [number(n), number(n) + weight(n)[ (7)

Figure 3: Illustration of a node range

3.4 Fold operator

The role of the fold operator is to deduce, from a list N of active nodes, the interval to which belong
the numbers associated to the nodes which can be explored using the nodes of N . In this article, the
interval of a list N of active nodes is noted interval(N). As equation (8) indicates it, this is equivalent
to find the union of all the ranges of the nodes N .

interval(N) = ∪i∈N interval(i) (8)

INRIA



A Grid-enabled Branch and Bound Algorithm for Solving Challenging Combinatorial Optimization Problems 7In the B&B, the position of the nodes in an active list N depends on the search strategy adopted by
the selection operator. Let N1, N2 ... Nk be the order by which these nodes are ordered, and [A1, B1[,
[A2, B2[ ... [Ak, Bk[ be their respective ranges. The condition (9) is always checked when the search
strategy adopted is depth first. So interval(N) can be found without knowing all ranges of the active
nodes. As (10) indicates it, it is sufficient to know the ranges of N1 and Nk. Or more simply, it is enough
to know the numbers associated with these two nodes and the weight of Nk. Figure 4 gives an example
illustrating the folding of a list of active nodes into an interval.

∀ i < k Bi = Ai+1 (9)

interval(N) = [number(N1), number(Nk) + weight(Nk)[ (10)

3.5 Unfold operator

The Unfold operator deduces from an interval [A, B[ a list of active nodes noted nodes([A, B[). As
(11) indicates it, nodes([A, B[) is composed by the nodes of the tree whose range is included in [A, B[,
and for which the range of their father is not included in [A, B[. These two conditions guarantee that
nodes([A, B[) is an unique and minimal list. Indeed, it is impossible to find another list whose cardinality
is lower than nodes([A, B[), and which allows to explore the nodes with numbers belonging to [A, B[.
The cardinality of a list is the number of elements that it contains.

nodes([A, B[) = {n/ range(n) ⊆ [A, B[ and range(father(n)) 6⊂ [A, B[} (11)

elimination(n) = ( range(n) ⊆ [A, B[ or (range(n) ∩ [A, B[) = φ) (12)

Figure 4: Illustration of active nodes and interval

Finding nodes([A, B[) can be done using a B&B algorithm in which operators, except the elimination
operator, are the same ones as those of the B&B algorithm. This algorithm is based on the range of
a node to choose between an elimination and a branching operator. As (12) indicates it, a node n is
eliminated when its range is included in [A, B[, or when its range and [A, B[ are completely disjointed.
Otherwise, the node n is decomposed. In a tree with a maximum depth P , the B&B performs less than
P decompositions. This guarantees the low cost of the unfold operator. As equation (13) indicates it,
the list of nodes([A, B[) is made up by all the eliminated nodes which their interval is included in [A, B[.
Figure 4 gives an example illustrating the passage of an interval toward an active list nodes.

nodes([A, B[) = {n/ elimination(n) and range(n) ⊆ [A, B[} (13)
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8 M. Mezmaz & N. Melab & E-G. Talbi4 The Proposed Grid-enabled Approach for B&B

Fold and Unfold operators can be used respectively for the parallelization of the B&B according to differ-
ent parallel paradigms. In this paper, the selected paradigm is the farmer-worker one. In this paradigm,
only one processor plays the role of the farmer, and all the other processors are workers. This paradigm
is relatively simple to use but its major disadvantage is that the farmer can constitute a bottleneck.
However, communicating and handling intervals instead of list of active nodes make it possible to reduce
the communication costs and the farmer activity. This paradigm is thus selected to test the approach.
The goal is to show that the approach makes it possible to push the limit of this paradigm as for the
bottleneck, and to have thus a more scalable approach.

