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Abstract:  Congestion on the Internet is an old problem but still a subject of intensive research. The
TCP protocol with its AIMD (Additive Increase and Multiplicative Decrease) behavior hides very challenging
problems; one of them is to understand the interaction between a large number of users with delayed feedback.

This article will focus on two modeling issues of TCP which appeared to be important to tackle concrete
scenarios when implementing the model proposed in [7]; firstly the modeling of the maximum TCP window size:
this maximum can be reached quickly in many practical cases; secondly the delay structure: the usual Little-like
formula behaves really poorly when queuing delays are variable, and may change dramatically the evolution
of the predicted queue size, which makes it useless to study drop-tail or RED (Random Early Detection)
mechanisms.

Within proposed TCP modeling improvements, we are enabled to look at a concrete example where RED
should be used in FIFO routers instead of letting the default drop-tail happen. We study mathematically fixed
points of the window size distribution and local stability of RED. An interesting case is when RED operates at
the limit when the congestion starts, it avoids unwanted loss of bandwidth and delay variations.

Key-words: TCP, AQM, drop-tail, RED, congestion
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A simple stability condition for RED using TCP mean field modeling

Résumé : Le controle de congestion dans Internet est depuis longtemps le sujet de recherches poussées.
Le protocole TCP avec son comportement AIMD (pour accroissements linéaire, décroissance multiplicative en
anglais) cache des problémes excessivement, compliqués. L’un d’entre eux est de comprendre l'interaction entre
de nombreux utilisateurs avec un délai de réponse du systéme.

Ce rapport va se focaliser sur deux points dans la modélisation de TCP. Ces points sont apparus important
lorsque nous avons voulu confronter & des scénarii concrets le modéle proposé dans [7]; Tout d’abord la
modélisation de la fenétre maximale de TCP: cette valeur peur étre atteinte trés facilement dans la pratique;
ensuite, la structure des délais: la formule type Little habituellement employée donne des résultats loin de la
réalité quand les délais sont variables. Cette hypothése de modélisation a un impact important sur la taille
prédite de la file d’attente ce qui rend vaines les tentatives de comparaison entre les mécanismes drop-tail et
RED.

Gréace a ces améliorations apportées au modéle, nous sommes capables dans un cas précis d’étudier comment
paramétrer RED dans des routeurs FIFO pour qu’il améliore les performances par rapport au cas par défaut
de drop-tail. Nous étudions mathématiquement les points fixes et la distribution de la taille des fenétres et la
stabilité locale de RED. Un cas intéressant est quand RED se trouve dans son domaine de fonctionnement au
début de la congestion, il évite une mauvaise utilisation de la bande passante et des variations dans les délais.

Mots-clés : TCP, AQM, drop-tail, RED, congestion
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4 Julien Reynier

1 Introduction

1.1 TCP router control issue

TCP achieves a distributed congestion control of the Internet. This article proves a usable closed formula RED
stability. RED (Random Early Detection) was introduced by Floyd in [14]; it is to be deployed at a router to
send congestion information to TCP Reno end users. The idea behind RED is that the first sign of congestion
is when the router queue starts to be used more than to buffer normal traffic fluctuations; then the buffer gets
full and the drop-tail mechanism destroys packets arriving without any room left in the queue to fit in.

Drop-tail leads to two issues: firstly, the queue size oscillations provoke delay jitters - this has detrimental
effects for applications using TCP for realtime content - secondly, drop-tail synchronizes sources, resulting in
bandwidth under-utilization of the congested link (this idea was first introduced in [41] for TCP Tahoe). This
serves as leverage because at the time bandwidth demand reaches capacity, the goodput diminishes by the
synchronization effect, worsening the starting congestion (this assertion will be explained clearly later).

These two main reasons explain the interest for RED and other AQM (Active Queue Management) to deal
with TCP congestion at the router level. RED often works in an admirable way, leading to reduced queuing
delays, avoiding jitters and reaching optimal bandwidth utilization... but sometimes RED performs worse than
doing nothing at all (drop-tail). This is the reason why many system administrators are reluctant to use RED
although it is deployed in almost every router of the Internet. This paper will show how to tune RED in a way
it is sometimes optimal and always better than drop-tail.

