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These notes were written following lectures I had the pleasure of
giving on this subject at Keio University, during November and De-
cember 2004.

The first part is about new applications of Jordan algebras to the
geometry of Hermitian symmetric spaces and to causal semi-simple
symmetric spaces of Cayley type.

The second part will present new contributions for studying (non
commutative) Hardy spaces of holomorphic functions on Lie semi-
groups which is a part of the so called Gelfand-Gindikin program.
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4 CONTENTS

Let G/K be a Riemannian symmetric space of non compact type.
Suppose that G/K is an irreducible Hermitian symmetric space, i.e.
the center 3(€) of £ (the Lie algebra of K') is non trivial.

There are two essentially equivalent ways to treat Hermitian sym-
metric spaces.

The first one uses the theory of semi-simple Lie groups; it was in
this way that the basic facts of the theory were established by Elie
Cartan in the 1930’s and by Harish-Chandra in the 1950’s.

The second way avoids semi-simple Lie groups theory and uses Jor-
dan algebra and triple systems; it is essentially due to Koecher and his
school in the 1980’s.

In our presentation we will mainly use the Jordan theory to point
out some development in the geometry and analysis on Hermitian sym-
metric spaces.

Let 0 be the Cartan involution of the Hermitian symmetric space
G/K. There exists a non trivial involution 7 of the group G which
commutes with the given Cartan involution. Let H be the 7—fixed
points of G. Then the symmetric space G/H belongs to an important
class of non Riemannian symmetric spaces, namely, the class of causal
symmetric spaces introduced by Olafsson and Orsted in the 1990’s.

Suppose G/K of tube type, holomorphically equivalent, via the
Cayley transform, to the tube V' + i€), where V' is a Euclidean Jordan
algebra and € its symmetric cone. We prove (see section 4) that in this
case G/H is a causal symmetric space of Cayley type. In section 5 we
give a conformal compactification of such spaces. We also investigate
the semigroup associated with the order on G/H, see section 6. We
prove that it is related to the semigroup Sq of compressions of €2. Each
element of Sq is a contraction for the Riemannian metric as well as for
the Hilbert metric of €.

Let S be the Shilov boundary of G/K. In section 6, we study the
causal structure of S. This boundary has many geometric invariants, in
particular the transversality index (see section 7) and the triple Malsov
index (see section 8). The universal covering of S is needed to study
other geometric invariants introduced by Souriau and Arnold-Leray in
the Lagrangian case. In section 9 we give an explicit construction of this
universal covering. We also generalize the Souriau index (see section
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10) and the Arnold-Leray index (see section 11). Finally, in section 12,
we use the Souriau index to generalize of the Poincaré rotation number.

A further interesting development is the so-called Gelfand-Gindikin
program. In 1977 Gelfand and Gindikin proposed a new approach to
study the Plancherel formula for semi-simple Lie groups. The idea is
to consider functions on G as boundary values of holomorphic func-
tions of a domain (Lie semi-groups) in the complexification of G and
to study the action of G on these holomorphic functions. When G is
the group of holomorphic diffeomorphisms of a Hermitian symmetric
space of tube type, the Gelfand-Gindikin program has been developed
by Olshanskii in several papers. This study is related to harmonic
analysis of bounded symmetric domains and the decompositions of the
Hardy spaces of Lie semi-groups, which involves the holomorphic dis-
crete series of representations of G.

We present in section 13 the theory of Olshanskii. In sections 16,
17 and 18 we develop this program for the groups Sp(r,R), SO*(2()
and U(p, q). We give a new approach of studying Hardy spaces on Lie
semi-groups. More precisely, we introduce a new Cayley transform,
which allows us to compare the classical Hardy space and the Hardy
space on the Lie semi-group.






Part 1

Cayley type symmetric spaces,
transversality and the Maslov
index



1. Causal symmetric spaces

In this section we will recall the notion of causal symmetric spaces
introduced by Olafsson and Orsted and give some examples. For non-
compactly causal symmetric spaces, we will introduce the corresponding
Olshanskir semigroup.

1.1. Causal structures. Let V be a vector space. A subset C of
V is called a causal cone if it is non-zero closed convex and proper (i.e.
CN—C = {0}) cone.
Let M be a n—dimensional manifold. A causal structure on M is an
assignment, x — C,, to each point x of M a causal cone C, in the
tangent space T, (M) of M at z such that C, depends smoothly on z.
A C! curve v : [, 8] — M is said to causal curve (resp; anti-causal
curve) if Y(t) € Cyu (resp. () € —Cyy) for all t. If there is no
non-trivial closed causal curves, the causal structure of M is said to
global. We can then define a partial order < on M :

x % y if there exists a causal curve v : [a, ] = M, y(a) =z, v(6) = v.

If M = G/H is a homogeneous space, where G is a Lie group and H
is a closed subgroup of GG, then the causal structure of M is said to be
G—invariant if, for every g € G,

Cgo = Dg(x)(Ca),

where Dg(x) is the derivative of g at x. Let x, = eH be the base point.
An invariant causal structure on M = G/H is determined by a causal
cone C, C T, (M) which is invariant under the action of H.

1.2. Causal symmetric spaces. Suppose that M = G/H is a

symmetric space : there exists an involution ¢ of G such that (G7)° C
H C G°, where (G7)° is the connected component of G7, the subgroup
of fixed points of ¢ in G.
Let g be the Lie algebra of G. Put h = g(+1,0) and q = g(—1, o) the
eigenspaces of o. Then § is the Lie algebra of H and g = h & q. The
tangent space of M at the point z, can be identified with q. With
this identification, the derivative Dh(z,), h € H corresponds to Ad(h).
Therefore an invariant causal structure on M is determined by a causal
cone C' C q which is Ad(H)—invariant.

Suppose G semi-simple and has a finite center and suppose that the
pair (g, ) is irreducible ( i.e. there is no non-trivial ideal in g, invariant
by o). In this case there exists a Cartan involution 6 of G such that
00 = 0o. Let K = GY, then K is a maximal compact subgroup of G.
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Let ¢ = g(+1,0) and p = g(—1,6). Then ¢ is the Lie algebra of K and
g = €D p is the Cartan decomposition of g. Moreover we have

g=0HNH S (N (hNp) @ (anp).
Let Coney(q) be the set of Ad(H)—invariant causal cones in q.

DEFINITION 1.1. Let M = G/H be an irreducible non-Riemannian
semi-simple symmetric space. Then we call M = G/H

( CC) compactly causal symmetric space, if there exists C € Conep(q)
such that C° N £ (.
( NCC) a non-compactly causal symmetric space, if there exists C' €
Coney(q) such that C° Np # (.
( CT) symmetric space of Cayley type, if both (CC) and (NCC) hold.
( CAU) causal symmetric space if either (CC) or (NCC) holds.

Let
qH”K:{Xeq, VEe HNK : Ad(k)X = X}.

Then, there exists an Ad(H )—invariant causal cone in q if and only if

g #£ {0}

PROPOSITION 1.2. Let M = G/H be an irreducible symmetric
space.

(1) M is compactly causal if and only if g7™5 Ne # {0}.
(2) M is non-compactly causal if and only if g7 5 Np # {0}.

ExaAMPLES 1.3. We give some examples of causal symmetric spaces.

(CC) (a) The group case. Let G be a semi-simple Lie group. Let
G = G; x Gy and define o(a,b) = (b,a). Then H =
{(a,a) ; a € G;} ~ G;. The symmetric space M =
G/H ~ (1 has an invariant causal structure if and only
if the Lie algebra g; of (G; is of Hermitian type. In this
case M is a compactly causal symmetric space.
(b) The hyperboloid Q" = {v € R"™ ; v} 4+ v — v — ... —
v2 ., = 1}. We have

M S0,(2,1)/50,(1,n)

and it is a symmetric space where the involution o is the
conjugation by the matrix

1 0
(b 0.
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(NCC)

In this case q is the set of all matrices

0 —ot "
wio) = () ) soeme

in which SOq(1,n) acts as usual. Let

C+:{Q+<U)Eq, v%—v;—...—lZO,mZO}.

(a)

Then C'; is a causal cone in q invariant under the group
SOy(1,n) and Conesoy1,n)(q) = {Cy, —C4}. In particu-
lar SO,(2,n)/SO,(1,n) carries a compactly causal struc-
ture.

The Ol’'shanskii symmetric spaces. Let g; be a semi-
simple Hermitian Lie algebra. Let g = (g1)c and let o be
the complex conjugation. let G¢ be a complex analytic
group with Lie algebra g. Let G; be the analytic sub-
group of G¢ corresponding to g;. Then G; = (GZ)° and
M = G¢ /G is a symmetric space. In this case q = ig;
and M is non-compactly causal symmetric space.

The hyperboloid Q™ = {v € R*"!; vi —v3—... =02, =
—1}. We have

Q" ~ SOy(1,n)/S0(1,n — 1)

and it is a symmetric space. In this case q is the set

0 w n
i) = (g ) s wer

in which the group SOy(1,n) acts. Let
={¢(w)eq; wl—wi—...—1>0,w >0}

Then C_ is a causal cone in ¢, invariant under the group
SO(1,n). Furthermore, Conego,1n)(q) = {C-,—C_}
and SOy(1,n + 1)/SOy(1,n) is a non-compactly causal
symmetric space.

The hyperboloid of one sheet in R3, SO,(2,1)/SO,(1,1)
is a symmetric space of Cayley type. One can realize it
as the off-diagonal subset of S x S, where S! is the unit
circle.

M~ {(u,v) € S* x S'; u #v}.

We will see, in section 7?7, that this happens for any sym-
metric space of Cayley type.
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If M = G/H is noncompactly causal symmetric space, then there
exists a causal cone C' € Coney (q) such that C°Np # () and CNE = {0}.
The causal structure is then global and we can define and order < on
M. The set

S#Z{QEG, $o<g'xo}
is a closed semigroup called the Ol’shanskii semigroup. One has the
the Olshanskii decomposition

S< = Hexp(C).
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2. Jordan algebras and symmetric cones

In this section we recall the notion of Euclidean Jordan algebras
and fiz notations. Our presentation is mainly based on [F—K].

Let V' be a Fuclidean Jordan algebra with identity element e and of
dimension n. This means that V' is a n—dimensional Euclidean vector
space equipped with a bilinear product such that

Ty = ya,
w?(xy) = x(x%y),
(1) (zylz) = (z]y2).

