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(20/6/2005, 14h51)

On the distribution of the summands

of unequal partitions in residue classes

Cécile Dartyge, András Sárközy and Mihály Szalay ∗

Abstract

It is proved that the summands of almost all unequal partitions of n are well-distributed
modulo d for d = o(n1/2).

1. Introduction

In [1], [2], [3] and [4] we studied some arithmetic properties of the parts of the partitions
of an integer n. In [3] we proved that the summands of almost all partitions of n are well-
distributed modulo d for d up to n1/2−ε. In this paper we will obtain a result of this type
for partitions in unequal parts. Let Q(n) denote the set of the partitions of n in unequal
parts and q(n) its cardinality (we set q(0) = 1). Erdős and Lehner [5] proved that almost
all of the q(n) unequal partitions of n contain

(1 + o(1))
2
√

3 log 2

π

√
n

parts. This is relatively small in comparison with the maximal summand in almost all
unequal partitions of n. (By [5], both the number of parts and the maximal summand are
equal to

(1 + o(1))

√
6

2π

√
n log n

in almost all “unrestricted” partitions of n.) Namely, it follows from Lemma 10 of [7] and
the proof of Lemma 11 of [7] that the maximal summand is

(1 + o(1))

√
3

π

√
n log n

in almost all unequal partitions of n. As a natural upper bound for the parts we shall use
the double of the value of the above main term. We denote a general partition of n with
unequal parts by γ = (γ1, . . . , γs) with n = γ1 + · · ·+ γs, γ1 > . . . > γs > 1. We will prove
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Theorem 1.1. Let ε > 0, 1 6 r 6 d 6
√

n, Γ 6 (2 log n)
√

3n/π and w(n) be a non-

decreasing function with limn→+∞ w(n) = +∞. For all but q(n)/w(n) partitions of n with

unequal parts we have

∑

γj≡r (mod d)
γj>Γ

1 = (1 + o(1))
2
√

3n

πd
log

(

1 + exp
(

− π(r + d(Γ′ − 1))

2
√

3n

))

+ O(1)

+ O(
√

w(n)(
n3/8+ε

d
+

n1/4

√
d

)),

where Γ′ = d(Γ − r)/de.
The proof of this theorem is similar to the proofs of some results of [3] and [4]. We adopt

a probabilistic approach. The only difference is that in some steps we will use the saddle
point method. The parameter Γ isn’t crucial here. We have chosen to study the number
of parts ≡ r (mod d) and > Γ only to have the same type of notations as in [3]. In the
paper [3] about unrestricted partitions, this parameter was necessary because the number
of small parts is preponderant. If we take Γ = r, we obtain

Corollary 1.2. Let ε > 0, 1 6 r 6 d 6
√

n and w(n) be a non-decreasing function with

limn→+∞ w(n) = +∞. For all but q(n)/w(n) partitions of n with unequal parts we have

∑

γj≡r (mod d)

1 = (1 + o(1))
2
√

3n

πd
log

(

1 + exp
(π(d − r)

2
√

3n

))

+ O(1)

+ O(
√

w(n)(
n3/8+ε

d
+

n1/4

√
d

)).

2. A probabilistic approach

For some integers r, d, Γ, with 1 6 r 6 d, Γ > 1 and a partition γ ∈ Q(n), let

(2·1) T (n, γ,Γ, r, d) :=
∑

γj≡r (mod d)
γj>Γ

1.

Let us consider the random field consisting of all possible choices of partitions of n with
unequal parts with equal probability. Let τn denote the random variable which assigns
T (n, γ,Γ, r, d) to a partition γ ∈ Q(n). We will need the estimates of the mean value
M(τn) and the standard deviation D(τn) of τn.

Let q(n, a1, . . . , ak) denote the number of unequal partitions of n containing each aj as
a summand. In the estimate of M(τn) and D2(τn) we will use precise estimations of this
quantity. Erdős and Szalay [9] proved the following lemma:

Lemma 2.1([9] Lemma 2 p. 96). Let ε be fixed, 0 < ε < 10−2. For 1 6 k 6 n1/6−ε

and a1 + · · · + ak 6 n3/4−ε we have

(2·2) q(n, a1, . . . , ak) = (1 + o(1))
q(n)

∏k
j=1

(

1 + exp(
πaj

2
√

3n
)
)
.