1.2 Our previous works and motivation

In [7,29] and [40] we investigated mean field TCP modeling by continuing the fluid TCP model introduced and
studied in [15,25,31]. Despite the interesting results arising from the models, there were still some difficulties in
understanding the original problem of tuning RED and comparing it accurately to drop-tail. Two points needed
to be addressed. Firstly, with the development of high speed access, it becomes difficult to suppose that TCP
always works within its congestion avoidance mode in a AIMD manner. The size of packets of the order of 1kB
makes the maximum TCP window size relatively small (most common packet size is around 1.4kB). We shall
say Wi, = 64 packets even if the receiver does not impose any reception window limitation. This fact is due
to the coding of the window size on 16 bits addressing window by Bytes (2B = 64kB).

Secondly, another limiting modeling assumption is a fact noticed by Hong in [16]: when the queue is not
empty, acknowledgements arrive obviously at the congested router bandwidth. This remark is crucial because
TCP dynamic is very sensitive to the delayed feedback.

1.3 Outline

Section E explains and defines our model; then we study the steady state window distribution with a maximal
window size in section E Next step consists in seeking a stability region for the RED algorithm, which is done
in section E We finish with showing simulation results on a concrete example in section E This last example
shows how to use previous results to configure RED in a router in order to avoid collapse at the early stages of
congestion.

1.4 New results

Whereas modeling W4, and ACK bandwidth are not new ideas (see [34] and [16]), adapting them in mean
field equations to obtain accurate evolution equations together with the window distribution constitutes a step
forward. The steady state solution for the window distribution taking into account the W, ,, phenomenon in
section is an extension of [7] which is important from a practical point of view. In section E, the stability result
obtained for RED with theorem E is a very simple closed formula. Finally the example in section ﬂ explains how
RED should be tuned to increase router efficiency, this is an important result because, as we said, the suggested
tuning can be applied without any hardware modification in almost every router by enabling RED.

2 Model and equations

A number N, relatively large, of users share a common bottleneck router (figure mto see the modeled net-
work topology). We can consider the histogram of users’ congestion window sizes; in [29], we saw that this

INRIA



Stability condition for RED 5

histogram converges "gently" to a deterministic window distribution as N tends to infinity. In [7], we studied
this asymptotic distribution which satisfies a partial differential equation the results were applicable even for
small numbers (N = 25 for RED, and N = 10 for a drop-tail). Hereinafter we adapt the partial differential
equations first presented in [7]; this is done in a way we could prove the mean field limit as we did in [29], but
we shall not enter in such developments in this article.

100 Mb/s,
1 ms

User 1, Wi

User 2. W2 Queue, 235 packets

A

« TCP sink
1Gb/s,

4 ms

User N, Wn

Figure 1: Modeled topology and simulated scenario, N is variable.

2.1 Evolution of congestion window sizes

Imagine users have a notification of losses of the form x(t) in proportion of the incoming acknowledgement flow.
Denote by A(t) a function indicating the flow evolution of windows (for example A(t) = #(t) in usual TCP
models). The question of delays and how the functions A and k evolve come later in the article; these questions
are not relevant to study the intrinsic user congestion window size evolution. Then, the distribution of window
sizes is of the form

D(t,w) = p(t,w)dw + M (t)ow,,.,. -

Which leads to two equations, the PDE:

1 Op dp _
Zaﬁ%@ﬂ0+55@w)— (1)
K(t) (4wp(t, 20) Xw < W /2 — WP W) Xw < Wi )
+ 5% M(ﬁ)/ﬁ(ﬁ)Wmam
and LM
MW@ = p(t, Wiaz) = M) c(t) Winaz. (2)

Intuitively, the coefficient A(t) is the incoming bandwidth; when it is small, the window sizes have a slow
reaction, when it is large, they react in a faster way. The coefficients x,<w,,,, only indicate that the window
size cannot be larger than W,,,,.. When no loss occurs, the coefficient g—i(t, w) indicates that the window size
increases linearly. When losses arise, the coefficient x enables —xw(p(w)), which means that a certain proportion
of users that were at window w change to another value of the window size; it also enables 4xwp(t, 2w), which
means that users that were at window 2w and 2w + 1 (or 2w — 1) move to window w.

2.2 Delay in the system
2.2.1 Limits of Little-like formula

As noticed in [16] and in [40], the Little-like approximation made in usual TCP models (for example [7,15,35])
lacks realism and strongly limits the way models can explain reality. This approximation consists in saying
that at time t, the bandwidth B(t) of a user is related to the RTT, R(¢) (Round-Trip Time) and its congestion

RR n° 0123456789



6 Julien Reynier

window size W (t) and by B(t) = W (t)/R(t). If the RTT is almost constant (for instance close to the propagation
delay), it is a rather acceptable simplification, whereas when R(t) is variable, the model can lead to unacceptable
consequences: it is easy to understand that when one wants to study the stability of RED (with a non empty
queue), saying B(t) = W (t)/R(t) or B(t) is constant entails different conclusions.