For z € V', denote by L(x) the linear operator defined by y — L(x)y =
xy, and introduce the quadratic representation P(-) and the ”square”
operator [, defined by

P(z) = 2L(2)* — L(2?), 20y = L(zy) + [L(x), L(y)],

where the brackets denote the commutator. For simplicity we assume
V to be simple. In other words, there is non non-trivial ideal in V. An
element x is said to be invertible if there exists an element y € R[z]
such that zy = e. Since R[z] is associative, y is unique. It is called the
inverse of x and is denoted by y = 27!, Let V* the set of invertible
elements of V. The connected component of the unit e in V' is the set
Q) of squares,
Q={z*; xcV*}.

The set €2 is open, convex, proper, generating, symmetric, homogeneous
cone. This is the symmetric cone associated with the Jordan algebra
V. Let G(Q2) be the subgroup of linear transformations of V' which pre-
serve €. Then G(() is a reductive group, which acts transitively on €.
The same properties hold for its neutral component, which we denote
by Gy. The stabilizer Ky = (Gyg). of the unit e is a maximal compact
subgroup of G and it is the neutral component of Aut(V'), the auto-
morphism group of the Jordan algebra V. Moreover Ky = Go N O(V),
where O(V) is the orthogonal group of the inner product on V. The
space 2 ~ G/ K, is a Riemannian symmetric space.

Let ¢ be an idempotent element in V : ¢ = c¢. Then the only
possible eigenvalues of L(c) are 1, %, 0 and V is the direct sum of the
corresponding eigenspaces V(c, 1), V(c, 1) and V(c,0). The decompo-
sition

V=V(,1) @V, %) @ V(e 0),
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is called the Peirce decomposition of V with respect to the idempotent
c. It is an orthogonal decomposition with respect to any scalar product
satisfying (1).

Two idempotents ¢ and d are said to be orthogonal if (c|d) = 0,
which is equivalent to ¢d = 0. An idempotent is said to be primitive
if it is not the sum of two non-zero idempotents. An idempotent c is
primitive if and only if dim V'(¢,1) = 1. We say that (¢;)i<j<m Is a
Jordan frame if each c; is a primitive idempotent and

CiCj = 0, 1 7£ j
Cl—|—02+...—|—CmI€.
All the Jordan frames have the same number of elements which we
denote by r. The integer r is the rank of the Jordan algebra V.
The group K acts transitively on the set of primitive idempotents, and

also on the set of Jordan frames. Therefore if we fix a Jordan frame
(¢j)j=1, then every element x € V' can be written in the form

r = ]{Z(Z )\jcj)
7=1

where k € K and Aq,..., A, real numbers. The scalars ()\;)1<;<, are
unique and called the spectral values of x. We define the determinant
and the trace of the Jordan algebra by

det(z) = [[A; tr(z) =D A\
j=1 j=1

The trace is a linear form of V' and the determinant is a homogeneous
polynomial on V' of degree r. One can show that

V*={x eV, det(x)#0}.
From now we assume that the scalar product of V' is given by
(2) (z[y) = tr(zy).

EXAMPLE 2.1. The wvector space V. = Sym(r,R) of r x r real
symmetric matrices is a Fuclidean Jordan algebra with the product
zoy = $(zy+yzx) and the scalar product (z|y) = Tr(zy). The quadratic
representation is given by P(x)y = xyx. In this case the determinant
and the trace are the usual matriz determinant and trace. The corre-
sponding symmetric cone is Q = Sym™T(r,R) the set of definite pos-
itive symmetric matrices. An idempotent is an orthogonal projection

c= (%’8) with r =p-+q. Then

Vie,1) ={(&3) ; a : pxp symmetric matriz},
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(c?tg) ;d : pXq matrizk,

g X p symmetric matriz}.



3. HERMITIAN SYMMETRIC SPACES OF TUBE TYPE 15

3. Hermitian symmetric spaces of tube type

In this section we characterize irreducible Hermitian symmetric
spaces of tube type using the Jordan theory and give the classification
of such spaces.

By complexification, we get a complex Jordan algebra Vi. We
denote the complex conjugation with respect to V' by 7. We also use
the notation

(3) n(z) =z
We extend the inner product (2) of V' to the Hermitian inner product
of V¢ defined by

(4) (zlw) = tr(zw).
Let

S={oel, cr*l:c’r}.
This is a connected compact sub-manifold of V.

ProposITION 3.1 ([F-K]). Foro € Vi the following properties are
equivalent :
(i) o €8,
(17) o = exp(iu), where u € V,
(¢13) There exists a Jordan frame (c;)1<j<, of V and complex num-
bers (§;)1<j<r of modulus 1, such that o =3 "_, {;c;.

Denote by L. = Str(V¢) be the structure group of Vg, i.e. the set of
g € GL(Vg) such that
P(gz) = gP(2)g
or equivalently
g9(z0w)g™" = (92)0(g"'w).
Consider the group

L(S) ={g9 € GL(V¢), g(S) = S}.

Then L(S) = LN U(Vg), where U(V¢) is the unitary group of the
Hermitian inner product (4) on Vg. It acts transitively on S. More-
over, the stabilizer of e in L(S) coincides with Aut(V') (we extend the
automorphisms of V' as complex linear automorphisms of V). The
involution (3) preserves S and e is its unique isolated fixed point. The
set of fixed points of the corresponding involution of L(S), g — nogon,
is L(S)e = Aut(V'). Hence, with the metric induced by the Hermitian
product (4), S is a Riemannian symmetric space of compact type iso-

morphic to L(S)/Aut(V).
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Let U be the identity component of L(S), and U, the stabilizer of e in
U. Then we have Aut(V)° C U C Aut(V), and

S~U/U.,.

Let (¢j)1<j<r be a Jordan frame of V. Then every element z € V¢ can
be written as in the form
s
z=u(d>_Ney),
j=1

where v € U and 0 < Ay, ..., .. The spectral norm of z is then defined
by

|z| = sup Aj.
1<j<r

It turns out to be a norm on Vg, invariant under the group U.
Introduce the domain D in V¢ as th open unit ball for the spectral
norm

D={zeV, |7 <1}

Recall that the Shilov boundary of D is the smallest closed set in D
where the principle of the maximum holds.

THEOREM 3.2 ([F-K]). D is a bounded symmetric domain and S
15 its Shilov boundary.

There is a realization of the domain D as a tube domain through
the Cayley transform. Let T be the tube over the symmetric cone (2,

To=V+iQ={z=ax+iye Ve, ye}.

The Cayley transform ¢ and its inverse p are given (in their domains
of definition) by

p(z) = (z—ie)(z+ie)™!
c(w) =ile+w)(e—w)™ L

ProprosITION 3.3 ([F-K]). The map p induces a biholomorphic
isomorphism from To onto D, and

p(V)={o €S, det(e— o) #0}.

Both domains Ty, and D are biholomorphically equivalent, and V'
can be thought of as the Shilov boundary of Ty and its image under
the transformation p is an open dense in S.

Let G = G(D) be the neutral component of the group of biholo-
morphic diffeomorphisms of D. It is a semi-simple Lie group and the
stabilizer of 0 € D in G is a maximal compact subgroup of G which
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coincides with U.

To describe the group GG, we use the Cayley transform. Let G¢ :=
G(Tq) be the neutral component of the group of biholomorphic diffeo-
morphisms of Tg. Then

cloGoc=G".

We already know some subgroups of G¢. In fact , an element of Gq
acts on T and we can identify G with a subgroup of G°.

For v € V', the translation
ty:2H— 240

is a holomorphic automorphism of T, and the group of all real trans-
lations t, is an Abelian subgroup N* of G¢ isomorphic to the vector
space V.

The inversion

j:ZHz’1

belongs to G¢. We set N~ = jo Nt oj. It is the subgroup of G¢ of the
maps
ty=jot,ojizr (271 —v)t veV,

and it is an Abelian subgroup of G¢ isomorphic to V.

THEOREM 3.4 ([F-K]). The subgroups Gy and N, together with
the inversion j, generate G°.

The semi-direct product PT = GoN™* is a maximal parabolic sub-
group of G°. The homogeneous space G°/P7 is then a (real) compact
manifold which contains V' as an open dense subset,

(5) V —G/PT v g, P,

where ¢,(z) = j(z) + v. The manifold G¢/P™ is the conformal com-
pactification of the Jordan algebra V', and it is isomorphic to the Shilov
boundary S of D.

EXAMPLE 3.5. IfV is the Jordan algebra Sym(r,R), then D is the
Siegel domain

D ={z e Sym(r,C), I, — zz" >> 0}.
It is holomorphically isomorphic to the upper half domain
To = {z =x +iy € Sym(r,C), y € Sym™ " (r,R)}.

In this case, G = Sp(r,R)/{£Id} , where Sp(r,R) is the symplectic
group.
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Here we give the classification of tube domains, their Shilov bound-
aries and the corresponding Euclidean Jordan algebras.

V Ve D ~G/U S~U/U,
Sym(m,R)  Sym(m,C) Sp(2m,R)/U(m) U(m)/O(m)
Herm(m,C) Mat(m,C) SU(m,m)/S(U(m) x U(m)) U(m)
Herm(m,H) Skew(2m,C) SO*(4m)/U(2m) U(2m)/SU(m,H)
R x R C x Ca! SO00(2,q)/S0(2) x SO(q) (U(1) x ST1)/Z,
Herm(3,@) Mat(3,@) E7(_25)/U(1)E6 U(l)EG/F4

TABLE 1. Tube domains and their Shilov boundaries

V n r d
Sym(m,R) Im(m+1) m 1
Herm(m, C) m? m 2
Herm(m,H) m@2m—-1) m 4
R x R! q 2 q—2
Herm(3,0) 27 3 8

TABLE 2. The dimension, rank and the Peirce invariant
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4. Cayley type symmetric spaces

In this section we characterize the causal symmetric spaces of Cay-
ley type; we prove in particular that if G/K is a Hermitian symmetric
space of tube type, then G/H is a causal symmetric space of Cayley

type.

Let g be the Lie algebra of G = G(D) and g° be the Lie algebra
of G¢ = G(Tg). Let go be the Lie Gy. The Lie algebra of Kj is set
of all derivations Der(V) of V. Let po = {L(v) , v € V}. Then the
Cartan decomposition is given by go = £y @ po. The Lie algebra of U
is u = & @ ipy. Let G¢ be the Lie group generated by Str(Vc), the
complex translation of V¢ and j. Then G and G¢ are two real forms of
Gc. The Lie algebra gc of G is the set of vector fields X on V¢ of the
form

X(z)=u+Tz— P(2)v,

with u,v € Vg and T € ste(Vi), where ste(Ve) is the Lie algebra of the
structure group of Vi and coincides with (go)c. If
(

Xi(z) = w+Tiz— P(2)v,

X1(2) = ug+Toz — P(2)ve,
then the bracket [X7, Xs] is given by

(X1, Xo](2) =u+Tz— P(2)v,

with
u = Tius — Touy,
T = [Tl, TQ] + 2(U1|:|U2) — 2(U2|:|Ul),
v = —Tjvy+Tyv.

