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Calcul rapide du leastcore et prénucléole de jeux coopératifs

Résumé: Le calcul du leastcore et du nucléole est une maniére efficace d’allouer une ressource entre N joueurs.
L’inconvénient est qu’il suppose la résolution d’un programme linéaire avec 2% — 2 contraintes. Dans cet article
nous montrons comment, dans le cas de jeux de production convexes, générer des contraintes en résolvant des
programmes linéaires mixtes de petite taille. L’approche est étendue aux jeux avec symétries (joueurs identiques)
et aux jeux avec coalitions partiellement continues. Nous étudions aussi le calcul du prénucléole, et donnons
des résultats numériques prometteurs.

Mots-clés :  Jeux coopératifs, coalitions, génération de contraintes, décomposition, jeux de production
convexes, jeux symétriques, joueurs agrégés, nucléole
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1 Introduction

In this paper we study the class of cooperative games, in which costs must be allocated in a fair way among
N players. This is an important subject for utility networks, or more generally for all companies subject to
regulation rules. The analysis takes into account the possibility of coalitions among players. Note that a new
feature of our model is that not all coalitions are allowed, which makes sense in real-world applications. We
refer to Boyer et al. [I] for an overview of cost allocation using the cooperative game theory.

Denote by S := {1,---, N} the set of players, which are to be interpreted as customers, P(S) the set of
coalitions (all possible subsets of S), P1(S) := P(S)\{0, S} the set of non trivial coalitions, and Ps(S) C P1(S)
the set of possible coalitions.

Given 2 € RY and S € P(S), we denote z(S) := Y, g x;. In the sequel z; will be interpreted as the
amount paid by user ¢, for i = 1,...,n, so that (S) means the amount paid by coalition S. With each coalition
S € P(8) is associated a real valued cost c(S). We say that = € IRY is an allocation if 2(S) = ¢(S), and in this
case we call z(.5) the allocation of coalition S, for all S € P(S). The excess of a coalition S is the amount

e(S,z,c) = c(S) — x(95).

This is the difference between what the coalition would have to pay if it ignored the other players, and the
amount it has to pay using allocation x. A negative excess for coalition S means that it would be advantageous
for S to run its own business. In order to avoid that, a possible way of allocating costs consists in maximizing
the minimal excess. This amounts in solving the following optimization problem:

maxe; z(S) =c(S); e+ x(S) <c(S), forall SePyS). (LP)

seX
Here we take into account the set of possible coalitions P>(S) which is a subset of P;(S), as well as the set
X C IRY restricting the choice of allocations, as typically will happen in practical situations. We say that the
allocation x is feasible if (in addition to the relation z:(S) = ¢(S)) it belongs to X. We call the set of solutions
of (LP) the leastcore. The core is the set of feasible allocation for which every excess of coalitions in Pa(S) is
nonnegative. If the core is non empty, then it contains the leastcore. These two definitions of core and leastcore
generalize the usual ones for which X = IRY and P2(S) = P1(S), see Shapley [12] and the historical references
in [8]. If the leastcore is not reduced to one point, one can minimize among its solutions the minimal excess (of
coalitions whose excess is not binded). By induction one obtain the prenucleolus, a concept due to Schmeidler
[11] (see also the axiomatization in Maschler, Potters and Tijs [7]).

In the sequel we assume that X is a polyhedron. Then (LP) is a linear program with N + 1 variables and
as many as 2V — 2 explicit constraints (if P2(S) = P1(S)), in addition to the “implicit” constraint z € X.

Since the computation of the leastcore and prenucleolus needs to solve a linear program with possibly 2%V —2
contraints but only N + 1 variables, generation of constraints is a natural approach. We show in this paper that,
if the cost function has a certain convexity property, there exists a fast procedure for constraint generation.
Then we show that symmetric games have symmetric solutions, and relate some continuous relaxations to the
desagregation of classes of small players. Finally we analyse the computation of the prenucleolus.