2.2.2 How to improve delay model

The idea comes from [8] where a simple delay line is introduced to study the limit behavior (when the bandwidth
tends to infinity) of one user implementing MulTCP or scalable TCP ( [12,20,21]). Although the use of a delay
line complicates equations, the model is still easy to simulate. Furthermore local stability of fixed points can
be studied mathematically. Here we will adapt delay line modeling to large number of TCP Reno users.

2.2.3 Delay equations

Delay and queue size Let us introduce Q(t) the queue size mesured in seconds, the router is supposed FIFO
(in other words, Q(t) is the queuing delay). Denote by K (t), the destruction probability for a packet entering
the queue; call B;(t) the incoming bandwidth to the queue and B,(t) the outgoing bandwidth, scaled by the
number of users. C' is the router capacity per user. Then:

min(C, B;(t)) if Q(t) =0
Bo(t) = { C else. )

RTT Call R(t) = T+ Q(7(t)), the RTT virtually written by the queue on packet arriving the router 7(¢).

This packet becomes an ACK that generates new packets where the value is copied. By definition we say that

this value comes back at the router router at time ¢, Which makes ¢t = 7(¢) + R(¢) leading to the relation:
R(t) =T + Q(t — R(1)). (4)

We discussed in |7] the fact that this implicit equation can also be written: R(t+ T + Q(t)) = T + Q(t), which
does not raise any definition issues and is easier for numerical computations.

Advance A(t) of window sizes The window size approximately increases by one every W (t) arrived packets.
The incoming bandwidth for a given user is the probability that the packet is one of his multiplied by the total

bandwidth:
W;(t — R(t))

B,(t—1T).
s wia-ro)
In fact we want to compute the advance of window size, which means that destroyed non-arriving packets
carry information. Thus the modified ACK bandwidth is:

1 W;(t — R(t))
1—K(t—R(®) SN Wit — R(t))
The factor of advance we shall use in window sizes evolution equations is:

7 1 1
 1—-K(t—R(t)) F(t— R(t))

where F(t) = & >, Wi(t) = [wp(t,w)dw represents the number of packets on-the-flight.

B,(t —T).

A(t) B,(t—T), (5)

Loss rate indicator It is given by:
k(t) = K(t — R(t)). (6)

2.2.4 Bandwidth evolution when crossing the receiving user

To go full circle! we need to say what is the value of the bandwidth B;(t) knowing the window size evolutions
and the ACK bandwidth B, (t). The evolution of this number only comes from new packets being sent or ACK
being received (counting as ACK the indication of a lost packet); thus:

dF 1

E(t) = Bi(t) - mBo(t = T). (7)

LAKA: give the last equation

INRIA



Stability condition for RED 7

2.2.5 Generation of losses

We will suppose that losses are generated by some AQM (Active Queue Management), or by letting the drop-tail
mechanism work. The equations are (recall that @ is given is seconds):

aQ

" = Bit)(1 - K (1) - Bo(t ®)

and K(t) = £(B, Q).

In the drop-tail case, for example K( ) = L(B)O(t) XQ(H)=Qman- For RED, with a loss function f(@) and

an averaging coefficient w,, K Jies f A=) Q(s)ds) with A\ = —NB;log(1 — w,). Hereinafter we shall
suppose the router uses RED w1th )\ very large which means that
K(t) = f(Q(t)). (9)

To achieve this we shall say in the following that w, = 1, but a weaker assumption is that A >> 1, which would
allow us to set w, as so to admit bursts of packets without any losses when the total bandwidth is relatively
large (see [14]).

The model is completely specified by equations (ﬂ,ﬂ,@,ﬁ,ﬂ,ﬂ,ﬂ,ﬂ) and we can now analyse stability. We first
find fixed points with a constant loss indication, then we study the stability of these points supposing the use
of a RED mechanism.