In the adopted farmer-worker approach, the workers host as many B&B processes as they have
processors, and the farmer hosts the coordinator. Each B&B process explores an interval of node numbers,
and manages the local best solution found so far. On the other hand, the coordinator keeps a copy of
all the not yet explored intervals, and manages the global best solution found so far. The copies of
the intervals are kept in a set noted INTERV ALS, and the global best solution in a variable noted
SOLUTION . Figure 5 gives an example with three B&B processes and a coordinator. In this example,
three intervals are being explored, and the fourth one is waiting a B&B process.

Figure 5: An example with B&B processes and a coordinator

In addition to balancing the load between B&B processes, other problems must be taken into account.
Indeed, the B&B processes make three assumptions about the workers. They suppose that they are likely
to break down, not necessary dedicated, and can be behind fire-walls. Consequently, these processes are
fault tolerant, are launched according to the cycle stealing model, and exchange their messages according
to the pull model. The only assumption of the coordinator about the farmer is that it can fail. The
coordinator manages only the possible failures of the farmer. The following sections explain how this
farmer-worker approach deals with the quoted problems.

4.1 Fault Tolerance

The coordinator manages a possible failure of the farmer by periodically saving, in two files, the con-
tents of INTERV ALS and SOLUTION . In the case of the farmer failure, the coordinator initializes
INTERV ALS and SOLUTION by the contents of these files. The B&B processes manage the worker
failures by regularly updating the copy of their interval in INTERV ALS, and by informing the coordi-
nator each time a new solution is found. In the case of the worker failure, the last copy of its interval is
either entirely given to another B&B process, or shared between several B&B processes.

B&B processes update the copy of their interval using the intersection operator. This operator
updates the interval being explored and its copy in INTERV ALS. Let [A, B[ be an interval being
explored in a B&B process, and [A′, B′[ its copy in INTERV ALS. During the exploration process,
the two intervals [A, B[ and [A′, B′[ evolve continuously. Indeed, a B&B process, by exploring [A, B[,
increments the value of A and does not change the value of B. While the load balancing mechanism,
explained in the following section, decrements the value of B′ and does not change the value of A′. The

INRIA



A Grid-enabled Branch and Bound Algorithm for Solving Challenging Combinatorial Optimization Problems 9beginning of an interval is likely also to be incremented by several B&B processes. This occurs when
the load balancing mechanism attributes the same interval to several processes. As (14) indicates it,
the intersection between two intervals is done by considering the maximum of their beginnings and the
minimum of their ends.

[A, B[∩[A′, B′[= [max(A, A′), min(B, B′)[ (14)

4.2 Load balancing

In this approach, the work unit of a B&B process is the exploration of an interval. A B&B process
requests an interval when it joins the calculation for the first time, and when it finishes the exploration
of its interval. The role of the coordinator is then to assign an interval to it. This is done using two
interval operators: the selection operator and partitioning operator. The role of the former is to select an
interval from INTERV ALS, and the role of the latter is to divide the selected interval. The partition-
ing operator divides an interval [A, B[ into two intervals [A, C[ and [C, B[. The holder process, the one
to which belongs [A, B[, keeps [A, C[ since it already explores it starting from A, while the requesting

process, the one which requests a new interval, obtains [C, B[. After a certain time, the holder process
is also informed to limit its exploration to [A, C[ instead of [A, B[. Indeed, as indicated in the previous
subsection, the B&B processes regularly contact the coordinator to update their interval.

After a partitioning, the INTERV ALS set is updated by replacing [A, B[ with [A, C[, and by adding
[C, B[ to INTERV ALS. Both intervals [A, C[ and [C, B[ do not have necessarily the same length. In-
deed, the requesting and the holder processes are deployed in an environment where the hosts are hetero-
geneous, volatile and not dedicated. Consequently, the lengths of the two intervals must be proportional
to the participation of each one in the calculation. The choice of the partitioning point C depends on
the power and the availability of the processors which host the holder and the requesting processes.