Our hypothesis on the cost function is a generalization of linear production games discussed in Owen [9].
Generation of constraints in this case was already studied in Hallefjord, Helming and Jornstein [6]. However,
for generating constraints they solve a (mixed integer continuous) problem in which the data of the linear
production game are involved, and that may be expensive. By contrast, we solve a problem of much smaller
size, and extend the approach, as was already said, to the search of symmetric solutions and to the case of
continuous relaxations.

Let us mention also two references related to the subject of this paper, that do not assume that cost functions
result from a linear production game. Fromen [2] gave a method for reducing the number of linear programs
to be solved in order to compute the prenucleolus; still, these linear programs remain of large size. Preux et al.
[10] designed a column generation method for computing the prenucleolus. They give no numerical results, and
it is not easy to figure out if this approach can be effective in practical situations.

2 Constraints generation
Relaxing constraints of (LP) for some of the coalitions amount to solve the following problem:

max €; z(8) = ¢(S); e+ x(S) <¢(S), forall SeE, (LPg)
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where E is a subset of Pa(S). Let us formulate an algorithm for solving (LP), based on generation of constraints:

Algorithm GENERATION
Darta: k:=0, Ey C Pa(S).
LOOP

e Compute ¥, solution of (LPg, ).
e Find Sj € P2(S) such that

¢(Sk) — 2%(Sk) < ¢(S) — 2F(S), for all S € Py(S).
o If ¢(Sk) — 2%(Sy) = val(LPg ), stop.
o By :=E,U{Sk}; k:=k+1.

END LOOP
END

At each iteration the most violated constraint of (LP) is added. Since the number of constraints of (LP) is
finite, the algorithm terminates. In addition we have the estimate

¢(Sy) — z¥(Sy) < val(LP) < val(LPg,). (2.1)

The first inequality expresses the fact that (z*, ¢(S)) — 2%(Sk)) € F(LP), while the second is a consequence of
the relaxation of constraints. Since Ej, is increasing with k, val(LPg, ) is nonincreasing. Relation (Z1) may be
used for designing a stopping criterion.

This approach, however, will not be effective unless we have a fast way of finding the most violated constraint
of (LP). A first step consists in using, instead of the cost function itself, a lower estimate. This is the subject
of the next section.

3 Lower estimates of the cost function

Assume that we have at our disposal a lower estimate of c(-) over Pa(S), i.e., a function ¥y : P2(S) — R
such that

U(S) < e(S), forall SePyS). (3.2)

Then instead of searching the minimum over non trivial coalitions of ¢(S)—x(S), we may search for the minimum
in S of Wi(S) — x(S) over P2(S). We obtain the following algorithm (we write LB for lower bound) :

Algorithm GENERATION-LB
Data: k:=0, Ey C Pa(S).
LOOP

e Compute ¥, solution of (LPg,).
e Find Sj € P2(S) such that

1 (Sk) — 2%(Sk) < Wi(S) — 2¥(S), for all S € Py(S).
o If ¢(Sy,) — 2¥(Sk) = val(LPg,), stop.
o By :=E,U{Sk}; k:=k+1.

END LOOP
END

We have the estimate, similar to &1I):
Up.(Sk) — 2%(Sk) < val(LP) < val(LPg,). (3.3)

This approach via lower estimates of the cost function is of interest of the two following conditions are
satisfied: (i) finding the coalition minimizing S + (¥ (S) — 2¥(S)) over Py(S) is cheap, and (ii) ¥}, is as close
as possible to ¢(S). A natural assumption is that the lower estimate ¥y is exact over Ej, in the sense that

U(S) =c(S), forall Se Ey. (3.4)

The the above algorithm terminates, as the following Lemma shows.
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Lemma 3.1 Assume that the exactness hypothesis B4) holds. Then the algorithm stops after a finite number
of iterations, and its output is an allocation of thed leastcore.