A vector field X in gc
X(z)=u+Tz— P(2)v,
can be identified with (u,T,v) € V¢ x ste(Ve) x V, then
gc ~ Ve x ste(Ve) x V.
With this identification we have,
g0 = {(u,Tyu), ueV,T €ty} =~V xt xV,
g = {(u,T,v), u,ve VT gy} =V xgyxV,
{(w, T,w), we Ve, T €u},
{(u, T, —u), ueV,T € t}.
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Define X, = (0,7,0), then ad(Xy) has eigenvalues 1,0, —1 with the
eigenspaces
g = {(u,0,0), ueV}~V
98 = {(07T7 O) ) T e gO} = o,
g, = {(0,0,v),veV}~V.

The decomposition
g° =97 +go+95
is called the Kantor-Koecher-Tits decomposition of g°.
Consider the involutions ¢ and 6° of G given by
o°(g) = (=j)ege (=)
0°(g) = Jjogoj.
We keep the same notation for the corresponding involutions of the Lie
algebra g°.
ProposiTION 4.1 ([Ko], [Ko4], [Kos]). 6° is the Cartan involution
of G¢. It commutes with the involution o¢. If X = (u,T,v) € g%, then
JC(X) = (U7_T*7U‘)7
(X)) = (—u,=T", —v).
Similarly, consider the involution ¢ and 6 of G given by
o(g) = vogov
0°(9) = (-v)ogo(-v).
where v(z) = Zz, and keep the same notation for the corresponding

involutions of the Lie algebra g.

ProrosiTION 4.2 ([Ko|, [Ko,], [Kos]). 6 is the Cartan involution
of G. It commutes with the involution o. If X = (w,T,w) € g, then

o(X) = (@.T,w)
0(X) = (—w,-T,—w).
Let 7 be the element of G° given by
7(2) = (e+2)(e — 2)~ L
Then its inverse is
T H2)=(z—e)(z+e) "t
Notice that ¢(z) = i7(z) and ¢~ !(z) = 771 (iz). For any element g € Gy,

! ogoc:To(g*)_loT_l.
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Since (G is a reductive group, we have
cloGpoec=10Gyor L
Let H = G° and H® = (G°)°". Then we have
THEOREM 4.3 ([Ko], [Ko,], [Ko,)). (1) H=c'oGyoc and
H¢=710Gyor !
(2) The subgroups H and H¢ coincides and H = H® = G N G°.
(3) The symmetric space M = G/H ~ G°/H° is a Cayley type
symmetric space and any symmetric space of Cayley type is
gien in this way.

More precisely, we have
he = {(u,T,u); ueV,T € &},
a° = {(u,L(v),—u); u,v €V},
¢ = {(u,T,—u); ueV,T € b},
p¢ = {(u,L(v),u); u,v € V}.
Let (', respectively C5, be the cone in q° given by
Cy = {(u,2L(v), —u) ; (u+v) € -Q, (u—0) € Q},
respectively
Cy = {(u,2L(v), —u) ; (u+v) € Q, (u—v) € Q}.

C and Cy are two Ad(H¢)—invariant, regular cones isomorphic to { x

Q). Moreover
Cinpt#0, Cynee={0}
and
Conee#0, CyNp®={0}.
Thus C (respectively Cy) defines a non-compactly (resp. compactly)
causal structure on G°/H°.
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5. The 2-transitivity property on S% and Cayley type
symmetric spaces

In this section we will give a causal compactification of cuasal sym-
metric spaces of Cayley type.

DEFINITION 5.1. Let M be a causal G—manifold. A causal com-
pactifiction of M is a pair (N, ®) such that
(1) N is a compact causal G—manifold.
(2) The map ¢ : M — N is causal.
(3) The map ® is G—equivariant, i.e., ®(g-x) = g-P(z), for every
g € G and every x € M.
(4) (M) is open and dense in N .

Two points z,w € Vi are called transversal, and we write zTw, if
and only if det(z — w) # 0. This condition is equivalent to Det P(z —
w) # 0. We denote the set of transversal elements in S? by

S2={(o,7)€S?, 0T} ={(0,7) € S, det(oc — 7) # 0},

THEOREM 5.2 ([Ko], [Koy], [Kos]). The group G acts transitively

on S%. The stabilizer of the element (e,—e) € S% in G is the group
H=c'oGyoec.

Hence, the Cayley symmetric space is G—equivariant to S2,
G/H ~ S%.

Since S% is open dense in S%, and since S? is a compact causal G—manifold
(because we already prove that S is a causal G—manifold), the mani-
fold S? is a causal compactification of G/H.

The ”"non bounded” realization of M = G°/H*¢ is such that

MN(VxV)={(z,y) e VxV;det(x —y)#0}.
EXAMPLES 5.3. (1) If M = SU(n,n)/GL(n,C)R*. Then
D =SU(n,n)/S(U(n) x U(n)) ={z € Mat(n,C) ; I, — 2"z > 0},

its Shilov boundary is S = U(n) and
M~ {(z,w) € U(n) x U(n) ; Det(z —w) # 0}.
(2) If M = Sp(n,R)/GL(n,R)R*. Then
D = Sp(n,R)/U(n) ={z € Sym(n,C) ; I, — 2"z > 0},

its Shilov boundary is the Lagrange Grassmann manifold S =
U(n)/O(n) ={z€U(n); z' =z} and

M ~{(z,w) €U(n) xU(n); z' = z,w" = w,Det(z —w) # 0}.
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6. The Lie semigroup associated with the Cayley type
symmetric space

In this section we inverstigate the semigroup Sq of compressions
of Q. We prove in particular a triple decomposition and that Sq is
the real part of the holomorphic semigroup of compression of the tube
domain. We give a new characterization of the Riemannian metric of
Q and prove that Sq is a semigroup of contractions of this metric. The
Hilbert metric on ) is also studied

6.1. The compression semigroup of the Hermitian domain
D. Let Cf . be the maximal cone in g°. It is the closed convex cone
given by
Ce.=1Xeg; X(v)eQ,VweV}

The cone Cpax = Ad(c)(CL,,) is the maximal cone in g. Let

['(Chax) = G exp(iCpax)-

The following theorem is due to Olshanskii

THEOREM 6.1 ([Os]). The set T'(C\a) is a Lie semigroup (associ-
ated with Cyey) and it is the semigroup of compressions of the Hermit-
tan domain D,

I'(Cpas) = {9 € Gec 5 g(D) C D}.

Moreover o
I(Chae)® ={9 € Gc ; g(D) C D}.

The convex cone (] is the maximal cone ¢, in q° It defines a
non-compactly causal structure on M. Therefore M is and ordering
symmetric space Let I' the semigroup associated with the order of M,

S ={g9€G"; gle,—e) = (e,—e)}.
Then we have

THEOREM 6.2 ([Ko], [Ko,], [Kos]). The semigroup Sx satisfies
(1) SE = eXp(CEr:nax)H'
(2) T(Cruaa) NG = 51

6.2. The compression semigroup of the symmetric cone ().
Recall that when P is the parabolic subgroup P = GoN™*, the compact
symmetric space X = G°/P is conformal compactification of V', and
the imbedding of V' into X’ given by (5) is an open dense embedding. A
Lie semigroup that is naturally related to the action of G¢ on X occurs
as the semigroup of compressions of €2 in G :

(6) So={y€G;4QCQ}
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Since the closure  of Q in X is compact with €2 as interior, the com-
pression semigroup S is a closed semigroup of G¢. Moreover Sq con-
tains Gg, and its interior is

5o ={yeG ;0 cQl.
Now let
Sy = {(vhiz—z2+tv;0veQ)
Sqg = {7, 12— ("1+0) ve Q).
Then it is easy to see that S and Gy are closed sub-semigroups in Sg.

Hence SqGySq, C Sa.

THEOREM 6.3 ([Ko], [Koy)). (1) The compression semigroup
Sq 15 equal to the semigroup S-
(2) The sub-semigroups S& and Sq,, together with the subgroup
Gy, generate So. More precisely, one has the following decom-
position

(7) So = 54GoSq = N*GoN™ N So.
If v =7} g7y, € Sq, then we write
(8) n(y) = u, A7) :=gand, n"(y) :=v.

6.3. The semigroup of contractions. The family of bilinear
forms g, given by,

go(u,0) = (P(a) Mulv), @€ QuuveV,

defines a G(§2)—invariant Riemannian metric on 2, see [F—K, Theorem
I11.5.3]. Therefore, € is a Riemannian symmetric space isomorphic to

G(Q),/K(Q)o.

THEOREM 6.4 ([Kos]). Let x,y € Q2. Then there exists a unique
curve of shortest length joining x and y. The length of this curve is
gien by

oz, y) = <Z log? Ap(z, y)) 1/2,

where M\ (x,9), ..., \(z,y) are the spectral values of of P(y)~'/?x.
d(z,y) is the Riemannian distance of x and y, and the scalars
pi(,y) = log*(An(w, y)

are by definition the angles or the compounds distance.
Using the notations (8), we set

S1= {7 €S| n(y) €9,
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and
So={y€ Sq | n (y) €}

THEOREM 6.5 ([Kos]). Let k € {1,...,r}. The following holds:

(1) For any~ € S and for any x,y € Q : pp(v-z,v-y) < up(z,y).

(2) For any v € S1 U Sy and for any x,y € Q : pp(y-z,v-y) <

(3) For any v € S1 N Sy, there exists k(7y), 0 < k(y) < 1, such
that for any x,y € Q = pe(y - 2,7 - y) < K(y) (2, y).

As an easy consequence, Theorem 6.5 implies that the elements of
the semigroup S are contractions of the distance 6. More precisely we
have

COROLLAIRY 6.6 ([Kog]). The following holds:

(1) For any v € Sq, and x,y € Q : §(y-x,v-y) < .
(2) For anyy € S1USy and x,y € Q : §(y-x,v-y) < d(x,y).
(3) For any v € Sy N Sy, there exists k(y), 0 < K

that, for all z,y € Q : 0(y-z,v-y) < k(y) §(z,y).

6.4. Hilbert’s projective metric. Let F be a real Banach space
and C' be a closed convex pointed cone, where pointed means CN—C =
{0}. The relation < is defined on E by saying that x < y if and only
ify—zed.