In this approach, it is possible that some intervals are not assigned to a process. This occurs at the
beginning of a calculation or after a farmer or worker failure. The intervals of this kind are managed by
supposing that they belong to a virtual process which has a null power. Consequently, the partitioning
point C of these intervals is equal to A. They are thus assigned entirely to the requesting process. To
avoid obtaining intervals of small size, the partitioning operator is parameterized by a threshold. An
interval which has a length lower than this threshold is duplicated instead of being divided. The coordi-
nator keeps only one copy of a duplicated interval, even if it is assigned to several processes.

In addition to the choice of the partitioning point, the choice of the interval [A, B[ to be divided is
another element taken into account by the coordinator. The goal is to assign, to the requesting process,
the greatest possible interval. The selection operator does not choose the greatest interval [A, B[ of
INTERV ALS, but the one which produces the greatest possible interval [C, B[.

4.3 Termination detection

The management of the termination detection is another problem which is crucial in a grid. In this ap-
proach, the resolution stops once INTERV ALS set becomes empty. At the beginning, INTERV ALS
contains only one interval which corresponds to the whole tree. The beginning of this interval is equal
to 0, the smallest number of the tree, and its end is equal to the greatest number of the tree. In other
words, INTERV ALS is initialized by the range of the root node.

During the exploration process, the cardinality of INTERV ALS is almost equal to the number of the
B&B processes, while its size continuously decreases. The cardinality of INTERV ALS is the number of
intervals that it contains, and the size of INTERV ALS is the sum of the lengths of its intervals. This
size corresponds to the number of the not yet explored solutions of the search space.
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10 M. Mezmaz & N. Melab & E-G. TalbiAny empty interval of INTERV ALS is automatically removed. An interval is empty when its begin-
ning is higher than its end. During the resolution, the size of INTERV ALS decreases constantly. Cal-
culation stops once INTERV ALS becomes empty, and its size is thus equal to 0. When INTERV ALS
is empty, a B&B process, which contacts the coordinator to update or to ask for an interval, is informed
by the coordinator that it must resume.

4.4 Solution sharing

In this farmer-worker approach, the solution sharing is done by using SOLUTION . As indicated at
the beginning of the section 4, SOLUTION contains the global optimal solution. In addition to this
variable, each B&B process manages its own local optimal solution. The objective of the solution sharing
is to reflect any improvement of one of the local optimal solution in all the other B&B processes. This
is achieved using three rules: A B&B process (1) initializes its local optimal solution by SOLUTION ;
(2) immediately informs the coordinator of any solution which improves its local solution ; (3) regularly
reads SOLUTION to update its local optimal solution.

5 Experimentation

5.1 The permutation Flow-Shop problem

The Flow-Shop problem is one of the numerous scheduling problems that has received a great attention
given its importance in many industrial areas. The problem can be formulated as a set of N jobs
J1, J2, . . . , JN to be scheduled on M machines. The machines are critical resources as each machine can
not be simultaneously assigned to two jobs. Each job Ji is composed of M consecutive tasks ti1, . . . , tiM ,
where tij designates the jth task of the job Ji requiring the machine mj. To each task tij is associated
a processing time pij . The problem being tackled here is more exactly the permutation Flow-Shop

problem. In this problem, jobs must be scheduled in the same order on all the machines. The objective
is to minimize the total completion time called makespan and noted Cmax. This problem is NP-hard[8],
and can be formulated as follows:

Cmax = Max{siM + piM |i ∈ [1 . . .N ]} (15)

The application of the proposed approach to the Flow-Shop problem has been experimented on one
of the instances proposed by [3]. More exactly, it is the sixth instance generated for problems of 50 jobs
on 20 machines called Ta0561. This instance has never been solved exactly. The best known solution of
Ta056 has a cost of 3681. It is found by [9] using a meta-heuristic.

