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Abstract

In this paper, we introduce SEMTAG, a

toolbox for TAG-based parsing and gen-

eration. This environment supports the

development of wide-coverage grammars

and differs from existing environments

for TAG such as XTAG, (XTAG-Research-

Group, 2001) in that it includes a semantic

dimension. SEMTAG is open-source and

freely available.

1 Introduction

In this paper we introduce a toolbox that allows for

both parsing and generation with TAG. This tool-

box combines existing software and aims at facili-

tating grammar development, More precisely, this

toolbox includes1:

• XMG: a grammar compiler which supports the

generation of a TAG from a factorised TAG

(Crabbé and Duchier, 2004),

• LLP2 and DyALog: two chart parsers, one

with a friendly user interface (Lopez, 2000)

and the other optimised for efficient parsing

(Villemonte de la Clergerie, 2005)2

• GenI: a chart generator which has been

tested on a middle size grammar for French

(Gardent and Kow, 2005)

1All these tools are freely available, more information and
links at http://trac.loria.fr/˜semtag.

2Note that DyALog refers in fact to a logic program-
ming language, and a tabular compiler for this language. The
DyALog system is well-adapted to the compilation of effi-
cient tabular parsers.

2 XMG, a grammar writing environment

for Tree Based Grammars

XMG provides a grammar writing environment for

tree based grammars3 with three distinctive fea-

tures. First, XMG supports a highly factorised and

fully declarative description of tree based gram-

mars. Second, XMG permits the integration in a

TAG of a semantic dimension. Third, XMG is based

on well understood and efficient logic program-

ming techniques. Moreover, it offers a graphical

interface for exploring the resulting grammar (see

Figure 1).

Factorising information. In the XMG frame-

work, a TAG is defined by a set of classes organised

in an inheritance hierarchy where classes define

tree fragments (using a tree logic) and tree frag-

ment combinations (by conjunction or disjunc-

tion). XMG furthermore integrates a sophisticated

treatment of names whereby variables scope can

be local, global or user defined (i.e., local to part

of the hierarchy).

In practice, the resulting framework supports a

very high degree of factorisation. For instance, a

first core grammar (FRAG) for French comprising

4 200 trees was produced from roughly 300 XMG

classes.

Integrating semantic information. In XMG,

classes can be multi-dimensional. That is, they

can be used to describe several levels of linguis-

tic knowledge such as for instance, syntax, seman-

tics or prosody. At present, XMG supports classes

including both a syntactic and a semantic dimen-

sion. As mentioned above, the syntactic dimen-

3Although in this paper we only mention TAG, the XMG
framework is also used to develop so called Interaction Gram-
mars i.e., grammars whose basic units are tree descriptions
rather than trees (Parmentier and Le Roux, 2005).



Figure 1: XMG’s graphical interface

sion is based on a tree logic and can be used to

describe (partial) tree fragments. The semantic di-

mension on the other hand, can be used to asso-

ciate with each tree a flat semantic formula. Such a

formula can furthermore include identifiers which

corefer with identifiers occurring in the associated

syntactic tree. In other words, XMG also provides

support for the interface between semantic formu-

lae and tree decorations. Note that the inclusion of

semantic information remains optional. That is, it

is possible to use XMG to define a purely syntactic

TAG.

XMG was used to develop a core grammar for

French (FRAG) which was evaluated to have 75%

coverage4 on the Test Suite for Natural Language

Processing (TSNLP, (Lehmann et al., 1996)). The

FRAG grammar was furthermore enriched with

semantic information using another 50 classes de-

scribing the semantic dimension (Gardent, 2006).

The resulting grammar (SEMFRAG) describes

both the syntax and the semantics of the French

core constructions.

Compiling an XMG specification. By build-

ing on efficient techniques from logic program-

ming and in particular, on the Warren’s Abstract

4This means that for 75 % of the sentences, a TAG parser
can build at least one derivation.

Figure 2: The LLP2 parser.