For z € E and y € int(C) we let

M(z,y) :=inf{\ | z < \y},
and

m(z,y) = sup{p | py < x}.
Hilbert’s projective metric is defined on int(C') by

(9) d(z,y) = log %

i
max—*
Yq

i i

In the case of R”, Hilbert’s projective metric is d(z,y) = log

Y
where © = (21,...,2,) and y = (y1,...,yn) are two vectors of R'}.
The Hilbert projective metric may be applied to variety of problems
involving positive matrices and positive integral operators. For example
one can use it to solve some Volterra equations. It is also particularly
useful in proving the existence of the fixed point for positive operators
defined in a Banach space. In this way, it has been shown by Bushell
[Bu] that Hilbert projective metric may be applied to prove that, if T
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a real nonsingular r X r matrix, then there exists a unique real positive
definite symmetric r x r matrix A such that

(10) T'AT = A%

Notice that if T is neither symmetric nor orthogonal the existence and
the uniqueness of A is not an elementary problem, even if r = 2.

We will formulate the Hilbert projective metric on symmetric cones
in a way most convenient for our purpose using Jordan algebra theory
and extend Bushell’s Theorem to this class of convex cones.

If we consider the cone (g, of real symmetric positive definite r xr
matrices, then one can easily express the Hilbert projective metric (9)
in terms of eigenvalues of elements of {dgy,. Indeed, if A and B are in
stm, then

(Az|x)

M(A, B) =nf{A[AB — A < 0} = max (505

and (A )
m(A, B) :=sup{A | AB - A <0} = |x|| o (Bx|z)’

which are respectively the greatest and the least eigenvalue of B~1A.
Observe that eigenvalues of the matrix B~ A are the same of the matrix
B 3AB~: = P(B"%)A.

More generally, for symmetric cones, Hilbert’s projective metric can
be also formulated in terms of extremal eigenvalues : let x and y be in
Q and let A\y(z,y) > 0 and A\, (x,y) > 0 denote the greatest and the

least eigenvalue of the element P (y_%)a: € ). Then one can prove that

(ze)
A pu—

Y

and

—~
~—

x|c

)\m 9 -
(=:9) = 28, oy

see [Kogz, Thoerem 4.2]. Consequently, we have :

PROPOSITION 6.7 ([Koy)). If z, y € ), then the Hilbert metric of
x and y s given by

) o) = log Y -

Furthermore, one can prove (see [Koy4|) that (Q2,d) is a pseudo-
metric space. In other words, for any z, y, z € ), the following holds,

(a) d(z,y) >0
(b) d(x,y) = d(y, z)

log [Aus(z, y) A (y, z)].
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(¢) d(z, 2) < d(z,y) +d(y, 2)
(d) d(z,y) =0 IAN>0:2=\y.

Now the characterization (11) of the Hilbert metric allows us to prove
the completeness :

PROPOSITION 6.8 ([Koy]). (2NS(V),d) is a complete metric space.
As application, we prove a generalization of the Bushell theorem :

THEOREM 6.9 ([Koy]). Let g € G(2) and p € R such that |p| > 1.
Then there exists a unique element a in Q such that g(a) = a”.
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7. The 2-transitivity property on S? and the transversality
index

We introduce here, the transversality index, a new invariant on the
Shilov boundary which characterize the action of G on S X S. In the
particular case of symmetric matrices this invariant has been studied
by Hua.

Fix a Jordan frame (¢;)i<j<, and for k =0,1...,r let
k r
€ = —e, ek:ch— Z i, € =e.
j=1 j=k+1

PROPOSITION 7.1. There are exactly r + 1 orbits in V> under the
action of Go. The elements €, 0 < k < r are the set of representatives
of all the orbits.

Using this proposition and the Cayley transform one can prove the
following

THEOREM 7.2. There are exactly r + 1 orbits in S x S under the
action of G represented by the family (e, €e), 0 < k <.

Let (o,7) € S x S. The transversality index of the pair (o,7) is
defined by

(12) plo,7) =k

where k is the unique integer, 0 < k£ < r such that (o, 7) is conjugate
under G to the pair (e, €).

The transversality index can also be understood as follows : Recall
that the rank rank(z) of an element x € V is by the number of its
non-zero spectral values with their multiplicities counted. This is an
invariant under the action of Gy. Observe that x and y have the same
rank if and only if P(x) and P(y) have the same rank.

ProprosITION 7.3 ([C—K]). Let o,7 € S, then there exists u € U
such that u(o) and u(T) are transversal to e. In addition the integer

rank[c(u(o)) — c(u(r))]
does not depends on the element u € U and

(o, 7) = r —rank[c(u(o)) — c(u(7))].
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Notice that
k(k —1
M(U,T) =k <= rank P(O’—T) — k+%
In particular,
wo,7) =0 < oTT.

d.

29
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8. The 3-transitivity property on S and the triple Maslov
index

In this section we recall another invariant which characterize the
action of G on (S x S x S)T. This invariant was introduced by Clerc
and Orsted and provides a generalization of the triple Malsov index.

Let S3 be set of pairwise transversal elements in S®,
Sigr = {(0'1,0'2,0'3) - 53 s O'Z'T(Tj, 1 S 7 7&] S ]}}

Choose a Jordan frame (¢;)1<j<,, Y

j=1¢j = €, then we have

THEOREM 8.1 ([C—Q,]). There are exactly r+1 orbits in 5% under
the action of G, represented by the family (e, —e, —ieg), 0 < k <r.

Let (01,09,03) € S®T. The triple Maslov index (01, 09, 03) of the
triplet (01,09, 03) is defined by

(13) o1,09,03) =k —(r—Fk)=2k—r

where k is the unique integer 0 < k < r such that (o7, 09, 03) is conju-
gate under G to the triplet (e, —e, —i€;). One can prove that the triple
Maslov index 2 satisfies :

PROPOSITION 8.2 ([C—Q1]). The triple Maslov index is
(1) an integer valued function : for all (o1,04,03) € S3T,
—r <(01,09,03) <7

(2) invariant under the action of G : for all (o1,00,03) € S*T
and all g € G,

1(g(01), 9(02),9(03)) = (01, 02,03)

(3) skew symmetric : for all (o1,09,03) € ST and all permuta-
tion ™ of {1,2,3},

Z(Uﬂ(1)7aﬂ(2)7aw(3)) = 2(01702703)
(4) a cocycle : for all o1,09,03,04 € S such that 0;To;, 1 <i#
J<4,
Z(Ula 02, 0-3) - Z(Ula 02, 0-4) + 2(0-27 03, 0-4) + 1(0-37 01, 04)-

There is another construction of the triple Maslov index as the
integral of the Kaehler form of the Hermitian domain D. Let 21, 29, 23 €
D. Form the oriented geodesic triangle A(zq, 29, 23), and consider any
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surface ¥ in D which has this triangle as boundary. Let w be the
Kaehler form of the domain D. Then the real number

@(21,22,23):/&)
b

is not depending on X, since the Kaehler form is closed, and is called
the symplectic area of the triangle A(zy, 22, 2z3). As the Kaehler form
is invariant under G, this gives and invariant for the oriented triples in
D. Now for (01,09,03) € S2, then the limit

l_im

SO(Zla 29, 23)

exists and is equals to the triple Maslov index (o4, 09, 03), see [C—0].
This definition of the triple Maslov index extends for general (o4, 09, 03) €
53, without the transversality condition. This requires a notion of ra-
dial convergence, see [Cy] for more details.
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9. The universal covering of the Shilov boundary

In this section we introduce the causal structure of the Shilov bound-
ary S and giwve an explicit construction of the universal covering of S.

9.1. The causal structure of the Shilov boundary. Usually,
one demands that the cones in the causal structures be closed. For our
purpose we will suppose them open.

The Jordan algebra V' has a natural causal structure modelled after the
symmetric cone 2. It is simply given by the symmetric cone €2 viewed
as a causal cone in the tangent space T,(V) = V at any point x € V.
It is clear that this causal structure is G°—invariant .

Consider —e as the base point of S. The tangent space T_.(.S) can be
identified to V. Moreover p(0) = —e and the Cayley transform p is
well defined in a neighbourhood of 0. Its derivative at 0 is given by

Dp(0) = —2ildy..

This allows us to transfer the causal structure form V to S. We define
the causal cone C_, to be

C_e = De(—e) () = —ifd.

This is an invariant cone by the stabilizer of —e in G. We can then
define a GG—invariant causal structure on S as follow : Let o0 € .S, then
there exists g € G such that g(—e) = o, then we define the causal cone

C, to be
(14) Cy = Dg(—e)(C-) = Dg(—e)(—iQ).

The family (Cy)ses is the unique G—invariant causal structure of the
Shilov boundary S modelled after €.

9.2. The construction of the universal covering. The Shilov
boundary S ~ U/U, is not a semi-simple symmetric space. To con-
struct the universal covering of S, we prefer to deal with its semi-simple
part.

Consider the set

Sy ={oc €S | det(o) =1},

then S; is a connected sub-manifold of S. There exists a character y
of the structure group Str(V¢) such that

det(gz) = x(g) det(z)
for all g € Str(Ve) and all z € V. Let
Uy={uelU]|x(u) =1}
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Then U; is a compact semi-simple group and acts transitively on S
and

Sy = Uy /(U7 N Aut(J),

where U7 is the neutral component of the group U;. Thus we have

ProposITION 9.1 ([C—K]). Sy a semi-simple Riemannian symmet-
ric space of compact type.

The Lie algebra of U, is uy = € @ ip; where
p1 ={L(v) | veV tr(v)=0}.
Let )
a; ={L(a) | a= Zajcj, a; € R, tr(a) = 0}.
j=1

Then a; is Cartan subspace of p;. We consider now the fundamental
lattice Ag of ay,

Ao = lattice generated by {27 | 1<j#k<r}

jik
(A1l A58)
where A;, is the covector of §(a; — ay). The unitary lattice A of a; is
given by
A={H €a | exp(iH)e = e}.

One can prove (see [C—K]) that Ag = A. According [Lo, Theorem 3.6]
(see also [Heq, Ch. VII. Theorem 8.4 et Theorem 9.1]) we have

THEOREM 9.2 ([C-K]). The symmetric space Sy is simply con-
nected.

Following a classical method, we will realize the universal covering

of S. let N
S ={(0,0) € S xR | det(c) = "},
with the topology induced by the topology of S x R.
THEOREM 9.3 ([C—K]). S is the universal covering of S.
In fact we prove that map
Sy xR— 8 (0,0) — (¢”0,0)

is a homeomorphism and bijective.