5.2 The Experimentation grid platform

The grid-based B&B algorithm has been experimented using the experimental grid detailed in Table 1
and illustrated by Figure 6. It is made up of about 1900 processors belonging to 9 clusters. Three clusters
belong to three different education departments of Université de Lille1 (IUT-A, Polytech’Lille, IEEA-
FIL), and six clusters belong to Grid’50002. Grid’5000 is a nation-wide experimental grid composed by
9 clusters distributed over several French universities (Bordeaux, Lille, Rennes, Sophia, Toulouse, Orsay,
Lyon, Grenoble and Nancy). Only the first six clusters are exploited in our experiments. Unlike the
university machines, which are mono-processors, all the machines of Grid’5000 are bi-processors.

Inside all clusters, except that from IUT-A, the machines are interconnected by a Gigabit Ether-
net. The IUT-A cluster uses a 100 Megabit Ethernet connection. The three university clusters are
interconnected by a Gigabit connection. The Grid5000 clusters and the clusters of the university are
interconnected, using the 2.5 Gigabit RENATER3 nation-wide network.

1http://www.eivd.ch/ina/Collaborateurs/etd/default.htm
2http://www.grid5000.fr
4http://www.renater.fr
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Figure 6: The experimental nation-wide grid

CPU (GHz) Domain No.

P4 1.70 24
P4 2.40 IEEA-FIL 48
P4 2.80 (Lille1) 59
P4 3.00 27

AMD 1.30 14
Celeron 2.40 35
Celeron 0.80 14
Celeron 2.00 Polytech’Lille 13
Celeron 2.20 (Lille1) 28

P3 1.20 12
P4 3.20 12
P4 1.60 22
P4 2.00 18
P4 2.80 IUT-A(Lille1) 45
P4 2.66 57
P4 3.00 41

AMD 2.2 Bordeaux(Grid5000) 2x47
AMD 2.2 Lille(Grid5000) 2x54
Xeon 2.4 2x64
AMD 2.2 Rennes(Grid5000) 2x64
AMD 2.0 2x100
AMD 2.0 Sophia(Grid5000) 2x107
AMD 2.2 Toulouse(Grid5000) 2x58
AMD 2 Orsay(Grid5000) 2x216

Total 1889

Table 1: The computational pool
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12 M. Mezmaz & N. Melab & E-G. Talbi5.3 Experimental results

In our experiments, we are interested in the Ta056 problem instance generated by E. Taillard. It consists
in scheduling 50 jobs on 20 machines with the objective to minimize the makespan. This instance is
difficult, CPU time intensive and has never been solved exactly. Two runs have been performed, and at
each time the optimal solution is found with a cost equal to 3679. This solution is the following schedule:

(14, 37, 3, 18, 8, 33, 11, 21, 42, 5, 13, 49, 50, 20, 28, 45, 43, 41, 46, 15, 24, 44, 40, 36, 39, 4, 16, 47, 17,
27, 1, 26, 10, 19, 32, 25, 30, 7, 2, 31, 23, 6, 48, 22, 29, 34, 9, 35, 38, 12).

In the first experiment, the algorithm has been initialized with an upper bound equal to 3681. The
run lasted about one month and three weeks using an average of 500 processors with a peak of 1245
processors. The goal of the second run is to get more statistics in order to know better about the behavior
of the proposed approach. In the second experiment, the algorithm has been initialized with an upper
bound equal to 3680. Table 2 summarizes the most important statistics recorded during the second run,
and Figure 7 plots the evolution of the number of exploited processors over the time.

Figure 7: The evolution of the number of available processors

As Table 2 indicates it, the resolution lasted approximately 25 days with an average of 328 processors,
a maximum of 1, 195 available processors, and a cumulative computation time of about 22 years. During
the resolution, the B&B processes requested the load balancing mechanism approximately 130 thousand
times. More than 2 million checkpointing operations were done by the B&B processes, while the co-
ordinator does its checkpoint every 30 minutes. About 6 billion nodes were explored. In the proposed
approach, some nodes can be explored by several B&B processes. This occurs mainly when an interval
is duplicated. Table 2 shows that the rate of the redundant explored nodes is lower than 0.4%. The
worker processors were exploited with an average of 97% while the farmer processor was exploited 1.7%.
These two rates are good indicators on the parallel efficiency of this approach and its scalability. In the
farmer-worker paradigm, a good approach must maximize the exploitation rate of the worker processors
and must minimize the exploitation rate of the farmer processor.