Machine idea (Ait-Kaci, 1991), the XMG com-

piler allows for very reasonable compilation times

(Duchier et al., 2004). For instance, the compila-

tion of a TAG containing 6 000 trees takes about 15

minutes with a Pentium 4 processor 2.6 GHz and

1 GB of RAM.

3 Two TAG parsers

The toolbox includes two parsing systems: the

LLP2 parser and the DyALog system. Both of

them can be used in conjunction with XMG. First

we will briefly introduce both of them, and then

show that they can be used with a semantic gram-

mar (e.g., SEMFRAG) to perform not only syntac-

tic parsing but also semantic construction.

LLP2 The LLP2 parser is based on a bottom-

up algorithm described in (Lopez, 1999). It has

relatively high parsing times but provides a user

friendly graphical parsing environment with much

statistical information (see Figure 2). It is well

suited for teaching or for small scale projects.

DyALog The DyALog system on the other

hand, is a highly optimised parsing system based

on tabulation and automata techniques (Ville-

monte de la Clergerie, 2005). It is implemented

using the DyALog programming language (i.e.,

it is bootstrapped) and is also used to compile

parsers for other types of grammars such as Tree

Insertion Grammars.

The DyALog system is coupled with a seman-

tic construction module whose aim is to associate

with each parsed string a semantic representation5.

This module assumes a TAG of the type described

in (Gardent and Kallmeyer, 2003; Gardent, 2006)

5The corresponding system is called SemConst (cf section
6).



Figure 3: The SemConst system

where initial trees are associated with semantic in-

formation and unification is used to combine se-

mantic representations. In such a grammar, the se-

mantic representation of a derived tree is the union

of the semantic representations of the trees enter-

ing in the derivation of that derived tree modulo

the unifications entailed by analysis. As detailed

in (Gardent and Parmentier, 2005), such grammars

support two strategies for semantic construction.

The first possible strategy is to use the full

grammar and to perform semantic construction

during derivation. In this case the parser must ma-

nipulate both syntactic trees and semantic repre-

sentations. The advantage is that the approach is

simple (the semantic representations can simply

be an added feature on the anchor node of each

tree). The drawback is that the presence of seman-

tic information might reduce chart sharing.

The second possibility involves extracting the

semantic information contained in the grammar

and storing it into a semantic lexicon. Parsing then

proceeds with a purely syntactic grammar and se-

mantic construction is done after parsing on the

basis of the parser output and of the extracted se-

mantic lexicon. This latter technique is more suit-

able for large scale semantic construction as it sup-

ports better sharing in the derivation forests. It

is implemented in the LORIA toolbox where a

module permits both extracting a semantic lexi-

con from a semantic TAG and constructing a se-

mantic representation based on this lexicon and on

the derivation forests output by DyALog (see Fig-

ure 3).

The integration of the DyALog system into the

toolbox is relatively new so that parsing evaluation

Figure 4: The GenI debugger

is still under progress. So far, evaluation has been

restricted to parsing the TSNLP with DyALog

with the following preliminary results. On sen-

tences ranging from 1 to 18 words, with an aver-

age of 7 words per sentence, and with a grammar

containing 5 069 trees, DyALog average parsing

time is of 0.38 sec with a P4 processor 2.6 GHz

and 1 GB of RAM6.

4 A TAG-based surface realiser

The surface realiser GenI takes a TAG and a flat

semantic logical form as input, and produces all

the sentences that are associated with that logi-

cal form by the grammar. It implements two bot-

tom up algorithms, one which manipulates derived

trees as items and one which is based on Earley for

TAG. Both of these algorithms integrate a number

of optimisations such as delayed adjunction and

polarity filtering (Kow, 2005; Gardent and Kow,

2005).

GenI is written in Haskell and includes a

graphical debugger to inspect the state of the gen-

erator at any point in the surface realisation pro-

cess (see Figure 4). It also integrates a test harness

for automated regression testing and benchmark-

ing of the surface realiser and the grammar. The

harness gtester is written in Python. It runs the

surface realiser on a test suite, outputting a single

document with a table of passes and failures and

various performance charts (see Figures 5 and 6).