3 Fixed point
To study fixed points it is sufficient to study fixed points for window sizes. Other conditions follow immediately
in paragraph @
3.1 Fixed point equations
Eliminating ¢ in equations ([]) and (f) leads us to consider a distribution of window sizes of the form:
D(w) = p(w)dw + Mbw,,,,

with the two equations:

pw) = 4kwp2w)Xweaw,,.. /2 — FUP(W) Xw< Wi oo (10)
+Mkaam(sW’n2L(lT )
and
MEW par = p(WmM). (11)

The graphical representation of the solution found by MAPLE can be seen on figure E

3.2 Fixed point resolution

Theorem 1 The solutions of the system ([14J1]) on [V;;Tf, Wm,‘“"] are:

271

n . 2

_qt kw
plw) = ape
i=0
where for n > 1:
4mn 1 kW2,
ap =ay” L MEW gy =€ ™

[im (4= 1)

and if i > 0: a ag_i. One and only one solution is positive with integral 1.

I (1 4h)

Given the formula, the theorem is simply verified by replacing the candidate solution in the equations. To
see the intuition behind let us see the first two iterations.

RR n° 0123456789



8 Julien Reynier

Figure 2: p(w) for W4 = 64, with the constant drop probability 0.15%, the mass at W4, is approximately
3.3%.

3.2.1 First iteration

For w € [W’g‘” , Wmaz},

p'(w) = —kwp(w),

cw? .. .. EW2ian . .
thus p(w) = ade~"%". The limit condition says that p(Wyas) = ade™ 5* = MkW,,q, which entails:

2
Vmaa:

0 kV
ag = MEW a2

3.2.2 Second iteration
Wmar Wmasz
For w € [Wass Waas ]

kw?
Ak

p'(w) = —kwp(w) + 4kwade”

INRIA
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w? w? .
By standard techniques we find the solution p(w) = al¢="% — %a86’4k2 , which means that a} := —%aJ. The

limit condition determines a} by saying that p (%Jr) =p (% ) + MEW s, i€:

_1 % _1 W g 4 EW2 an
age 1T = glem1 2 ——age 2+ MEWnaz,

giving the good value to take for af: af := a) + MkWaopige 1 2.

3.3 Normalization
3.3.1 Regularity properties

We know a priori that for a well chosen value of the parameter M, D is a probability. In this section, we show
a little more by saying that the density part p is continuous and has a 0 limit at w = 0.
Notice that by integrating the EDO ([L0) on [w, Wy,q. + 1] we obtain

p(w) — 0= / ’ kvD(v). (12)

w

We saw the solution on [ ,Wmam} which in particular is positive, thus p cannot reach 0 for positive values
of w (we already knew this by the fact that D has to be a probability). By construction p is continuous on
(O, %), thus bounded on compact sets. Look at the explicit form of p we have just calculated. It is always
series bounded by:

Wiaz
2

IN

Zﬁ%ﬂ SulD|ao|nZ1 kl i1
oo 41 2
MWmaz (Zﬁ) .

n=1 k=1

IN

And the last series is convergent because its general term is equivalent to 4~#(=3)/2,
Now use the boundedness of p in the equation (@) when w is close to 0:

plw) = [ " kop(v) < (2w)ksuplp:

w

thus we see that p tends towards 0 at w = 0.

3.3.2 Computation of the integral

Wma;,; ma:c/2 i 2
/ M—l—Z/ Za eV dy
0

Winaz /2741 5

=M+ ii“ﬁ/ 2%Al (erf \/ r nkaaz)
4i

n=0 i=0
7nk max .
)

We already noticed that p(w) — 0, then it is not surprising that the previous sum converges very quickly by

—erf(

the conjugated effects of p being small and the size of the integration domain tending exponentially to 0. Then
a very interesting result from the practical point of view is the proportion of users at W, 4, function of the loss
rate which is shown in figure B I A first order Taylor development of log(M) in k is immediate and:

Theorem 2

log(M) ~ f—kWQ

max*

2
For instance see that the case of figure J gives approximately M =~ e0-15%x% — 4.6%, instead of the
exact value 3.3%. This is not a very accurate approximation, but it gives a good order of magnitude for a first
approach, still, it is easy to compute very good numerical values (see figure @)
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10 Julien Reynier

0, 002 0, 004 0, 006 0, 008 0, 01

O ! 1 1 ¢ 1 1 1 1 ¥+ + & 1+ & & & 1 1 1 1 1 1 /1|

Figure 3: log(M) (the mass at W,,,,) function of the drop probability k for W, = 64.

3.4 Equilibrium values

Denote by (Bf, BS, K¢, Q°, R°) a set of equilibrium values with a non empty queue, then from equations @,(H)

and (f):

Be = C
RE = T+Q° (13)
K¢ = F(B;,Q°).