Proof. If the algorithm does not terminate, since the set Py(S) is finite, we have that S, € Ej for some k.
By the exactness hypothesis B4, Ui (Sx) = ¢(Sk), in contradiction with the stopping criterium at iteration k.
|

It remains to identify in which situations we are able to construct lower estimates of the cost function, such
that the problem of finding S}, is tractable. We will see in the next section that these properties are, in a certain
sense, satisfied if the cost function has a property of inner convexity.

4 Convex production games

Assume that each player i is a customer to which must be provided an amount b® € IRP of certain goods.
The amount needed by coalition S is b(S) := } ;.4 b'. Assume also that the cost of providing b is the value
function of an optimization program of the following type:

Min f(z); Az=0b, z>0, (Py)

where f : IR™ — IR is a convex function. Then we speak of a convex production game; when f is linear
this reduces to the linear production game setting (see Owen [9]). The Lagrangian function of problem (P,) is
(denoting by “-” the scalar product)

L(z, M\ 8,0):=f(z)+ A- (Az—b) — s 2,

with here A € IRP and s € IR’}. Denote by v(b) the value of (FP), i.e., v(b) = val(P). Let z be solution of (F;),
and let (A, 5) be an associated Lagrange multiplier, that is,

L(2,\,5,0) =minL(z,\,5,b); §>0; 5-2=0. (4.5)

Then for any z € F(P,), we have that

f(z) > L(z,)\,5,b) = L(2,\,5,b) — X+ (b—b) > L(2,\,5,b) — X - (b—b).
Minimizing over z € F(P), and using L(Z, A, 3,b) = v(b), obtain
o(b) > v(b) — A (b—b). (4.6)

Therefore, solving (P;) provides an affine minorant of v(-), exact (equal to v(-)) at b. Consequently, for all
SeP (S),
c(S) = v(b(5)) = v(b(Sk)) = (Ak) - (b(S) = b(Sk)), (4.7)

where )\ is a Lagrange multiplier computed when solving (P ). Coming back to the definition of the cost
function ¢(-), we get that

c(8) = c(Sk) = Ak - (b(S) — b(Sk))- (4.8)
Set ¢ := ¢(Sk) + Ak - b(Sk). At iteration K, we obtain a lower estimate Uy (S) of ¢(S), where
Ug(S):= oax, {x — A\, - b(S)}. (4.9)

Given S € Py(S), denote by 1g its characteristic vector
(1g); =1 if ¢ € S; 0 otherwise. (4.10)

We say that y € P»(S) if y is the characteristic vector of an element of P2(S). It follows that minimizing
U(S) — x(S) over P(S) (in order to generate the next constraint) means solving a optimization problem with
N variables in {0,1} and a continuous variable

5@2 w — Zyixi; Cr — Ak - <Z yibl> <w, forall k< K. (Lk)
yEPy(S) =1 i=1
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If the constraint y € Pa(S) are expressed as linear constraints over {0,1}", then (Lk) is in the format of a
mixed linear program (with {0,1} and continuous variables). This holds in particular in the “standard case”,
when P»(S) = P1(S), since

i=1
In addition, two successive problems of type (L) differ only by the addition of one cut. This structure may
help for a fast resolution of (L) (this is the classical situation in branch and cut algorithms, where hot start
options allow to speed up computations).

Remark 4.1 The method presented here is close to the column generation method by Hallefjord et al., [6].
The essential difference is that [6] uses the true value of the cost function for generating the new column, i.e.,
the problem to be solved at each iteration is (when, as in [6], we choose P2(S) = P1(S)):

Min f(z)—zyiivi; Azzzbiyi§ 1§Zyi§N—1- (L)
i—1 i—1 i—1

z
ye{0,1}n

If the dimension of z is large, or if f has a complex expression, this may be much more expensive, especially
during the first iterations where solving (L) is quite cheap.