We will use this lemma to compute M(τn) but unfortunately the error term o(1) in
(2·2) is not sufficient to prove large enough cancellation in the estimate of D2(τn). As it
is said in [6] for the particular case ai = i (1 6 i 6 k), this term can probably be replaced
by O(n−1/6+ε) but this is still not sufficient for us.
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3. The mean value M(τn)

In this paragraph we will prove

Lemma 3.1. For 1 6 r 6 d 6
√

n and 1 6 Γ 6 2
√

3n
π log n we have

M(τn) = (1 + o(1))
2
√

3n

πd
log

(

1 + exp
(

− π(r + d(Γ′ − 1))

2
√

3n

))

+ O(1),

where Γ′ =
⌈

Γ−r
d

⌉

.

As in [3] and [4] we start with the formula

T (n, γ,Γ, r, d) =
∑

Γ′6t6n′

r+td∈γ

1,

where n′ =
⌊

n−r
d

⌋

. Let s =
⌊

10
√

3n
π log n

⌋

+ 1, s′ =
⌊

s−r
d

⌋

. We have

(3·1)

M(τn) =
1

q(n)

∑

γ∈Q(n)

T (n, γ,Γ, r, d) =
1

q(n)

n′

∑

t=Γ′

∑

γ∈Q(n)
r+td∈γ

1

=
1

q(n)

n′

∑

t=Γ′

q(n, r + td)

=
1

q(n)

s′

∑

t=Γ′

q(n, r + td) +
1

q(n)

n′

∑

t=s′+1

q(n, r + td)

= S1 + S2,

say. First we give an upper bound for S2. The partitions counted in this term have at
least one big part. Since

q(n, r + td) 6 q(n − r − td),

we have

(3·2) S2 6
1

q(n)

n′

∑

t=s′+1

q(n − r − td).

Hardy and Ramanujan [10] proved the formula

(3·3) q(n) ∼ 1

4(3n3)1/4
exp

(

π

√

n

3

)

.

The function q(n) is non-decreasing on n. Thus for t > s′ we have

(3·4) q(n − r − td) 6 q(n − s) ¿ q(n) exp(
π√
3
(
√

n − s −
√

n)) ¿ q(n) exp(− πs

2
√

3n
).

By (3·2) and (3·4) we have

(3·5) S2 ¿ n exp
(

− 5 log n
)

¿ n−4.
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The term S1 is the main contribution to M(τn). By Lemma 2.1 we have:

(3·6) S1 = (1 + o(1))
s′

∑

t=Γ′

1

1 + exp
(π(r+td)

2
√

3n

)
.

We evaluate the above sum with a standard lemma which compares a series with an
integral (see for example [11], p. 4).

Lemma 3.2. Let f : [a, b] → R with a, b ∈ Z a monotonic function. There exists

ϑ = ϑ(a, b), 0 6 ϑ 6 1 such that

∑

a<n6b

f(n) =

∫ b

a

f(t)dt + ϑ(f(b) − f(a)).

We apply this with a = Γ′ − 1, b = s′ and

f(t) =
(

1 + exp
(π(r + td)

2
√

3n

))−1
.

We observe that f(t) < 1 for all t’s. Thus we have

S1 = (1 + o(1))

∫ s′

Γ′−1

dt

1 + exp
(π(r+td)

2
√

3n

)
+ O(1)

= (1 + o(1))
2
√

3n

πd

(

log(1 − f(s′)) − log(1 − f(Γ′ − 1))
)

+ O(1)

and since f(s′) = o(f(Γ′ − 1)),

(3·7) S1 = (1 + o(1))
2
√

3n

πd
log

(

1 + exp
(

− π(r + d(Γ′ − 1))

2
√

3n

))

+ O(1).

We get Lemma 3.1 from (3·7) and (3·5).

4. The standard deviation

In this paragraph we will prove

Lemma 4.1. Let ε > 0. For 1 6 r 6 d 6
√

n and 1 6 Γ 6 2
√

3n
π log n we have

D2(τn) ¿
√

n

d
+

n
3

4
+ε

d2
.

We start with the well-known formula D2(τn) = M(τ2
n)−M(τn)2. To compute M(τn)2

we develop the square of (3·1); (3·6) yields S1 = O(n) and we use (3·5) :

(4·1)

M(τn)2 = (S1 + S2)
2

=
1

q(n)2

(

∑

Γ′6t6s′

q(n, r + td)
)2

+ O(n−3)

=
1

q(n)2

∑

Γ′6t1,t26s′

t1 6=t2

q(n, r + t1d)q(n, r + t2d)

+
1

q(n)2

∑

Γ′6t6s′

q(n, r + td)2 + O(n−3).
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Remark 1. The last sum in (4·1) satisfies

S′
1 :=

1

q(n)2

∑

Γ′6t6s′

q(n, r + td)2 6 S1 = O(M(τn)).