At an equilibrium, the Little-like formula works (because the delay R is constant) and:

F€
B =

P = Re (14)

INRIA
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0— rrrrrrrrrr1r1TTTr 11 11T 1T7T7T T T 1T"'T 1T"57T"

0, 0004 0,0008 0,0012 0,0016 0,002
K

Figure 4: M (the mass at W,,4,) function of the drop probability k for W, .. = 64.

Then the conservation equation ([]) (or equation (f)) and the advance equation (f) give:

C

B — (15)
1
A° =. 1
70 (16)

This last equation shows us that in a steady state the function of advance A is the one that usually appears
in TCP models. We see that the equilibrium relations are of the same kind as those in [7].

An equivalent to the square root formula would be needed; obviously when K€ is not too small the square
root formula still applies (the W4, limitation is negligible), but when it starts to increase, the limitation on
the window size lowers the mean window size. Figureﬁ illustrates this result; we can see there that the square
root formula is almost exact for K¢ > 0.15%

RR n° 0123456789



12 Julien Reynier

0 0, 001 0, 002 0, 003 0, 004 0, 005
K

Figure 5: Mean window size F¢ in light color compared to the square root formula from [7] cut at Wi,a.:

min(Winaz, % ) in dark for W, = 64 and K¢ from 0 to 0.5%.

4 Stability analysis

4.1 A first remark
Recall that F(t) is the number of packets on the flight and let us call F»(t) := > w?D(w) the second moment of

the probability D. Denote by a dot (OJ) the derivative of function [0 with respect to the time ¢. Then combining
equations ([ wx(fl) dw + Winas (f)), we have:

1 . 1
MF(t) =1- M) - 5K(t — R(t))Fx(t), (17)

INRIA



Stability condition for RED 13

which leads to the equilibrium equation:

(18)

4.2 Stability equations

We study the stability of the fixed point (B¢, BS, K¢, Q). We intend to study an equilibrium with a non-empty
queue, this implies B,(t) = B¢ = C.

The idea is to add a small perturbation of the form Aw on the window sizes at ¢ = 0 a time at which a
fixed point has been reached. To simplify we suppose that the response is uniform and we denote it by Aw(t);
the variations are truncated at the first order. This simplifications entails that the variation of the on the flight
packets number F(t) = > wD(w) is AF(t) = Aw(t).

The assumption on Aw permits to write AFy(t) = 2F¢AF; then taking the variation at first order in
equation gives:

| A°AM(t) — A°K°F°AF
AF() = { ~LAFSAK(t - R°). (19)
This equation comes with the linearized version of (f]):
AAp(t, Winae) — A°K W0 AM (¢
A= { ey emzmamAK(t — Re). " (20)
From equation (f]):
. C
AF(t) = ABy(t) - ———— 5 AK(t — R°). 21
(0= BB ~ g AR ) (21)
Equation (f) leads to: .
CAQ(t) = (1 — K°)AB;(t) — BiAK(t). (22)
Finally the instantaneous RED control gives:
AK(t) = eAQ(1). (23)

where € is the slope of the RED control function at the equilibrium point Q€. We suppose here that the averaging
factor w, is equal to 1 (which means that we only consider the instantaneous value of the queue to compute
losses).

Notice that the variations of RTT only create second order terms; this is the reason why equation (E) does
not have to be used. This is the same for equation (E), because the fist term factors are always multiplied by
the second term of the equations that have null equilibrium values.

4.3 Differential equations with time delay

The equations (19), (0), 1), (B2, (J) can be reorganized as a system of three delay differential equations
on F, Q and M. The only problem is that Ap(Wy,az, t) is not well determined in the equation ([L9). We shall
make the further simplifying assumption that the term A°Ap(¢, Wy,ae) can be replaced by p®(War)Aw =
D¢ (Winae)AF(t), which is intuitive since when all windows are increased by Aw, the additional number of users
overtaking window W, is close to the announced number if we say that the window distribution stays close
to the equilibrium one at the first order.

The standard mathematical method to find the local stability condition with a linear delay differential
equation is the following (see [9]; this is an equivalent to the Bode diagrams approach). Find a solution of the
form \;e? where \; and ¢ are complex numbers, linearize the exponential factor coming from the delayed terms
which corresponds to the replacement of terms AX (¢t —r) by (1 —r¢)AX(¢). We are led to one more unknown
than equations, hopefully one of the A\-s may be replaced by the value 1. Then solve the polynomial system to
find ¢. A necessary condition for the system to be stable is that the real parts of all solutions are negative.