4.1 Linear production games

For the purpose of comparison to our previous analysis, we recall in this section a result of Owen [9]
(generalized by Granot [5]), as well as its proof, since the latter is short, for proving the existence and providing
a fast computation of an allocation in the core for specific linear production games of the following form:

Mine'z; Az>b, 2>0 (P})

z

We denote the lagrangian function of problem (P/) by
L(z,\b) :=c" 2=\ (Az —b)

where A € IRY. The dual problem is

supr/\; c—ATA>0.
A>0

Theorem 4.1 (Owen [9]) Assume that b := b(S) is such that problem (P}) has a finite value. Then the core

is non empty, and any dual optimal solution X\ is such that T : S +— b(S) T\ is an allocation with non negative
excess, for all possible coalitions.

Proof. The duality theory for linear programs implies C(S) = b' ), so that 7 is an allocation. Given any
coalition S, since the feasible set of the dual does not depend on b, and hence, ) is feasible for the corresponding
dual problem Max)>o{b(S)")\; ¢ — ATA > 0}. By duality theory again, we have then that C(S) > b(S)T\ =
x(9), i.e., C(S) — z(S) > 0, proving that Z is an allocation in the core. |

For linear production games in the format (/), Owen’s theorem BTl proves non emptyness of the core and
provides a cheap way of computing a corresponding allocation. Yet it does provide neither a set of active
constraints nor an allocation in the leastcore. Even if the core happens to be equal to the leastcore (but that is
not known a-priori), a constraint generation procedure is still useful for computing the prenucleolus; see section
a

Note also that if we add to the formulation of (P) at least one linear constraint with constant right-hand-side,
then the proof is not valid.

5 Symmetries and disagregation
This section deals with the case when each (aggregated) player ¢ is in fact the agregation of n; identical

“elementary players”. In other words, coalitions with only some of the elementary players are possible, and their
cost is a function of the number of elementary players in each class of aggregated players. The disagregated
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formulation has therefore N := >, ni players. We denote the cost function of the disaggregated formulation
again by c(-); it is a function of the fraction of depends only on the number of elementary players of each class
in the coalition. We assume in this section, for the sake of simplicity, that P2(S) = P1(S). Let us show that
the disagregated problem has a symmetric solution:

Lemma 5.1 We assume that the set P2(S) of feasible coalitions of the disagregated problem is symmetric (i.e.,
invariant by permutation between players of the same class). Then the disagregated problem has a symmetric
solution, i.e., one for which the allocation is identical for all elementary players of the same class.

Proof. The problem of computing the leastcore in the disagregated formulation being convex, its set of solution
is convex. Taking the average value of a particular solution and of all those oftained by permutation between
players of the same class, we obtain a symmetric solution. |

Since these symmetric solutions are socially fair (they allocate the same amount to identical players) it is
of interest to obtain them through a dedicated formulation. Denote by y; € {0,1/n;,2/n;,...,1} the fraction
of elementary players of class i in coalition y € IR"Y; the set of feasible coalitions of the disagregated problem
(again assumed to be polyhedral) is still denoted X C IRY. Then the resource allocated to coalition y, where
yi € {0,1/n4,2/n;,...,1} is still of the form z(y) := >, x;y;- The computation of symmetric elements of the
least core may be written as

maxe; #(S) = (S); e +2(y) < cly),
seX (DNLP)
for all y; € {0,1/n;,2/n;,...,1}, i=1,...,N.

Problem (DNLP) has (II;(1 + n;) — 2) constraints, which is much less than the (22 ™ — 2) constraints of the
naive formulation of the disagregated problem. If a lower bound ¥ of ¢(+) is available (in particular in the case
of a convex production game) then the constraint generation problem may be written as

Min Uk (y) — z(y); vi €{0,1/n;,2/n4,...,1}, i=1,...,N. (DNL)
y

This is an integer (with in addition a continuous variable) linear programming problem.

6 Partial continuous relaxation

If a player i € {1,...,N} is the agregation of a very large number of players, then we might think of
approximating the disagregated problem by allowing y; to be in [0, 1]. This process will be called the continuous
relazation of class i.