Now we will describe a covering of the conformal group G and
give and explicit action of it on the universal covering of the Shilov
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boundary.
For g € G and z € D we define

J(g,z) = x(Dg(z)).
This is an element of the structure group Str(V¢). it is easy to see that
j(g,2) # 0. Since D is simply connected, we can find a determination
@, of the argument of j(g, -), that is

Vz e D. eival?) — M
’ 1i(g,2)]
Two such determinations differs by 27k.
Consider the following group

I'={(g.¢) |9 €G}.
The multiplicative law being given by

Observe that I' can be identified with the closed sub-set of G x R given
by

{(9,0) e G xR | €’ =4(g,0)}.
Thus I' becomes a topological group.

PRrOPOSITION 9.4 ([C-K]). For (g,¢,) €T and (0,0) € S, set

1
(9:) - (9,0) = (9(0), 0+ ~(g,0)).
Then this defines a continuous action of I' on S.

To prove this proposition we need the following formula (see [C—K,
Lemme 3.6])
j(g,0)

(1) detlg()) = F 00

This requires the causal structure of S.

det(o), forge G, o€ S.
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10. The Souriau index

In this section we construct a primitive m of the Maslov cocycle.
That is an integer valued function

m:SxS—7
which is skew symmetric and satisfies the following cohomology property

Z(O’l, g9, O'3) = m(51,52) + m(52,53) + m(53, 51)

Let o belongs to the set St(—e) of elements in S transversal to —e.
We can define the logarithm of o by

(16) logo = / ((se—0)" = (s—1)""e)ds € V.

—00

The function log has the following standard properties :

ProrosITION 10.1 ([C—K]). For any o € St(—e),
(1) exp(logo) = o.

(i1) etr(oe?) = det (o).

(71) logo™! = —logo.

(iv) log(ko) = klogo, for any k € Aut(J).

Let 0 = (0,0) and T = (7, ¢) are two elements of S. We say that
o and T are transversal if the projections are transversal, c T7. Then
there exists u € U such that v=(7) = —e and u~!(0)T —e. We can
apply (16) to u=!(o) and define the Souriau index of the pair (7,7) to
be

(17) m(F, 7) = %[% trlogu~(0)) — (6 — 8)].

THEOREM 10.2 ([C-K]). The Souriau index is Z—uvalued continu-

ous function on S% and is invariant under the action of the covering
.

We also prove the following essential cohomological property

THEOREM 10.3 ([C—K]). If&1,52,55 € S have pairwise transverse
projections oy, 09,03, then

m(&l, 52) + m(52, 53) + m(53, 51)
s an integer and coincides with the triple Maslov index of the triplet
<017 02, 0'3),

Z(O’l, 09, 0'3) = m(Efl, 52) + m(52,53) + m(53,51)
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Following an idea of [deG;], we extend the definition of the Souriau
index to S x .S and prove Theorem 10.3 without the transversality con-
dition.

Now, fix a Jordan frame (¢;)1<;<,, then we have

THEOREM 10.4 ([C-K]). Fiz

E ewfc + E e’ Jc], , E e”’]c]jL E e“"fc )

J=0+1 j=0+1
such that 0, —; ¢ 2nZ for { +1 <35 <r. Then

(18) m(cy,02) [ Z {0; —p; + 7} —1r(0— @)]

J=l+1
In particular, if 61 = (—e, —7) and 55 = (— Z§:1 Y1 €965, ),
where
(1) —m <@, <m, Vj, l+1<j<r et
(1) 1o = —bm + >0, p; + 2km, with k € Z,
then
(19) m(01,02) = 2k + 1 — £ =2k +r — p(o1, 02),

where p(oq,09) is the transversality index of the pair (oy, 09).
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11. The Arnold-Leray index

In this section we generalize the notion of Maslov cycles, prove
their stratification and their causal orientation. We use these geometric
properties to construct another primitive to the triple Maslov index.

11.1. The Maslov cycles. Given oy € S we consider the follow-
ing sub-manifold of point of S which are not transversal to oy,

Y(o9) =S\ St(09) ={oc € 5| det(c — 0y) = 0}.
This is the Maslov cycle attached to oy.

THEOREM 11.1 ([C—K]). The Maslov cycle X:(oy) is a stratified sub-
manifold of S of codimension 1 and its singularity is of codimension
>3inS.

In fact the stratums are the sets

Si(o0) ={0 € 5; plo,00) =k}, 0 <k <

We prove that Sy (o) is a sub-manifold of S of codimension k+ @d,
and
S(a0) = | | Sk(oo) = Si(00).
1<k<r

The singularity of the Maslov cycle %(0yg) is | |,<;<,. Sk(00) = Sa(00),
and the set of regular points is S} (o).

Now we wish to prove that the Maslov cycle is in addition oriented.
For this purpose we use one more time the causal structure of the Shilov
boundary S and prove the following fundamental fact :

PrOPOSITION 11.2 ([C-K]). Let o € Si(00) be a regular point of
Y(0g). Set Hyy(0) =T,(X(00)). Then the tangent vectors of all causal
curves starting from o are all contained in the same half space of T,(.5)
limited by Hy, (o).

Hence H,, (o) has two sides : + side and — side. The + side is the
one which contains all mentioned tangent vectors. We will denote it
by H} (o). The family

(HZ) (U))Uesl(ao)

is called the canonical transverse orientation of the Maslov cycle (o).
We now claim that this orientation is compatible with the action of the
group GG : let g € GG, then the transverse orientation of the Maslov cycle
Y(gop) is given by the family

Dg(o) [H;)(O')} =H' (go), o€ Si(oy),

goo
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since the causal structure of S is G—invariant.

11.2. The Arnold-Leray index. We now wish to use the topo-
logical properties of Maslov cycles to construct a homotopy invariant.
Let 0g € S and set Xy = 3(0p). A proper path (relatively to ) in S
is a smooth path 7 : [0,1] — S such that v(0) & %o, v(1) € ¢ and
intersects S1(0g) transversally in a finite number of crossings, say in
tl,tg, R ,tk.

We define the Arnold number v4 () of the proper path 7 to be the
number of intersections of v with Si(0y), each counted with sign + ac-
cording to whether the crossing is in the positive or negative direction.
Or in the same thing,

+1ifA(ty) € HE(v(t)))
—1 if4(t;) € H,, (v(t;))

It is easy to show that Arnold number satisfies the following properties
(see [C-K]) :

e Every homotopy class of a given path contains a proper path
with the same endpoints.

e Two homotopic proper paths with the same endpoints have
the same Arnold number.

va(y) =€+ ...+ €, with ej:{

This allows us to define the Arnold number for any path v to be the
Arnold number of a proper path vproper homotopic to v with the same
endpoints,

V() = va(Vproper)-

We will now define an index of a pair of point of the universal covering
S by using the invariance by homotopy of the Arnold number.

Let 09,70 € S, and 0y, 79 € S their projections. Let o(t), 0 <t < 1
be a causal curve such that o(0) = oo. Let 7(t), 0 < ¢t < 1 be an
anti-causal curve such that 7(0) = 7. Let o(¢) be the lift of o(t) with
origin g, and 7(¢) be the lift of 7(¢), with origin 7.

Then we claim, see [C—K], that there exists € > 0 such that for all
t, 0 <t < e the points o(t) and 7(¢) are outside of Maslov cycle ¥ (o)
attached with og. Fix a such ¢ and let v(s), 0 < s < 1 be a proper
path (relatively to ¥(og)) with origin o(¢) and end 7(¢) such that its
lift is of origin &(¢) and end 7(t).
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We define the Arnold index v(cy, 7o) of the pair (gy,7y) to be the
Arnold number of the path ~;,

v(00,T0) = va(me).

Clearly, for fixed ¢, this index does not depend on the choice of the
path 7, since any other path having the same properties is homotopic
to ¢ and thus has the same Arnold number. Moreover we prove that
v(09,7Tp) does not depend on the parameter ¢, and on which of the
(causal or anti-causal) curves o(t) and 7(t) we use.

The construction of the Arnold index uses only the invariant con-
cepts by causal transformations (causal curves, Maslov cycles, transver-
sality), and thus the Arnold index is invariant under the action of the
group I'.

We will now calculate the index of Arnold “ in coordinates ”, as we
did for the index of Souriau. One fixes for that a Jordan frame (¢;)1<j<,
of V. Thanks to the results concerning the orbits of the action of G
in S xS (see section 9.1), the following proposition covers the general
case.

ProprosITION 11.3 ([C-K]). Let

l r
Go=—e=(—e,—m) and Ty= (=Y c;+ > €%, ) €S
j=1 j=t+1
One notes o9 = —e and 1y their corresponding projections on S. Sup-

pose

(1)) —m < ;<7 Vj, L+1<j5<r;
(i) ro=—lm+ 3741 pj + 2km, with k € Z.

Then

(20) V(G0 7o) = —C+ k = k — (o0, 70).
COROLLAIRY 11.4 ([C-K]).

(21) v(o,T) = %[m(&, T)— (o, 1) — T].

A consequence of this corollary is that the right-hand side of the
formula (21) is an integer. This allows us to introduce the index of
inertia and the Arnold-Leray index.
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Let (01,00,03) € S®. We define the inertia index of the triplet
(0'170'2,0'3) to be
1

)01, 09,03) = §(L(01,02,03) + p(o1,09) — p(o1, 03) + p(oa, 03) + 7’)-

Let 01,09 € S , and o7, 09 the corresponding projections. We define the
Arnold-Leray index to be

n(Efl, 52) = I/(&l,’&g) + [L(O'l, 0'2) —+ 7.
One finishes this section by announcing this theorem

THEOREM 11.5 ([C-K]). The index of inertia satisfies the following

(1) 3 is Z—wvalued function.
(ii) 7 is a 2-cocycle!
](Ola g9, 03) - j(o-la 09, 04) + j(o-la g3, 04) - ](027 03, 04) — 0

fro all o1,05,03 € S.
(1ii) The Arnold-Leray indez is a primitive of the index of inertia,
1.€.

)01, 09,03) = n(c1,02) —n(oy,03) + n(ce,03)

foralloy, 04,03 € §, with the corresponding projections o1, 0, 03.