RR n° 0123456789



14 Julien Reynier

Let us look for a solution of the form (AF, AM,AQ) = (e, ze®*, ye®*). This leads us to (the equations are
divided by e?* and the expressions e??" are linearized for pR® << 1):

1— M*°
R°¢ = —K°F°—gz— E(T)a — R°)y (24)
Ré¢pr = RMCKWinaw — KWinas
—MWaze(l — R°0)y (25)
R°Ce
C = (1-K®%¢-— . 26
I R (26)
From (R§) and replacing using ([[4) and ([L5):
1-K°
= 27
V= oo (27)
Then from (4) using ([§):
1-M
—r=R¢+ K°F° + %(1 — R°®p)y. (28)
Putting everything in (23):
(R°¢ 4+ KWias) (—2) + REM K Winax
—MWhaze(l— R°@)y = 0. (29)
This is a second degree equation of the form:
ap? +bp + ¢ =0, (30)
with: .
a = (R)*(1 - 15ey)
b = Re [K6F6+%(1_M6)+K6Wmaz
— K Winaz L(1 — M€) + M Wypay |
c = not needed.

Lemma 1 The following properties are fulfilled:
e a,b and c are real numbers,
e Suppose a > 0, then both solutions have negative real values if and only if b > 0.

Proof: The first point is true by definition. The second point is easy: if ¢1 and ¢2 are the roots of ), then
o1+ P2 = fg. The coefficients are real, which ensures that ¢2 = ¢ (the conjugated complex number), thus
1 + P2 = 2Re(1), which grants our point. O

Theorem 3 A sufficient condition for RED with wy =1 to be stable is:

KeC

< .
ST Me

Proof: First look at b; let U = ££(1 — M*¢) > 0, then: 7% > 0 if and only if:

K°F 4+ U+ KWpae(1 = U) + MWy > 0.

A gufficient condition is that U < 1 but: € < ffj\f;e = e(1-M°)(1-K) < K°C, which implies e(1-M*¢)(1-K) <
KeC + K¢F*° ) ie: U < 1.
ez = 1 — U > 0 like we have just seen. Then Lemma [l applies and gives the conclusion.
To finish the proof, we need to say something about the assumption ¢pR¢ << 1. An acceptable condition
would be that %Re << 1 (we only check the that the real part is small):
b 1-U

€

— R¢ = .
2a KeFe+ U+ Wpae Ke(1=U) + M*Wp00
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We see there that the RTT does not play an important role; this quantity is small if either K°W,,,q, or MW, 02
is large, which means that is is always a good approximation. O
Remark that from the proof a weaker stability condition for RED with w, =1 is

1- K¢ €

—_— (1 - M%) = 1.
Ke CJreFe( )=U<

Corollary 1 If Wy,., = 00 (the approzimation made in [7]), then the stability condition for RED with wg = 1

becomes in all the usual conditions 2:
KC

el — .
1—04\/?—[(

with o =~ 1.310.

Proof: The proof would be the same without the second equation on M. In that case we found in [7] the exact
formula: F€¢ = JL? (this is one example of the well-known TCP square root formula). All this directly leads to:

1-K° €
/e, — <1
+€\/—?

The conclusion is only a reorganization of this equation. O
We see that that the condition ¢ < RC'is a rule of the thumb valid in every case. The last corollary will be
named theorem because it is the most important result of the article from a technical point of view.

Theorem 4 A universal stability condition for RED is:

a2

< 5
‘ (T + Qmaz)Wmaz

where o ~ 1.7. For parameters T, Qmaz = Maxy, = BT, Ming, = YT, and ppae with wg =1, RED is stable
if:

_ 2
Pmax < u a .
5 + 1 Wmam

(32)

Proof: Recall theorem Esays that M¢ ~ e~ 2K Wia: when K€ is close to 0, then: € < WQZC is a stability
condition; which entails the result for K¢ close to 0, using the fact that the capacity for a user at the window

Winae is exactly Yzee . For other values, the square root formula implies that (2-C > = K)O‘(ZRe)QC > vaf )
To conclude, add the fact that R < T + Qa2 and the definition of RED. O

5 Simulation results

The example we shall study is inspired by a real Internet provider configuration, it is illustrated by figure ; the
mean field simulator can be downloaded at [39]. On a one giga-bit router in some part of the network the total
propagation delay for end users is 10ms. The router is configured with a 2ms FIFO buffer (which is five time
less than the usual delay bandwidth product rule). The faced problem is a jitter felt by end users. The size of
packets is supposed to be 1kB = 8192 bits and we shall say that the level 2 overhead is 40B; then the maximum
congestion window size which is 64kB corresponds to 64 packets; the router capacity is 1.17e+5 packets per
second and the buffer size corresponds to 235 packets. We also suppose that end users have a limited capacity
at their access so that the packets do not arrive in bursts at the router (which is an assumption of our loss
model); let us say that the limit is 100Mbits/s (and the buffer size at the access is unlimited).