Test suite and performance The test suite is

built with an emphasis on testing the surface re-

6These features only concern classic syntactic parsing as
the semantic construction module has not been tested on real
grammars yet.



test expected simple earley

t1 il le accepter pass pass

t32 il nous accepter pass pass

t83 le ingnieur le lui apprendre pass DIED

t114 le ingnieur nous le prsenter pass pass

t145 le ingnieur vous le apprendre pass pass

t180 vous venir pass pass

Figure 5: Fragment of test harness output - The

Earley algorithm timed out.
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Figure 6: Automatically generated graph of per-

formance data by the test harness.

aliser’s performance in the face of increasing para-

phrastic power i.e., ambiguity. The suite consists

of semantic inputs that select for and combines

verbs with different valencies. For example, given

a hypothetical English grammar, a valency (2,1)

semantics might be realised in as Martin thinks

Faye drinks (thinks takes 2 arguments and drinks

takes 1), whereas a valency (2,3,2) one would be

Dora says that Martin tells Bob that Faye likes

music. The suite also adds a varying number of

intersective modifiers into the mix, giving us for

instance, The girl likes music, The pretty scary girl

likes indie music.

The sentences in the suite range from 2 to 15

words (8 average). Realisation times for the core

suite range from 0.7 to 2.84 seconds CPU time

(average 1.6 seconds).

We estimate the ambiguity for each test case

in two ways. The first is to count the number of

paraphrases. Given our current grammar, the test

cases in our suite have up to 669 paraphrases (av-

erage 41). The second estimate for ambiguity is

the number of combinations of lexical items cov-

ering the input semantics.

This second measure is based on optimisation

known as polarity filtering (Gardent and Kow,

2005). This optimisation detects and eliminates

combinations of lexical items that cannot be used

to build a result. It associates the syntactic re-

sources (root nodes) and requirements (substitu-

tion nodes) of the lexical items to polarities, which

are then used to build “polarity automata”. The

automata are minimised to eliminate lexical com-

binations where the polarities do not cancel out,

that is those for which the number of root and sub-

stitution nodes for any given category do not equal

each other.

Once built, the polarity automata can also serve

to estimate ambiguity. The number of paths in the

automaton represent the number of possible com-

binations of lexical items. To determine how ef-

fective polarity filtering with respect to ambiguity,

we compare the combinations before and after po-

larity filtering. Before filtering, we start with an

initial polarity automaton in which all items are

associated with a zero polarity. This gives us the

lexical ambiguity before filtering. The polarity fil-

ter then builds upon this to form a final automaton

where all polarities are taken into account. Count-

ing the paths on this automaton gives us the am-

biguity after filtering, and comparing this number

with the lexical initial ambiguity provides an es-

timate on the usefulness of the polarity filter. In

our suite, the initial automata for each case have

1 to 800 000 paths (76 000 average). The fi-

nal automata have 1 to 6000 paths (192 average).

This can represent quite a large reduction in search

space, 4000 times in the case of the largest au-

tomaton. The effect of this search space reduc-

tion is most pronounced on the larger sentences or

those with the most modifiers. Indeed, realisation

times with and without filtering are comparable for

most of the test suite, but for the most complicated

sentence in the core suite, polarity filtering makes

surface realisation 94% faster, producing a result

in 2.35 seconds instead of 37.38.

5 Benefits of an integrated toolset

As described above, the LORIA toolbox for TAG

based semantic processing includes a lexicon, a

grammar, a parser, a semantic construction mod-

ule and a surface realiser. Integrating these into

a single platform provides some accrued benefits

which we now discuss in more details.

Simplified resource management The first ad-

vantage of an integrated toolkit is that it facilitates



the management of the linguistic resources used

namely the grammar and the lexicon. Indeed it is

common that each NLP tool (parser or generator)

has its own representation format. Thus, manag-

ing the resources gets tiresome as one has to deal

with several versions of a single resource. When

one version is updated, the others have to be re-

computed. Using an integrated toolset avoid such

a drawback as the intermediate formats are hidden

and the user can focus on linguistic description.

Better support for grammar development

When developing parsers or surface realisers, it is

useful to test them out by running them on large,

realistic grammars. Such grammars can explore

nooks and crannies in our implementations that

would otherwise have been overlooked by a toy

grammar. For example, it was only when we ran

GenI on our French grammar that we realised our

implementation did not account for auxiliary trees

with substitution nodes (this has been rectified).