In terms of the exploited computational power, the second resolution of Ta056 ranks second. Table 3
compares and gives the positions of the most known success stories. More information about these
stories can be found in [6] and [1]. To the best of our knowledge, Sw24978 is the only instance in the
combinatorial optimization history which requires more computational power than Ta056. Sw24978 is
an instance of the Traveling Salesman Problem. It consists in finding the shortest path to visit 24, 978
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A Grid-enabled Branch and Bound Algorithm for Solving Challenging Combinatorial Optimization Problems 13Running wall clock time 25 days
Total cpu time 22 years

Average number of workers 328
Maximum number of workers 1,195

Worker CPU exploitation 97%
Coordinator CPU exploitation 1.7%

Checkpoint operations 4,094,176
Work allocations 129,958

Explored nodes 6,50874 e+12
Redundant nodes 0.39%

Table 2: The execution statistics

towns of Sweden. The cumulative time of the resolution of Sw24978 is equivalent to about 84 years of
the computational power of an Intel Xenon 2.8 GHz.

Order Problem Instance Description Computation power
1 TSP Sw24978 24,978 towns of Sweden 84 years/Intel Xeon 2.8 GHz
2 Flow-Shop Ta056 50 jobs on 20 machines 22 years
3 TSP D15112 15,112 towns of Germany 22 years/Compaq Alpha 500 MHz
4 QAP Nug30 7 years/HP-C3000 400MHz
5 TSP Usa13509 13,509 towns of USA 4 years

Table 3: The comparison of the most known resolutions

6 Conclusions and Future Works

Solving exactly large scale instances of combinatorial optimization problems requires a huge amount of
computational resources. Parallel B&B algorithms based on the parallel exploration of the search tree
have successfully been applied to solve these problems. However, experiments are often limited to few
tens of processors. Designing and implementing B&B algorithms for a large scale computational grid
represents a great research challenge. Indeed, several crucial issues must be tackled: dynamic load bal-
ancing of an irregular tree, fault tolerance due to the volatile nature of the grid, termination detection
of asynchronous processes, global information sharing in a large scale context.

In this paper, we have proposed a new grid-enabled B&B algorithm together with new approaches
allowing to efficiently tackle the problems quoted above. The approach consists in an efficient coding
associated with the explored tree and work units (collections of nodes). Each node of the explored tree
is assigned a node number. A work unit is delimited by two leaves of the explored tree, and thus rep-
resented by an interval whose beginning and end are the numbers associated with the two leaves. Such
coding approach allows to optimize the communications induced by the load balancing, checkpointing-
based fault tolerance and global information sharing operations. The termination detection is naturally
ensured by the load balancing mechanism and no additional communication is required. The proposed
approach includes two operators allowing to convert a collection of nodes into an interval and conversely.

The approach has been implemented following a large scale idle time stealing Farmer-Worker paradigm.
It has been experimented on a Flow-Shop problem instance (Ta056) that has never been solved exactly.
The instance has been solved within 25 days on about 1900 processors, belonging to 9 Nation-wide dis-
tinct clusters (administration domains). During the resolution, the worker processors were exploited with
an average to 97% while the farmer processor was exploited 1.7%. These two rates are good indicators
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14 M. Mezmaz & N. Melab & E-G. Talbion the parallel efficiency of this approach and its scalability.

These experimental results must be “enforced” with a theoretical analysis. An analytical study is
currently in progress in order to evaluate the complexity of the proposed approach and then compare
it with the principal methods of the literature. It is also planned to use the approach with a peer to
peer paradigm. This paradigm makes it possible to push far the scalability limits of the method. The
objective is to exploit more and more processors and to solve more and more complex instances.
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