In [40], we saw that 10 users can be considered to be a large number for the drop-tail. When sources are less
synchronized, the mean field simulations are always accurate for 25 or more users. We can see this on figure E
that the NS simulation of TCP Reno works close to our model which means that there are few timeouts and
slow starts and that AIMD is a good model for fast recovery/fast retransmit.

2for K < 54% which is a lot larger than the limits tolerated by TCP that turn around 8%
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Figure 6: Normalized queue size for 35 users with 1kB packets on 1Gb/s link and drop-tail policy (time is in
seconds, propagation delay 10 ms, maximum queuing delay 2ms). NS-2 is dotted and mean field equations give

the solid line.

5.1 Results with drop-tail

5.1.1 Before congestion happens

As can be seen in figure , for less than 19 users, the router capacity cannot be reached and the total throughput
per user stays at %*1024*8&'125 ~~ 52Mbits/s which is the maximum possible with the considered propagation
delay and packet size TCP can allow. We see that from 20 to 22 users, the queue increases steadily from 0 to
its maximal value, so the RTT increases from 10ms to 12ms. Remark that a stable queue close to its maximal
value is something that should be avoided because it leaves too little room for fluctuations to be smoothed. For
23 and 24 users, the queue starts oscillating, but the bandwidth still stays around its maximum.

5.1.2 The early congestion phase

From 25 users, both NS-2 and the mean field equations show an extremely bad behavior: the utilization drops
to 99% for NS-2. Then utilization drops to a worst utilization of 96% around 40 users, this can be explained

by an increasing synchronization between users.

5.1.3 Strong congestion phase

For more than 50 users, the utilization starts to increase because the mean window size decreases: although
the synchronization level is very high, with a small window, the additive increase mechanism goes back to a
maximal utilization quicker than with a larger window which explains the link utilization improvement.
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Figure 7: Comparison between RED and DropTail for NS-2 and our mean field equations. The network model
is the one of figure (), RED parameters are those of paragraph .

5.2 Results with RED
5.2.1 Configuration

Suppose that Maxy, = Qmaer = T/5 and that Ming, = 0.2 Maxy, = .4ms = 47 packets. The rule of the

thumb of theoremE gives a value of .36%, which gives an insight of the value to take. We saw with NS and by
simulating the mean field equations that .5% was also a working value whereas .75% was too high to achieve a
stabilization in every case (but leads to small oscillations), which explains our choice: piaz := .5%.

Nothing changes for less than 20 users because the queue size stays below the minimum threshold of RED.

5.2.2 RED in its working regime

From 20 to 80 users, RED permits to have a steady state with a queue size going to its maximal value. From
21 to 70 users the queue size goes from 0 to 1ms, the second half of the queue size is the stabilization region
between 71 and 80 users. This can be explained roughly by the square-root formula: the steady state value of
the loss rate is proportional to (T'C))~2, when C diminishes, the loss rate increases quadratically and so does
the queue size. This fact would advocate for an exponential shape of the loss rate function as indicated in [40].

5.2.3 RED working like a drop-tail

Then, in the case 81, the simulation noise in NS makes the queue size touch the border and begin a drop-tail
like behavior. So does the mean field simulator for 85 users. Then RED behaves like an improved version

of a drop-tail (for less than 130 users the queue never empties). Overall figure [] shows that the bandwidth
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utilization always stays beyond 99.5%. In this state RED behaves better than drop-tail from the bandwidth
utilization point of view, but there is an oscillation which makes it a good choice to take a small queue.

5.3 Increasing the latency

When one increases the latency, the relative value of @), decreases, meaning that even with the same syn-
chronization, the buffer does not provide the same bandwidth insurance. Another effect has to be taken care
of: when the latency increases, the maximal bandwidth decreases, which means that more users are needed
to reach the router capacity. When the latency is increased, the worst case for drop-tail is still at the early
congestion stage because window sizes are huge. We saw that our RED configuration, even when not working
in the steady state domain, gives better results in terms of link utilization.