Next we compute M(τ2
n) in the same way :

(4·2)

M(τ2
n) =

1

q(n)

∑

γ∈Q(n)

T 2(n, γ,Γ, r, d) =
1

q(n)

∑

γ∈Q(n)

∑

t1,t2>Γ′

r+t1d∈γ
r+t2d∈γ

1

=
1

q(n)

∑

t1,t2>Γ′

t1 6=t2

q(n, r + t1d, r + t2d) +
1

q(n)

∑

Γ′6t6n′

q(n, r + td).

With the same arguments as the one used for S2, we see that the contribution of the terms
max(t1, t2) > s′ is small enough :

(4·3) M(τ2
n) =

1

q(n)

∑

Γ′6t1,t26s′

t1 6=t2

q(n, r + t1d, r + t2d) + M(τn) + O(n−3).

We will see that the leading terms in (4·1) and (4·3) cancel out. Unfortunately Lemma 2.1
is not precise enough to guarantee that D2(τn) = O(M(τn)). We should have O(n−α)
with some α > 1/2 instead of o(1) in (2·2) to be able to state Lemma 4.1. Erdős, Nicolas
and Szalay [6] proved a version of Lemma 2.1 in the case aj = j for 1 6 j 6 k. In
this paper (page 21 of [6]) there is a very precise asymptotic formula of q(n). With this
formula we could compute q(n− t)/q(n) (like the estimate of p(n− t)/p(n) we obtained in
Lemma 3 in [3]) and after use the inclusion-exclusion principle to obtain an estimation of
q(n, r + t1d, r + t2d) with the desired precision. The price to pay for applying this method
is that the computations are long.

In this paper we will use the saddle point method to obtain an upper bound in the
critical range Γ′ 6 t1, t2 6 s′, t1 6= t2 for the function

(4·4) Q(a1, a2) :=
q(n, a1, a2)

q(n)
− q(n, a1)q(n, a2)

q(n)2

where a1 = r + t1d and a2 = r + t2d. There are two advantages to apply here he saddle
point method. The first one is that in different steps we can use the precise estimates of
Erdős, Nicolas and Szalay [8], [9], [6]. The second one is that the compensations between
the main terms of q(n, a1, a2)/q(n) and q(n, a1)q(n, a2)/q(n)2 are more easy to see if we
use integral representations.

Let h denote the function defined for x = <z > 0 by

h(z) =
∞
∏

ν=1

(1 + exp(−νz)).

We also define

F (z, a1, . . . , ak) := h(z)
k

∏

j=1

(

1 + exp(−ajz)
)−1

exp
(

(n −
k

∑

j=1

aj)z
)

.



6 Cécile Dartyge, András Sárközy and Mihály Szalay

We have for any x0 > 0

(4·5) q(n, a1, . . . , ak) =
1

2π

∫ π

−π

F (x0 + iy, a1, . . . , ak)dy 6 q(n).

We adopt some other notations of the papers [6], [8] and [9] :

x0 =
π

2
√

3n
, y1 = n−3/4+ε/3 and y2 = c0x0

with c0 sufficiently large and ε ∈]0, 10−2[ fixed. For small y, one might like to substitute
1 + exp(−a(x0 + iy)) by 1 + exp(−ax0) as in [9], p. 102-103. Lemma 4.2 and Lemma 4.3
require simple ratio estimates collected in the following remark.

Remark 2. Let −π 6 y 6 π.
(i) For a > 1 and |y| 6 x0/2, we have

∣

∣

∣

1 + exp(−ax0)

1 + exp(−a(x0 + iy))

∣

∣

∣
=

1
∣

∣1 − 1−exp(−iay)
1+exp(ax0)

∣

∣

6
1

1 − |1−exp(−iay)|
1+exp(ax0)

6
1

1 − a|y|
ax0

6 1 + 2
|y|
x0

.

(ii) For a > 1, we have

∣

∣

∣

1 + exp(−ax0)

1 + exp(−a(x0 + iy))

∣

∣

∣
6

1

1 − |1−exp(−iay)|
1+exp(ax0)

6
1

1 − 2
1+exp(x0)

<
4

x0
.