Tt will be observed that the index of inertia 7 does not satisfy the skew-
symmetric property that has the triple Maslov index 2.
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12. The Poincaré rotation number of the conformal group
In This section we use the Souriau index to generalize the notion

of Poincaré rotation number

A group G is uniformly perfect , if there exists an integer k such
that, every element g € GG is a product of £k commutators at the maxi-
mum. A such group has the following property :

Let G be a uniformly perfect group and let

0 Z — I — G 1
be a central extension of G. Let T = «(1). Then there ezists at the
maximum one map ® : I' — R such that

(1) ®(4T) = ®(y) + 1, ¥y el
(2) P(1172) — P(711) — P(92) is bounded on T' x T
(3) (") =n®(y), Vy €T, Vn € Z.

A map ® satisfying (2) is called a quasi-morphism. A map ® satis-
fying (2) and (3) is called a homogeneous quasi-morphism.

If ® exists, then the function

c:GxG =R, clgi,92) = P(ne) — (1) — (1)
(where ~; is the lift of g;) is well defined and is a 2-cocycle, i.e.

c(g1, 92) + (9192, 93) = (g1, 9293) + (g2, 93).

Let us consider the example G = Homeo™ (S'), the group of all home-
omorphisms of the circle preserving the orientation, where S is the
oriented unite circle. This group is uniformly perfect and we consider
the central extension

0 7. —— Homeo*(S') ——— Homeo"(S') —— 1

where Homeot(S1) is the universal covering of Homeo™(S!'). We will
exhibit a function satisfying (1), (2) and (3).

Let us introduce the cyclic order. Let p,q,r € S!, the cyclic order of
p,q,r is defined by

0 if 2 points coincide
ord(p,q,r) =1 ifq €)p,r(
—1 ifqge)r,p(.
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Let
Dorq : Homeot (S1) — Z, ®oa(f) = 2E(F(0))
where
x ife e Z,
Blz) = {[x] +3 ifz¢Z

Then @4 is (non homogeneous) quasi-morphism. Indeed,

(I)ord(f o 5) - (I)ordocv) - (I)ord(g) = Ord(L f<1>7 f o g<1))

which is bounded. Moreover, the following limit exists

lim l<I>Om(f") _ 9 tim 200D 27(f).

n—+oo n, n—-+4oo n

The function 7 : Homeot(S') — R is the so-called Poincaré transla-
tion number . This function satisfies (1), (2) and (3). Passing to the
quotient, we get a function p : Homeo*(S') — R/Z ~ S*, which is the
so-called Poincaré rotation number .

We return to the general case of Hermitian symmetric spaces of tube
type D = G/K. We will use the triple Maslov index and the Souriau
index to generalize the notion of the Poincaré rotation number. We
prove first the following

ProrosITION 12.1 ([C-K]). Let G = KAN be the Cartan decom-
position of G, then

(1) Bvery element of N is a commutator.

i1) Every element of A is a product of r commutators at the maz-

i) Every element of A is a product tators at th
mum.

We also need the following lemma

LEmMMA 12.2 ([C-K]). Consider the following central extension of
G

0 Z —— T —= G 1.
Then there exists at the maximum one map ® : I' — R such that
(0) ® is continuous
(1) @(vT') = @(y) + 1, ¥y €l
(2) P(1172) — P(11) — P(72) is bounded on T' x T
(3) ®(v") =nd(v), Vy T, Vn € Z.
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We begin now to construct the Poincaré rotation number on G. Let

o0 be a base point of S, the universal covering of the Shilov boundary.
Then the function

c:I'—=7Z : c(y)=m(y-0,0)
where m is the Souriau index, is a (non homogeneous) quasi-morphism.
Indeed,
c(me) —c(m) —c(r2) =mlny2-0,0) +m(0,7 - 0) +m(y 0,77 0)
= Z(Oa g1°0,0192 * 0)7
which is bounded by the rank r, where ; is the lift of g;, j = 1,2, 3.
Hence, for v € T, the sequence c; = c(v*) satisfies
|Ck+g — Cp — Cg‘ S T.

Thus, the following limit exists

THEOREM 12.3 ([C-K]). The function —37 is a continuous ho-
mogeneous quasi-morphism of I' and it is independent of the choice of
0.

The function 7 is the generalized Poincaré translation number .
Passing to the quotient, the function

o(g) = —57(3) mod (2)

where v is the lift of g, is the generalized Poincaré rotation number of
G. Finally, we prove the following

PROPOSITION 12.4 ([C—K]). The function p satisfies ;
(1) p is invariant by conjugaison.
(2) If g € G fizes a point in S, then p(g) = 0.
(3) Ifu € U, then e*™® = y(u)






Part 2

Non-commutative Hardy spaces



13. Hardy spaces on Lie semi-groups

In this section we recall the theory of Hardy spaces on Lie semi-
groups due to Olshanskit

Let g be a simple Lie algebra over the reals R, and g = €& p a
Cartan decomposition of g. Let t C £ be a Cartan subalgebra of . We
shall suppose that € has a non—zero center 3 ; then 3 is one dimensional
and t is also a Cartan subalgebra of g.

Let G¢ be the simply connected complex Lie group corresponding
to gc = g + ig, and let G, K and T be the connected subgroups in
G¢ corresponding to g, € and t respectively. By the Kostant—Paneitz—
Vinberg Theorem [V], there are non—trivial regular cones C' in ig which
are Ad(G)—invariant, where regular means, convex, closed, pointed
(CN—C ={0}) and generating (C' —C =ig). Let Cone(ig) be the set
of all regular Ad(G)—invariant cones in ig.

For such a cone C' in Cone(ig), Ol'shanskii associates a semigroup
['(C) := Gexp(C) in G, and for this semigroup he associates a “non-
commutative” Hardy space H(T'(C')) which is the set of holomorphic
functions f on the complex manifold I'(C)° = G exp(C°), the interior
of I'(C), such that

sup /G\f(gv)\ng < 0.

yer(C)°

For any v € T'(C')° the linear functional f — f(7) is continuous on
H?(T'(C)). Therefore by the Riesz representation theorem, there exists
a vector K., € H*(I'(C)) such that (f, K,) = f(v). The reproducing
kernel K which is called the Cauchy—Szego kernel is defined by

K(71,7%) = Ky, ().

It is Hermitian, holomorphic in 7; and anti-holomorphic in 5.

Let A = A(gc, tc) be the set of roots of ge relative to tc. Let
AT C A be the set of positive roots relative to some order (namely the
one where the center of € comes first), Af and A} the set of positive
compact and non-compact roots , respectively. Put tg := it C tc. We
identify tg with its own dual via the Cartan—Killing form. Then we
can consider A C tg. Let P C t; ~ tg be the set of weights relative to
T and let R be the set of all highest weights relative to Af,

R={ eP | (VaeA)) (\a)>0}

Let p be the half sum of all positive roots. Then by Harish-Chandra
([HC,],[HC,],[HC;]) the holomorphic discrete series representations
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for the group G are those irreducible unitary representations of G that
are square—integrable with a highest weight A belonging to

R ={ eR | (VB eA)) (\+p B) <0}
We will say that A € R satisfies the Harish—Chandra condition if
(A+p,8) <0, VBeA].

By Vinberg [V], there exists in Cone(ig) a unique (up to multipli-
cation by —1) maximal cone Cy,.y, such that

Cmax N t]R = Cmax = {X € tR | (\V/O[ c A;r) <X, O[) Z 0},

and a unique minimal cone Ciy;, = C7 ., such that Cli, N tr = Cpin 1S

the convex cone spanned by all o in A;r. A unitary representation 7

of G in a Hilbert space H is said to be C'—dissipative if for all X € C'
and all £ € H™, the space of C* vectors in H,

(m(X)€[E) < 0.

We can now state the Theorem B of Ol'shanskii [Oy] on the non—
commutative Hardy spaces

THEOREM 13.1 ([Oy]). The Hardy space H*(T'(C)) is a non—trivial
Hilbert space for any C € Cone(ig).
The representation of G in H*(T'(C)) can be decomposed into a di-
rect sum of irreducible unitary representations of G. The components
of this decomposition are precisely all the holomorphic discrete series
representations of G which are C'—dissipative.

The group G x G acts on H*(T'(C')) via left and right regular rep-
resentations. Therefore

(22) H ()= P men,
AE(C*Ntg)NR!

where 7, is the contraction representation of I'(C') corresponding to
a unitary highest weight representation of GG with highest weight .
Moreover, the corresponding function of the Cauchy-Szego kernel K
of H*(T'(C')) can be written on T'(C)° as follows

(23) K()=K(y,e)= >  ditr(m(y)),
AE(CHNtg)NR!

where dy denotes the formal dimension of the representation .
The series for K converges uniformly on compact subsets in I'(C)°.
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REMARK 13.2. Whenever C' is the minimal cone, Cy, the decom-
positions (22) and (23) are over all the holomorphic discrete series, i.e.
over A € R'.

One of the most important problems in this areas is to give an explicit
formula for the function K(v).
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14. The contraction semigroup

In this section we restrict our self to G = Sp(r,R), G = SO2/)
and G = U(p,q). We prove that in this case the Lie semigroup is a
semigroup of contractions. We also prove that the image of this semi-
group under a new Cayley transform is the tube domain (modulo some
singular points).

From now on we assume that G is one of the classical groups U(p, q),
Sp(r,R) or SO*(2l). Let o be an involution in g¢ such that

g=1{X €gc|o(X)=-X}.

Then
o(X)=JX"J,
where X* is the adjoint matrix and
for g=u(p,q), — (70[17 1?1)
for g=sp(r,R), J= (*OITIOT)

for g=0"(2), J=(73'])-
REMARK 14.1. U(p, q) is not a simple Hermitian Lie groups. Since
U(p,q) = (UQ1) x SU(p,q)) /Zp+q,

the holomorphic discrete series representations of U(p, q) are the holo-
morphic discrete series representations of the circle times the Hermit-
ian group SU(p,q) which are trivial on (£,€711,), for & =1 (n =
p+ q). Therefore one can easily generalize the results of section 1 to
the reductive group U(p,q).

Let C' be the regular cone in ig defined by
C:={Xeig| JX <0},

and let I'(C) := G exp(C') be the corresponding Ol’shanskii semigroup.
An element v of G¢ is said to be a J—contraction (resp. a strict
J—contraction) if J —~*Jy >0 (resp. J —~*Jy > 0).

PROPOSITION 14.2 ([K—Q3]). The semigroup I'(C) is the J— contractions
Semigroup,

N(C)={rveGc | J—7"Jy 20},

and ['(C)° is the semigroup of strict J—contractions,

T(C)° = {y€Ge | J—~"Jy> 0}



50

Now, let V' be one of the Jordan algebras Herm(n,C), Sym(2r,R)
or Herm(l,H) and let € be the corresponding symmetric cone. Then
Q) = VT is the set of positive definite matrices in V. The tube domain
To := V +iQ is a Hermitian symmetric space isomorphic to G”/K”,
where G* is SU(n,n), Sp(2r,R) or SO*(4l) respectively and K’ the
corresponding maximal compact subgroup, i.e. S(U(n)xU(n)), U(2r)
or U(2l) respectively.