5.4 Mixing latencies

When latencies are mixed, as was previously observed in the literature, the equivalent latency is the harmonic
mean of latencies, meaning that small latencies are preponderant in the configuration of a router. This fact is
intuitive because the small latency connections adapt to bandwidth changes quicker, and if they are stabilized
by the controller, the set of other connections act exactly like one constant bitrate user (even if each one of
those connections sometimes divides its bandwidth by a factor 2). We also observed that when RED was not
acting in its steady state area, our RED configuration never acted in a worst way than drop-tail, which is due
to the fact that p,,q. is not too large. The case where RED would be worse than drop-tail would be for a too
large value of p,,.. where RED acts like a drop-tail at Ming, which means that a part of the buffer is never
used.

6 Conclusion

We saw how to model accurately TCP and how to give an easy closed formula to tune RED. This lead us to
observe a bad news about the drop-tail: the worst case for bandwidth utilization for a drop-tail is just after the
congestion is reached. This is illustrated in our example. We saw there how to use our framework to configure
properly RED to obtain a situation where the congestion can be supported without any loss of bandwidth for
a very long time and without any delay oscillations. Then for extreme values, our configuration behaves not
worse than drop-tail which is a good reason to use RED in a router. In an actual router users have multiple
latencies, we also said briefly that if a sufficient number of low latency connections are present, then RED leads
to a steady state.

7 Related Works
7.1 TCP modeling area

The problem of N connections sharing one bottleneck router has been extensively studied in past years. The
first models were made by Ott and Al. in [11,27,30,32,33]. Then some interesting studies belong to May, Bonald
and Bolot in [28] and Vinnicombe in [42], but it appeared we owe the most promising approaches to Kelly and
Al [19,26] with a utility maximization problem and to Gong, Hollot, Misra and Towsley in [15,25,31] with the
idea of introducing a fluid equation supposed to model the aggregated behavior of many TCP sources. This last
approach motivated mathematical study of the mean field interaction to obtain accurate intrinsic equations of
what TCP is; namely it was the study of the AIMD TCP Reno behavior (congestion avoidance [18]).

The main works in the area are those by Tinnakornsrisuphap and Makowski [34-36] with a discrete time
model simple yet very efficient; Srikant and Al. [13,23] with discrete time where TCP users have to compete
against a white noise; Baccelli, Hong and Al. [3-5,10,17] with stochastic time steps, no buffer but an optional
HTTP adaptation [2]; and Baccelli, McDonald and Reynier [7,29] which is the model we adapted in this article.

We believe our model is the most efficient because we were able to use continuous times which really matters
due to the strong dependence of the problem on delay; our model explicitly uses the TCP mechanism and we
were able to deal with boundary effects which made it possible to study both RED (or other AQM mechanisms)
and the drop-tail. We were also able to take into account heterogeneous sources (see [29]). This article permits
to see one other advantage of our approach, it is easily adaptable to changes in the TCP dynamic or in the way
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TCP is modeled; for example in [40], we saw how to adapt it to intermittent TCP sources (to model HTTP
users behavior).

7.2 Control theory applied to TCP

Another branch of studies is the control theoretic approach used in [15] we adapted here to find stability
conditions for the time delayed equations we dealt with; for example, the same kind method was used by Kim
and Low in [22]. The problem of these studies is that they usually rely on a little-like formula, which leads to
poor results when trying to compare to simulations: simulations show behaviors a lot nicer than expected. Here
we solved this issue and found a very simple closed formula that implies stability for RED (see theorem [f).

7.3 Buffer sizing for IP routers

As noticed by McKeown, Wischik and Al. in [1,24,37,38,43], the kind of scaling we do in our model can
create problems. In core routers, slowly switching from ATM to IP, very fast and expensive memory is needed,
and bandwidth optimization is not the first goal. In that case good overall performances can be achieved by
choosing very small buffers at the cost of a waste of bandwidth even before the congestion level is reached. We
did not intent to study highspeed core routers in this article. We are interested in some access routers that are
not in the provider’s backbone. The bandwidth is limited and the number of links to upgrade make it difficult
to over provision users’ needs. Then, as we saw in the simulation section, RED may be a solution to avoid the
leverage effect at the early stages of congestion.

8 Further Works

Understanding exactly how to tune a router to avoid early congestion effects for HTTP users is still a challenge.
Even if the equations are relatively easy to write (see [40] or [6] for theory and the implementation in [39]), from
a practical point of view it is difficult to obtain accurate results. This is because of a high output dependence
on how users are modeled, and from their statistics. For instance, determining what is a "good" distribution of
file sizes or idle times between two downloads is not an easy task.

Another interesting task would be to obtain easy closed formulae for drop-tail metrics such as bandwidth
utilization.
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