(iii) For 1 6 a 6 1/(2y1) and |y| 6 y1, we have

∣

∣

∣

1 + exp(ax0)

1 + exp(a(x0 + iy))

∣

∣

∣
=

1
∣

∣1 − 1−exp(iay)
1+exp(−ax0)

∣

∣

6
1

1 − a|y|
1+exp(−ax0)

6
1

1 − a|y| 6 2.

It can be shown by combining proofs in the different papers of Erdős, Nicolas and Szalay
[8], [9] and [6] that

Lemma 4.2. For any fixed k, there exists c > 0 such that for max(a1, . . . , ak) < s we

have

q(n, a1, . . . , ak) =
1

2π

∫

|y|6y1

F (x0 + iy, a1, . . . , ak)dy + O(q(n) exp(−cn2ε/3)).

We give only the outlines of the proof but we indicate the references for the details. We
cut the integral (4·5) in three parts :

q(n, a1, . . . , ak) =
1

2π

∫

|y|6y1

F (x0 + iy, a1, . . . , ak)dy

+
1

2π

∫

y1<|y|6y2

F (x0 + iy, a1, . . . , ak)dy

+
1

2π

∫

y2<|y|6π

F (x0 + iy, a1, . . . , ak)dy.

We will prove that the two last integrals are small enough. Erdős and Szalay used the
formula (cf. (4.3) and (4.4) of [8])

(4·6) h(z) = exp
( π2

12z
− log 2

2
+ o(1)

)

for z → 0 in |argz| 6 κ < π/2.
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For y1 6 |y| 6 y2, (4·6) implies that

(4·7)

|h(x0 + iy)| ¿ exp
(π2

12
< 1

x0 + iy

)

= exp
( π2x0

12(x2
0 + y2)

)

6 exp
( π2x0

12(x2
0 + y2

1)

)

= exp
( π2

12x0

(

1 − y2
1

x2
0

+ O
(y4

1

x4
0

))

)

¿ exp
( π2

12x0
− 2

√
3

π
n2ε/3

)

.

Then (4·7) and Remark 2 (ii) yield that

|F (x0 + iy, a1, . . . , ak)| ¿
( 4

x0

)k

exp
(

nx0 +
π2

12x0
− 2

√
3

π
n2ε/3

)

and we obtain

(4·8)
1

2π

∫

y1<|y|6y2

F (x0 + iy, a1, . . . , ak)dy ¿ q(n) exp(−cn2ε/3),

for c > 0 small enough.
For y2 < |y| 6 π, Erdős and Szalay [8], p. 439 showed the upper bound

|h(x0 + iy)| 6 exp
( 1

x0
(
π2

6
− 1 +

π

2c0
)
)

.

Using this (with c0 = 6π, say) and Remark 2 (ii) we obtain (cf. p. 440 of [8]):

(4·9)
1

2π

∫

y2<|y|6π

F (x0 + iy, a1, . . . , ak)dy 6 q(n) exp(−c′n1/2),

for some c′ > 0 small enough. These two upper bounds (4·8), (4·9) are sufficient to prove
Lemma 4.2.

The error term o(1) in Lemma 2.1 is a consequence of the contribution of the range
|y| 6 y1. Now we return to the function Q(a1, a2).

Lemma 4.3. There exists c > 0 small enough such that for 0 6 a1, a2 6 s, a1 6= a2, we

have :

Q(a1, a2) ¿
y1a2n

2ε

(1 + exp(x0a2))(1 + exp(x0a1))
+ O(exp(−cn2ε/3)).

By the Cauchy formula we have :

Q(a1, a2) =
q(n, a1, a2)q(n)

q(n)2
− q(n, a1)q(n, a2)

q(n)2

=
1

4π2q(n)2

∫ π

−π

F (x0 + iy, a1, a2)dy

×
∫ π

−π

h(x0 + iy′) exp(n(x0 + iy′))dy′

− 1

4π2q(n)2

∫ π

−π

F (x0 + iy, a1)dy

∫ π

−π

F (x0 + iy′, a2)dy′.
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In the four above integrals, by (4·5) and Lemma 4.2 the contribution of the range
max(|y|, |y′|) > y1 is O(exp(−cn2ε/3) for some c > 0. Let H(a1, y, y′) be the function
defined by

(4·10)
H(a1, y, y′) =

h(x0 + iy)h(x0 + iy′)

4π2q(n)2
(1 + exp(−a1(x0 + iy)))−1

× exp((n − a1)(x0 + iy)) exp(n(x0 + iy′))

and ϕ the function

(4·11) ϕ(a2, y) =
exp(−(x0 + iy)a2)

1 + exp(−a2(x0 + iy))
=

1

1 + exp(a2(x0 + iy))
.