In this respect, one could argue that XMG could al-

most be seen as a parser/realiser debugging utility

because it helps us to build and extend the large

grammars that are crucial for testing.

This perspective can also be inverted; parsers

and surface realiser make for excellent grammar-

debugging devices. For example, one possible

regression test is to run the parser on a suite of

known sentences to make sure that the modified

grammar still parses them correctly. The exact

reverse is useful as well; we could also run the

surface realiser over a suite of known semantic

inputs and make sure that sentences are gener-

ated for each one. This is useful for two reasons.

First, reading surface realiser output (sentences)

is arguably easier for human beings than reading

parser output (semantic formulas). Second, the

surface realiser can tell us if the grammar overgen-

erates because it would output nonsense sentences.

Parsers, on the other hand, are much better adapted

for testing for undergeneration because it is easier

to write sentences than semantic formulas, which

makes it easier to test phenomena which might not

already be in the suite.

Towards a reversible grammar Another ad-

vantage of using such a toolset relies on the fact

that we can manage a common resource for both

parsing and generation, and thus avoid inconsis-

tency, redundancy and offer a better flexibility as

advocated in (Neumann, 1994).

On top of these practical questions, having a

unique reversible resource can lead us further.

For instance, (Neumann, 1994) proposes an inter-

leaved parsing/realisation architecture where the

parser is used to choose among a set of para-

phrases proposed by the generator; paraphrases

which are ambiguous (that have multiple parses)

are discarded in favour of those whose meaning is

most explicit. Concretely, we could do this with a

simple pipeline using GenI to produce the para-

phrases, DyALog to parse them, and a small shell

script to pick the best result. This would only be

a simulation, of course. (Neumann, 1994) goes

as far as to interleave the processes, keeping the

shared chart and using the parser to iteratively

prune the search space as it is being explored by

the generator. The version we propose would not

have such niceties as a shared chart, but the point

is that having all the tools at our disposable makes

such experimentation possible in the first place.

Moreover, there are several other interest-

ing applications of the combined toolbox. We

could use the surface realiser to build artifi-

cial corpora. These can in turn be parsed to

semi-automatically create rich treebanks contain-

ing syntactico-semantic analyses à la Redwoods

(Oepen et al., 2002).

Eventually, another use for the toolbox might be

in components of standard NLP applications such

as machine translation, questioning answering, or

interactive dialogue systems.

6 Availability

The toolbox presented here is open-source and

freely available under the terms of the GPL7. More

information about the requirements and installa-

tion procedure is available at http://trac.

loria.fr/˜semtag. Note that this toolbox is

made of two main components: the GenI8 sys-

tem and the SemConst9 system, which respec-

tively performs generation and parsing from com-

mon linguistic resources. The first is written in

Haskell (except the XMG part written in Oz) and is

multi-platform (Linux, Windows, Mac OS). The

latter is written in Oz (except the DyALog part

which is bootstrapped and contains some Intel as-

sembler code) and is available on Unix-like plat-

7Note that XMG is released under the terms of the
CeCILL license (http://www.cecill.info/index.
en.html), which is compatible with the GPL.

8http://trac.loria.fr/˜geni
9http://trac.loria.fr/˜semconst



forms only.

7 Conclusion

The LORIA toolbox provides an integrated envi-

ronment for TAG based semantic processing: ei-

ther to construct the semantic representation of a

given sentence (parsing) or to generate a sentence

verbalising a given semantic content (generation).

Importantly, both the generator and the parsers

use the same grammar (SEMFRAG) so that both

tools can be used jointly to improve grammar pre-

cision. All the sentences outputted by the surface

realiser should be parsed to have at least the se-

mantic representation given by the test suite, and

all parses of a sentence should be realised into at

least the same sentence.

Current and future work concentrates on de-

veloping an automated error mining environment

for both parsing and generation; on extending the

grammar coverage; on integrating further optimi-

sations both in the parser (through parsing with

factorised trees) and in the generator (through

packing and accessibility filtering cf. (Carroll and

Oepen, 2005); and on experimenting with differ-

ent semantic construction strategies (Gardent and

Parmentier, 2005).
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