Let {1,..., N1} be the set of players for which a continuous relaxation is performed. A relazed coalition is
an element of S := [0,1]™ x {0,1}2, where Ny := N — N;. The (symmetric) allocation for a relaxed coalition
yeSisz(y) =x-y.

In the case of a convex production game, to a relaxed coalition must be provided b(y) := >_""_, ;b;, and the
associated cost is ¢(y) := v(b(y)). In that case the leastcore is solution of the following problem:

maxe; x(S) =¢(S); e+a(y) <cly), forall yeS. (RNLP)
reX
Since this problem has infinitely many constraints, the idea of generation of constraints appears to be quite
natural. Given an allocation x € IR", the problem of finding the most active constraint may be formulated as
follows: find y € S such that

c(y) —z(y) < e(y') —x(y), forall y €8. (6.12)

This is not an easy problem. However, in the case of a convex production game, the computation of v and its
subdifferential at points by := b(yx), ¥ < K, provides a convex lower bound that we denote again ¥x. The
problem of generating a constraint reads then as

Min U (y) — 2(y)- (RNL)

It may be interpreted as a partially (for the first N; variables) continuous relaxation of problem (Lg).
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7 Computation of the prenucleolus

In this section we assume for the sake of simplicity that X = IRY. Let n be a Lagrange multiplier associated
with the inequality constraints of the linear program (LP) (1 has dimension 2 — 2). Denote

L={S e Pi(S)ns >0}; Ji:=Pi(S)\ . (7.13)

From the duality theory of linear programs, we know that (x,e1) € S(LP) iff it is feasible and satisfies comple-
mentarity relations with a Lagrange multiplier:

2(8) =¢(S); e1+x(S)=¢(S), S€lj;

e1 +x(95) 2 ¢(9), S € Jp. (7.14)

Let vy := val(LP). Relation ([LI4) implies in particular €; = v;. It is important, however, to keep £ as a
variable in practical computations in order to avoid instabilities (see the remark below).
One may try to maximise, over solutions of (LP), the minimal excess for coalitions in J1; this means solving
the following problem:
max e2; x(S) =c¢(S); e1+x(S) =c(5), S €I
T,€1,€2 (L_Pl)
ea +x(S) <¢(S), S € Ji.

We did not repeat the last constraints of ([LI4)), which are automatically satisfied at any solution of (LP;).

Remark 7.1 Problem (LP,) is feasible, and also qualified in the sense that there exists a feasible point for
which all inequality constraints are strictly satisfied: take (z,e1) solution of (LP), and e2 < &1. In order to
obtain a numerically stable formulation, however, one has to eliminate possibly redundant equality constraints.

Once (LPy) is solved, we may continue solving a sequence of problems of the form
max  epy1; 2(S) = ¢(S); e1+z(S) = ¢S), Sel;

Ty€1,.-3€ k41

e + x(9)
ep+1 + z(5)

c(S), Sely;
c(S), Se .

IN e

Sets I, and Ji are defined inductively by
Ik = {SEkal; 77§v>0}; Jk = kal\lk;

where 7* is a Lagrange multiplier associated with the inequality constraints of program (LP;_;). The sequence
stops when [ is empty.

Denote vy, := val(LFP;). Since the solution (x,e1,...,ex) of (LPy_1), with 51 = ek, is a feasible point of
(LPy), the sequence vy, is nondecreasing. If vy, = vi—1 and I, # ), then I} is a set of constraints that are always
active at any solution of (LPj_1), and at the same time ng_l =0, for all s € I};_1.

By the Goldman-Tucker Theorem [4], we know that a linear program satisfies the hypothesis of strict
complementarity. In other words, if a linear program has a finite value, then its dual has at least one solution
such that its nonzero components coincide with the set of active inequality constraints at all primal solutions.
Such strictly complementarity multipliers coincide with the relative interior of the solution set of the dual
program. We denote the dual of (LP;) by (DLP;), and the relative interior of the solution set for the dual as
ri S(DLPy).

Lemma 7.1 The inequality v, > vi_1 holds iff n*~! € riS(DLP;_1).