Let C be the Cayley transform defined by
C(Z):=(Z—id)(Z+iJ)™"
whenever the matrix (Z + i.J) is invertible.

PROPOSITION 14.3 ([K—@3)). The Cayley transform C is a biholo-
morphic bijection from an open subset of the tube domain T onto the
complex manifold T'(C)°. More precisely, if ¥ denotes the hypersurface
YX={ZeTq | det(Z +iJ) =0}, then

(2.3) C(To \ 3) = T(O).

Here “det” denotes the determinant of the Jordan algebra Vi (see
[F-K]).
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15. The holomorphic discrete series

In this section we recall the holomorphic discrete series representa-
tions of G° and explain our strateqy to compare the Hardy space of the
Lie semigroup and the Hardy space of the tube domain.

Let N and R be the dimension and the rank of the Jordan alge-
bra V. For a complex manifold M we denote by O(M) the space of
holomorphic functions on M.

The group G” acts on Ty, via

g-Z=(AZ+B)CZ+D)"', g=(45),

and the scalar—valued holomorphic discrete series representations of G
are

(U\9)f)(Z) = det(CZ + D) (9" Z), g7 =(28)
for A > 2%, which all are unitary and irreducible in the Hilbert spaces
Ha(To) = {f € O(Ta) | | |f(X+iY)]2det(Y)*2FdXdY < oo}
To
Moreover the reproducing kernel of H, (1) is given by
Z — W*)/\

KT (Z,W) = det( Z

The classical Hardy space H*(Tq) on Tg is defined as the space of
holomorphic functions f on T such that

sup/ (X +iY)[?dX < co.
YeQJv

PROPOSITION 15.1. The Hardy space H*(Tq) may be thought of as

the space (\(Tq) for A = %, and the Cauchy—Szeqo kernel of Tq, is given
by
7 _ W*\-N/R
K(Z,W) :det< 2W ) .
i

We list here the groups G and the corresponding group G, Jordan
algebra V, its rank R, its dimension N, and the determinant det :

G G 4 N R det
Sp(r,R) Sp(2r,R) Sym(2r,R) r(2r+1) 2r Det
SO*(21) SO*(4l) Herm(L,H) 1(2l—1) [ Det!/?
U(p,q) SU(n,n) Herm(n,C) n? n  Det
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A crucial point is to compare holomorphic functions on the tube
domain with their pull-backs on the semigroup via the Cayley trans-
form, and vice versa. In particular, it will be important to know the
rate of growth of the functions near the singularity ¥ above. Assuming
v = C(Z) we have that

Z4id =21 —~)tiJ

so that to approach the singularity in the Z variable, means that
det(/ — 7y) tends to infinity in the 7 variable. Clearly this condition is
invariant under conjugation with G, so we may reduce the question of
the growth near the singularity to a question on the compact Cartan
subspace. Suppose the holomorphic functions f and F' are related by

f(Z) = det(I —~)PF(v)
so that F' is holomorphic on I'(C')° and f therefore holomorphic on
To \ . Then for f to admit a holomorphic continuation to all of Tq
it is necessary and sufficient that it stays bounded as the determinant
factor tends to infinity, i.e. that F' satisfies a decay condition related
to p. This is what we shall make precise in the following.
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16. The case of G = Sp(r,R)

In the section we will give an explicit construction of double cov-
ering of the Lie semigroup and compare the two Hardy spaces. In the
case G = Sp(r,R), the classical Hardy space is isomorphic to the odd
part of the Olshanskiit Hardy space

We assume that G = Sp(r,R). Then the Hardy parameter is % =
r+ % € 7+ % and det coincides with the usual matrix determinant

Det. This suggests that the operator C% = Cr+%>
(24) f=Cui(F) : f(Z)=Det(Z+iJ) "2 F(y)

may be an intertwining operator between H?(Tg) and the odd part of
the Hardy space H?(T'(C')2) on the double covering I'(C), of T'(C).

16.1. The explicit construction of the two sheeted covering
semigroup. For the open subset I'(C')y° we have a new and explicit
construction: Let J” = ({ ) and let G® := Sp(2r,R) be the group of
all matrices in Sp(2r, C) satisfying

g*Jbg: Jb_

We imbed G in a natural way in G* as follows :

We also view the Cayley transform C as the element of G given by the

matrix
o L (b —iJ
= A\ i)
Our precise definition of Gy is to be the set of all pairs (g, w (g€, -)) with
g € Sp(r,R), g¢ =CctgCc=(48), wg" )? =Det(C -+D)" and

Z — w(g®, Z) is holomorphic on Ty. Note that this is analogous to
the definition of the double cover of SU(1,1), where we take all pairs

(9,Vecz + d) with g = (Z Z) € SU(1,1) and vcz + d a holomorphic

choice of square root of the non-zero function cz + d on the unit disc.
Indeed, it sometimes is convenient to think in terms of such multivalued
functions when doing practical calculations, but of course, the precise
definition is behind this. We also recall the more informal definition of
G4 as follows:

Take again Z € Ty and g € Sp(r,R) such that C'gC = (A45). A
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determination on T of the square root Det(C'Z + D)_% is completely
determined by its value on Z = il. For each g € Sp(n,R) we choose a
determination of Det(C'Z + D)~z. This is a global determination. We
consider here Z as a variable, since the group (and indeed all contrac-
tions) acts on the tube domain, and we consider the function

7 — w(g®, Z) := Det(CZ + D)_%

from Ty, into C\ {0}, where g¢ = C™1 gC. We read w as “a holomorphic
choice of square root of the determinant”. It follows that w may be
viewed as a cocycle for (G5, and it gives a choice of square root at the
product of two elements as follows:

w(grgs. Z) = wlgy,gs - Z2)wlgs, 2).

This equation is to be understood as an equation for the two-valued
function w; it does not hold for any single-valued function. More gen-
erally, assuming the determinant to be non-zero, we let

wa((A8),2) :=Det(CZ + D)!

and correspondingly w((4 B), Z) a choice of one of the two square roots
of this, either (as here) global and holomorphic, or (as below) local, i.e.
at the fixed point Z. Then we may consider our double covering group
to be

GQ = {5 = (g7w<gcv )) | gc Sp(ﬁ R)}u

endowed with the group law

(25> (g17w<glc7 Z)) (g2aw<g2cv Z)) = (glg2aw<glcv.92c ’ Z>w<92c7 Z)) .

(G5 is a two—sheeted covering group of GG, since we are considering both
choices of square root. G5 is called the metaplectic group.

Now we wish to give another version of the double covering con-
struction. Here N will be the open semigroup, realized as a subset of
the tube domain as in Proposition 14.3. For Z € T, \ ¥ and for a
choice of a local determination of Det(Z + iJ)_% we note that up to a
constant

Det(Z +iJ) % = w(C, Z).

This is again an identity between two-valued functions. Hence at each
fixed point Z we make a choice between the two possible values of the
square root, so here the notation does not consider Z as a variable.
Note that we may extend our cocycle to the complexified group in the
natural way. Therefore, the complex manifold

[(C); ={7=(1w(C 2);7€T(C), v =C(2), Z € To\ X},
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is a two—sheeted covering of the semigroup I'(C')°. As before, we con-
sider both choices of square root here, and corresponding to the mod-
ern point of view, the more precise definition of I'(C)3 is the set of
¥ = (y,w) € I'(C)° x C such that

v=C(Z), Z €Ty \ Y and w? = Det(Z +iJ) "
In particular, w is just a complex number.

LEMMA 16.1 ([K—Qs3]). The group Go acts on the right on the
manifold T'(C')3

Indeed, letting Z’ satisfy g~'y = C- Z’, which implies that Z =
g€ - 7', then

(77W<C7 Z)) ' (ng<gca )) = (97177“}((:7 Z/>)

To show that I'(C')§ is a semigroup we consider the following man-
ifold

L) ={(y,w(r%,") | v € D(C)}.

It is clear that I'(C')5" is a double covering of I'(C')° and has a semigroup
structure with respect to the law (25).
Consider the map ¢ from T'(C)S" to T'(C)3 defined by

(v, w(v%, Z)) — (7,w(C,Z)), where v =C(Z) € (C)°.

LEMMA 16.2 ([K=s)). ¢ is a homeomorphism from I'(C)S' onto
[(C)s.

REMARK 16.3. The semigroup I'(C)$ is isomorphic to the interior
of the metaplectic semigroup or the Howe oscillator semigroup. We call
it the open metaplectic semigroup.

16.2. The Hardy space on I'(C),. The Hardy space H?(I'(C),)
on the metaplectic semigroup I'(C')y is the space of holomorphic func-
tions F' € O(I'(C)3) such that

sup I[F(A)IPdg < oo.
FED(C)s J G2

The compact maximal subgroup K of G = Sp(r,R) is isomorphic
to U(r) and the maximal split Abelian subalgebra

w={(F ) eMexnm x= (- )}
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can be identified with R". Let €, ..., €. be the canonical basis of t =
tg = R". Then the root system A = A(gc, tc) is of type C, :

A = {f(ete) (I1<i<j<r), £2¢ (1<i<r)}

AT {eite (1<i<j<r), 2 (1<i<r)}

A;r {Ei—Ej (1§Z<]§T>}

A = {Q"‘Ej (1§Z§]§T>}

p
p re;+(r—1e+...+e€
(ryr—1,...,1).

[l

Furthermore P is the lattice Z", the set of highest weights relative to
Af is given by
R={A=0A1,... . \)EZ | M1 >...>2 N},
and A € R satisfies the Harish-Chandra condition if
—r>AN > >N,

which gives the set R'.
Let Ky C Go, resp. T C K5 be the corresponding covering of K
and T'. Then the corresponding Py, R and R, are given by

Py = Z"u(Z“r%) :PU(P+%) = Ps.even U Paodd,
R, = {)\6732|(VaEAj) (N a) >0}
= {)\:(Al,...,)\r)EZTU(ZTJr%)|)\12...Z)\r},
= Raeven U R2,0dd
Ry = {AeRy| (AN+p,0) <0, VQEA;{},
= A= A ETUE ) [ > Az 2 A,

_ / /
= U RS odas

2,even

where % stands for the tuple (%, cee %) The holomorphic discrete series
representations for the metaplectic group G5 are those irreducible uni-
tary representations m of G5 that are square—integrable with a highest
weight A € Ry = Ry ooy U Ry oqq- Therefore

(5.4) HT(Cp)= B moen.