Proof. If n*~! ¢ ri S(DLP,_1), this means that strict complementarity with one primal solution does not
hold: there exists a coalition S € Jj such that z(S) = ¢(S) — ¢;, for all (x,e1,...,ex) € S(DLP;_1). Since any
feasible point (z,e1,...,ek41) of (DLPy) is such that (x,e1,...,ex) € S(DLPy_1), we deduce that vy, = g1 <
€r = vi—1 Since the converse inequality always holds, this proves that vy = vg_1.

If on the contrary n*~!' € ri S(DLP;_,), with each S € J, is associated some (zs,¢1,...,6x) € S(DLPy_1)
(values of ¢; are identical over S(DLPy_1)) such that xs(S) < ¢(S) — €. Denote by ji the cardinal of Ji, and
set & := (jr) "' Y gey, Ts- Since S(DLP,_1) is a convex set, we have that (Zs,e1,...,6x) € S(DLP;_1), and
also #5(S) < ¢(S) — ek, for all S € Ji, which implies that there exists some & > ¢}, such that (&g,e1,...,¢e,¢)
is a feasible point of Jy. Therefore val(DLPy) > & > ¢y. [ |
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Remark 7.2 An interior-point solver provides a Lagrange multiplier in the relative interior of S(DLPy_1),
unless a purification procedure is performed. On the contrary, simplicial algorithms compute in general a
Lagrange multiplier on the relative boundary of S(DLP;_1).

In order to estimate the number of steps in the computation of prenucleolus, we need the following definition.

Definition 7.1 (i) Let I C P1(S) and S € P1(S). We say that S depends on I if the value of z(S) is determined
by the values {x(S),S € I'}. We say that J C P1(S) depends on I if any S € J depends on I.

(ii) Step k in the computation of prenucleolus is said to be essential if at least one element of I, does not depend
on SU (U{Iy ¥l < k}).

Denote by 1g the vector of IR™ whose ith coordinate is 1 if ¢ € S, and 0 otherwise. If S depends on I, then
the linear program
Minz(S); z(S')=0; S'el

has value 0; by duality, we deduce easily that S depends on I iff 15 is a linear combination of vectors {15/, 5" €

I}
Lemma 7.2 The computation of prenucleolus has at most N essential steps.

Proof. Each essential step adds a linear constraint, linearly independant from the linear constraints already
active. Since 2 € IR", this may occur at most N times. |

Remark 7.3 (i) In order to understand the nature of non essential steps, consider the case when the leastcore
has a unique element. Then the computation of the prenucleolus reduces to an ordering of the non saturated
constraints following their value at the leastcore. Obviously the number of non essential steps may be extremely
large.

(ii) One could check uniqueness of the solution of problem (LP;) in order to stop the procedure.

(iii) After having solved problem (LPj), one could try to compute and eliminate all inequality constraints that
depend on the equality constraints of (LFP;). However, we do not know any fast algorithm for doing it.

(iii) It is useful, in order to have stable computations, to check the linear independance of the equality constraints
of (LPy). This can be done by e.g. a QR type orthogonal factorization, see [3].

8 Generation of constraints and prenucleolus

8.1 General case

The idea of constraint generation can be extended to the computation of prenucleolus. Without entering into
all details, let us specify the essential step, which is the formulation of the problem of generating a constraint
after solving (LPy):

Compute S € J such that (8.15)
e(S) —z(S) < ¢(S) — x(S), forall S € J. '
Here k, J, and x are given. If we have at our disposal only a lower boud ¥ of the cost function ¢(+), the problem

to be solved reads as: B
Cor_npute S € J such that

W(S) — 2(5) < U(S) — 2(S), for all S & Jy. (8.16)
In the case of a convex production game (section H), the lower bound has an expression of type
U(S) = max {é— Xe-b(9)}, (8.17)

where L is a finite set. The problem to be solved has an expression similar to the one of problem (Lg)
of section H, but with the additional constraint y € Ji. It is useful to rewrite it as a mixed (discrete and
continuous variables) linear program in order to be able to solve it effectively. This can be done in the following
way. Given z and y in {0,1}", denote

)= > wit+ Y. (1—w). (8.18)

{i;2;=0} i;2;=1}
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This sum on nonnegative amounts is equal to 0 iff y = z, and otherwise has value at least 1. The constraint
a*(y) > 1 is therefore equivalent to the constraint y # z. Hallefjord et al. [6] already used this formulation for
the computation of the prenucleolus.

Denote Jj := P1(S) \ Ji the set of excluded coalitions. The problem of constraint generation can be written

Co — Mo - <Z yibi> <w, forall £e€L;
i=1

as

Min w — Zylxl, n (Lpk)
yefonyn i=1 1< Zyl <=N-1L

i=1 _

a*(y) > 1, for all z € Jj.
Excluding redundant equality constraints, we always have |Ji| < N. Problem (L[, ;) seems therefore of accept-
able complexity.

8.2 Case of symmetric games

In the case of symmetric games, described in section Bl the approach is similar. The main difference is that
since now n;yi is an integer in {0, n;} rather than {0,1} (see problem (DNLP)), the exclusion constraint has
a different expression. We need some notations. Let

Y:={yeR";, nwyie{0,...,n;}} (8.19)

be the set of such fractions y. Given z € Y, we look for an expression of the exclusion constraint {y € Y;y # z}.
For that we split y as a sum y = y* + y*, where for each component i, y¢ = min(y;, z;) and y* = max(y; — 2i, 0).
Then y € Y is such that

a*(y) =D (= —yf +u}") (8:20)
i=1
is nonnegative, and has value 0 iff y = z. We obtain the following set of conditions:

yeYiyteY;yt €Y;ac{0,1}7
a*(y) =0; y=y" +y% (8:21)
izi <yt <z 0<yd <ai(l—z).

9 Numerical experiments

We tested the column generation algorithms of the following family of tes problems. Consider the problem
of allocating costs for a water network connecting IV different cities. Each city ¢ requires a quantity Q;: of
water over two different time periods ¢t € T'. All these city exploit a unique spring s, with no supply restrictions.
For each period ¢, the supply is denoted Y.

A site numbered n (spring or city) has coordinates (z,,y,); the cost of building a pipe between two cities
n1, ng of capacity Cy, n, is proportional to the (Euclidean) distance dy, ., between the two sites, the unit price
being p. The total cost (for a given coalition) includes also a fixed cost IC; the expression of the total cost is
therefore

f(C) =I1C+p Z d/n1,nzcn1,n2' (922)

ni<nz

The flow F,,, »,: must satisfy the capacity constraints, as well as Kirchhoff’s law at each site for all times:

0<Cpyny <Fpnynye, forall teT V(ng,ng), (9.23)
> Frimat+Qus =Y Fryms forall teT, ny#s, (9.24)
no na
> Fonpi=Y Fpyor+ VY, forall teT. (9.25)
no no

The minimum cost design problem for a coalition § is therefore
Min f(C), subject to (@23) — (TZ5).



Fast computation of the leastcore and prenucleolus of cooperative games 11

Note that cooperation is clearly profitable between cities, since (i) the investment cost is shared between cities,
and (ii) the two periods structure allows a better use ofd available capacities.

The commercial software AIMMS 3.5, and its uniform random number generator, has been used for gener-
ating the data of problems with random location of cities. e compared three different methods to compute the
prenucleolus: the classical algorithm (no constraint generation), the constraint generation approach in [6], and
our new constraint generation method (called NCGM).

Tables [l and B display the results for different problem sized.

According to these results, NCGM seems to be the best among the three methods. Large values of standard
deviation also tend to show an important dependency of the performance of constraint generation methods to the
data of the problem, whereas classical method is more stable. We also noticed that constraint generation tends
to be less efficient when the number of iterations needed to find the prenucleolus increases: it may be explained
by the increasing number of cuts of the constraint generation algorithm, which are really time consuming.