AE(C*Nitg)NRY,

The cone C' is the minimal one in ig, so the above summation is over
R, and the Hardy space H?(I'(C),) splits into two parts, namely, even
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and odd part,
H*T(C)2) = Heun(T(C)2) @ Hyga(T(C)2)

even

- (B mem)o( P men)

)\eRé,even AERIQ,odd
The even part
2 *
H (F(C)2)even - @ T ®7T)\
)\ERIQ,even
*
= D mom
(A1, Ar)EZT
—7">>\12...2>\T

coincides with the Hardy space H?*(I'(C)) on the semigroup I'(C).
Our goal in now is to identify the odd part

HT(C)oas = P mem

I
AeRQ,odd

= @ T ® T

(i A €27+
—(r+3)>M> >N

with the classical Hardy space H?(Sp(2r,R)/U(2r)).

THEOREM 16.4 ([K-0Q1], [K—Q3]). The operator C.y1 given by (24)
induces a unitary isomorphism

H2<F(C)2)Odd >~ H2<Sp<27“, R)/U(QT))

COROLLAIRY 16.5 ([K—0Q,], [K—Qs]). Under the action of Mp(r, R)x
Mp(r,R) the Hardy space H*(Tq) can be decomposed into a direct sum
of the ‘odd’ holomorphic discrete series representations of Mp(r,R),
i.€.

H*(Sp(2r,R) /U 20)) vssnos = 6 ™ @ T

AERS oda

COROLLAIRY 16.6 ([K—0,], [K—Qs3]). Let Koqq be the kernel cor-
responding to H*(T(C)2)oad- Then for every v1,v2 € T'(C)y

Koad(71,72) = Det(J — y3Jy;) 0 H1/2),

COROLLAIRY 16.7 ([K—0,], [K-Q3]). On the interior of the meta-
plectic semigroup the distribution Det(I — ~)~+1/2) has the following
ETPansion

Det(I — )"0/ = N~ dytr(ma(v)),

AERIQ,odd
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where dy 1s the formal dimension of .

The Bergman space on I'(C) is Ha,41(I'(C)) and its reproducing
kernel is given by

Kg(v1,72) = Det(J — 7;]%)—(2741)'

COROLLAIRY 16.8 ([K—Q3]). The Bergman kernel Kp on the semi-

group T'(C) is the square of the odd part Koqq of the Cauchy-Szego ker-
nel for I'(C),.
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17. The case of G = SO*(2I)

We study the case G = SO*(2l) as we did in section 16. We prove
that the classical Hardy space is a proper subspace of odd part of the
Olshanskii Hardy space

Let G = SO*(2l) realized as a subgroup of U(l,1),

G={geSO"QLC) | g"Jg =T}, J= (_o[l 2)

The Hardy parameter in this case is N/R = (2l — 1)/l = 2l — 1 and
the Koecher norm “det” is the square root of the usual determinant

“Det” (det = Detl/Q). Thus the operator C% = Cy_1,

f=Cua(F) : f(Z)=Det(Z+iJ)"PE(y)

provides an equivariant embedding of the classical Hardy space
H?(SO*(41)/U(2l)) into the odd part of the Hardy space H*(T'(C)2)oda
on the double covering semigroup I'(C')s of the minimal semigroup

[(C) ={y€507(2,C) | J =~"Jy = 0}

(because of the square root in Det(Z +1i.J)!~1/2)). This is just like the
symplectic case. We will identify the maximal compact subgroup with
U(l) as in the above section. The determinant factor is again exactly
the Jacobian to a power such that we have preservation of L?—norms
on the respective boundaries. Then gy is given by the same formula as
in Sp(r,R) case. Let €1, €y, . .., € be the canonical basis of t; = tg = R'.
The root system A = A(gc, t¢) is of type Dy :
AT = {Ei:l:Ej ‘ 1§Z<]§l},
A;_ = {Ei—Gj | 1§Z<]§l},
Ag_ = {€i+€j | 1§’L<]§l},
p = (—=De+{0—-2)e+...+€¢
~ ([—-1,1—2,...,1,0).

The set of highest weights relative to the positive roots of SO*(2l) is
R={A=0MN .., \)eZ | \>...>2 )N},
and A € R satisfies to the Harish-Chandra condition if and only if
=20+ 3 > M + .
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Therefore, the odd holomorphic discrete series representations of the
double covering group G5 of SO*(21) are those irreducible unitary rep-
resentations 7y, square-integrable with a highest weight A = (A1,..., \)) €
7! — % such that 0 > A\; > ... > \; and satisfying

—204+2> M+ X

Let R ,qq denotes the set of these \’s. The Hardy space H*(T'(C)y)
on the minimal cone I'(C'), has then the following decomposition

HT(C)2)oaa = P me .

!
AERS aa

THEOREM 17.1 ([K—@3]). The classical Hardy space H*(SO*(41)/U(21))
is a proper invariant subspace of the “non—classical” Hardy space H*(T'(C)2)oda-

COROLLAIRY 17.2 ([K—Q3]). The representation of SO*(21)x SO*(2l)
in the Hardy space H*(T'(C')) cannot be obtained by a restriction of a
representation of the holomorphic discrete series of SO*(4l) nor any
continuation of this, such as the Hardy space.

Let H*(T'(C)) the conformal image of H?(SO*(4l)/U(2l)) via the

operator Co;_1.

COROLLAIRY 17.3 ([K—Qs]). HX(T(C)) is a reproducing kernel
Hilbert space and its reproducing kernel K s the pre-image of the
Cauchy—Szegi kernel of H*(SO*(41)/U(21)), i.e.

K(m,72) = Det(J — y5.J7) 72,

COROLLAIRY 17.4 ([K—Q3]). On T'(C)° the holomorphic function

Det(I — v)~=Y2) has the following expansion
Det(I — )71/ = > dxtr(ma(y)),
—IH1/2> 0>

where dy s the formal dimension of 7.
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18. The case of G = U(p,q)

We study the case G = U(p,q) as we did in section 16. Here we do
not need double covering semigroup. We prove that the classical Hardy
space 1s a proper subspace of of the Olshanskit Hardy space

Wee fix G = U(p, q) realized by

G=U(p.q) ={geGLn,C) | g'Jg=J}, J= ( i I)

q

where n = p+¢. In this case the Hardy parameter is N/R = n?/n =n
and the Koecher norm “det” is the usual determinant “Det”. Therefore
the operator C N given by

F=Cu(F) : f(Z)=Det(Z+iJ)"F(v)

may be an intertwining operator between the classical Hardy space
H?(SU(n,n)/S(U(n) x U(n)) and the Hardy space H*(I'(C)) over the

semigroup
I(C)={y€GLMn,C) | J—~"Jy >0}

To study unitary representations of G = U(p,q) we identify it with
(U(1) x SU(p,q))/Zy+q. Thus the unitary irreducible representations
of G are those of U(1) x SU(p,q) that are trivial on ((,("'I,) as in
Remark 14.1, where I, is the identity matrix and (" = 1. Therefore, the
holomorphic discrete series representations of G' that we are interested
in are

mk(e?g) = e*ri(g) , g € SU(p,q), 0 € R

where k € Z and ), are the holomorphic discrete series representations
of SU(p, q), realized on D = SU(p,q)/S(U(p) x U(g)), for example in

the scalar case:

(WA(g)f)(Z) = Det(CZJrD)_)‘f((AZ+B)(CZ+D)—1)’ gl = (é g) ’

with A an integer, and in general A = (A\y,..., \,;) € Z". There will an
underlying parity condition to make the representations trivial on Z,
as above; for example in the scalar case we must have that & — g\ is
divisible by n.

Let t C £ be a Cartan subalgebra consisting of diagonal matrices with
purely imaginary values and tg = ¢t. Then the root system A =
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A(gc, tc) is of type A,y :
A =A{a-—g|l<i#j<n}

AT = {e—¢ | 1<i<j<n},
Af = {ea—¢|1<i<j<porp+1<i<j<n}
Af = {e—¢ | 1<i<pand p+1<j<n},
2p = m=1De+n—=3)e+...—(n—3)ep_1 — (n—1)g,
~ (n—1,n—3,n—-5...,—n+3,—n+1),
where €1,...,€, is the canonical basis of tf ~ tg ~ R". Then the

holomorphic discrete series representations of SU(p, q) are the above
representations my, with A = (A\y,...,\,) € Z" satisfying

)\Z_)\Z+1ZO, Z7ép, 1§Z§7’L—1,
and the Harish-Chandra condition
A — A >n— 1.

Let 7y, be an irreducible unitary representation of G' with highest
weight (A, k), A = (A1,..., A,). Then we prove that 7y x is a C'—dissipative
representation of the holomorphic discrete series if and only if (A, k) be-
longs to the set Raiss of (A1, ..., A\n, k) € Z™ such that

A — A >n—1
0> A > > My Apsr = o> Ay > 0
A = nA, < k< [N\ —nA.

Hence the Hardy space on the semigroup I'(C') has the following de-
composition

HT(C) = P mremis
(A E)ERgiss
THEOREM 18.1 ([K—Q3]). The classical Hardy space H*(SU(n,n)/S(U(n)x

U(n))) 1s a proper invariant subspace of the “non-classical” Hardy

space H*(T'(C)).

COROLLAIRY 18.2 ([K-Qs)). The representation of S(U(p,q) X
Ul(p,q)) in the Hardy space H*(T'(C)) cannot be obtained by a restric-
tion of a representation of the holomorphic discrete series of SU(n,n)
nor any analytic continuation of this, such as the Hardy space.

Let H*(I'(C)) be the conformal image of H?(SU(n,n)/S(U(n) x
U(n))) via the operator C,,.
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COROLLAIRY 18.3 ([K—Q3]). H*(T(C)) is a reproducing Hilbert
space and its reproducing kernel K is the pre-image of the Cauchy-
Szegd kernel of H*(SU(n,n)/S(U(n) x U(n))), i.e.

K(’Yl,’}/g) = Det(J — ”Y;J’}/l)in

COROLLAIRY 18.4 ([K—Q3]). On I'(C)° the holomorphic function
Det(I —~)™™ has the following expansion

Det(I —~)™" = Z d g tr(ma k(7))
(Avk)eRdecay
where dyy, is the formal dimension of 7y and Raecay 15 the set of
ALy An, k) € Z"Y such that

A — A >n—1
0> M > > X At =2 A >0
A —n\,+n) <k <[\ —n(A+n)
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