Cities, data Classical Hallefjord Bonnans
(4,100) (17.6, 2.3) (10.8, 5.9) (10.2, 5.2)
(5,100) (33.2, 2.3) (14.5, 15.2) (13.2, 12.8)
(6,100) (70.2, 7.5) (19.7, 21.7) (18.0, 16.6)
(7,100) (178.5, 31.0) (91.5, 172.3) (70.4, 121.8)
(8,100) (488.3, 174.5) | (177.3,512.9) | (121.7, 330.6)
(9,100) (1365.9, 403.0) | (273.7, 1194.4) | (191.1, 765.9)

Table 1: (Average,Standard deviation) of computational time (in ds)

Cities, data | Classical | Hallefjord | Bonnans
(41000 | (16,00 | &1 | &1
(51000 | (32,0) | (6,2 | (62
(6,100) | (640 | (7.2 | (7,2
(7,100) (128,0) | (11, 8) (11, 9)
(8,100) (256,0) | (12,11) | (12,11)
(9,100) (512, 0) (12, 13) (13, 14)

Table 2: Rounded (average,standard deviation) of used coalitions

LComputer configuration: Windows 2000 SP2 - RAM: 1 Go - CPU: 2.4 GHz



12 J. Frédéric Bonnans , Matthieu André

References

[1] M. Boyer, M. Moreau, and M. Truchon. Partage des coit et tarification des infrastuctures. Les méthodes
de partage de cott. Un survol. Technical Report RP-18, Cirano, 2002.

[2] B. Fromen. Reducing the number of linear programs needed for solving the nucleolus problem of n-person
game theory. European Journal of Operational Research, 98:626-636, 1997.

[3] P.E. Gill, W. Murray, and M.H. Wright. Practical optimization. Academic Press, London, 1981.

[4] A.J. Goldman and A.W. Tucker. Polyhedral convex cones. In H.W. Kuhn and A.W. Tucker, editors, Linear
inequalities and related systems, pages 19-40, Princeton, 1956. Princeton University Press.

[5] D. Granot. A generalized linear production model: a unifying model. Mathematical Programming, 34:212—
222, 1986.

[6] A. Hallefjord, R. Helming, and K. Jornstein. Computing the nucleolus when the characteristic function is
given implicitly: a constraint generation approach. International J. of Game Theory, 24:357-372, 1995.

[7] M. Maschler, J.A.M. Potters, and S.H. Tijs. The general nucleolus and the reduced game property. Inter-
national J. of Game Theory, 21:85-106, 1992.

[8] Jorg Oswald, Jean Derks, and Hans Peters. Prenucleolus and nucleolus of a cooperative game: character-
izations by tight coalitions. In 8rd International Conference on Approximation and Optimization in the
Caribbean (Puebla, 1995), volume 24 of Aportaciones Mat. Comun., pages 197-216. Soc. Mat. Mexicana,
México, 1998.

[9] G. Owen. On the core of linear production games. Mathematical Programming, 9:358-370, 1975.

[10] N. Preux, F. Bendali, J. Mailfert, and A. Quilliot. Coeur et nucléolus des jeux de recouvrement. RAIRO
Operations Research, 34:363—-383, 2000.

[11] D. Schmeidler. The nucleolus of a characteristic function game. SIAM J. Applied Mathematics, 17:1163—
1170, 1969.

[12] L.S. Shapley. On balanced sets and cores. Nawval Research Logistics Quarterly, 14:453-460, 1967.



/<

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)
Unité de recherche INRIA Lorraine : LORIA, Technopble de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38334 Montbonnot Saint-Ismier (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399



	Introduction
	Constraints generation
	Lower estimates of the cost function
	Convex production games
	Linear production games

	Symmetries and disagregation
	Partial continuous relaxation
	Computation of the prenucleolus
	Generation of constraints and prenucleolus
	General case
	Case of symmetric games

	Numerical experiments