With this notation and by Lemma 4.2 we have
(4·12)

Q(a1, a2) =

∫ ∫

max(|y|,|y′|)6y1

H(a1, y, y′)(ϕ(a2, y) − ϕ(a2, y
′))dydy′ + O(exp(−cn2ε/3)).

By standard computations it follows for max(|y|, |y′|) 6 y1:

ϕ(a2, y) − ϕ(a2, y
′) =

ex0a2(eiy′a2 − eiya2)

(1 + exp((x0 + iy)a2))(1 + exp((x0 + iy′)a2))

=
ex0a2(i(y′ − y)a2 + O(y2

1a2
2))

(1 + exp((x0 + iy)a2))(1 + exp((x0 + iy′)a2))
.

By Remark 2 (iii), we have for |y| 6 y1:

|1 + exp((x0 + iy)a2)|−1 ¿ (1 + exp(x0a2))
−1.

Since y1s = o(1), this gives for max(|y|, |y′|) 6 y1:

(4·13) |ϕ(a2, y) − ϕ(a2, y
′)| ¿ y1a2

1 + exp(x0a2)
.

By Remark 2 (i), (4·6) and (3·3), for max(|y|, |y′|) 6 y1 we have :

(4·14)
|H(a1, y, y′)| ¿

exp
(

π2

6x0

+ 2nx0

)

q(n)2(1 + exp(x0a1))

¿ n3/2

1 + exp(x0a1)
.

Inserting (4·13) and (4·14) in (4·12) we find

Q(a1, a2) ¿
y1a2n

2ε

(1 + exp(x0a2))(1 + exp(x0a1))
+ O(exp(−cn2ε/3)).

The proof of Lemma 4.3 is now complete.



On the distribution of the summands of unequal partitions in residue classes 9

By this Lemma, (3·7), (4·1), Remark 1, (4·3) and Lemma 3.1 we have

D2(τn) ¿
∑

Γ′6t1,t26s′

t1 6=t2

Q(r + t1d, r + t2d) + O(M(τn))

¿
∑

Γ′6t1,t26s′

t1 6=t2

y1(r + t2d)n2ε

(1 + exp(x0(r + t2d)))(1 + exp(x0(r + t1d)))
+ O

(

√
n

d

)

¿
∑

t1,t26s′

y1(r + t2d)n2ε +

√
n

d

¿ n3/4+4ε

d2
+

√
n

d
.

This ends the proof of Lemma 4.1.

5. Completion of the proof of Theorem 1.1

Let w be a non-decreasing function with limn→∞ w(n) = ∞. Applying Chebyshev’s
inequality as we did in [3] and [4], we obtain that for all but q(n)/w(n) partitions of n
with unequal parts we have

∑

γj≡r (mod d)
γj>Γ

1 = M(τn) + O(
√

D2(τn)w(n)).

By Lemma 3.1 and Lemma 4.1 we have

∑

γj≡r (mod d)
γj>Γ

1 = (1 + o(1))
2
√

3n

πd
log

(

1 + exp
(

− π(r + d(Γ′ − 1))

2
√

3n

))

+ O(1)

+ O(
√

w(n)(
n3/8+ε

d
+

n1/4

√
d

)),

which completes the proof of Theorem 1.1.

6. Further problems

In this paper so far we have studied only the number of the parts belonging to a given
residue class but not their sum. In [1] and [3] in case of unrestricted partitions we also
showed that the sum of the parts belonging to a residue class modulo d is well distributed
modulo d, for almost all partitions of n, i. e., it is (1 + o(1))n/d if d is “not very large”.
It could be shown by using the same probabilistic method as in the proof of Theorem 1.1
above that this is so in case of unequal partitions as well.

We expect that in case of unrestricted partitions the distribution of the parts in residue
classes is “less uniform” than in case of unequal partitions; this slight irregularity is due
to the fact that in case of unrestricted partitions the “small” parts occur more frequently.
We will say that the residue class a (mod d) dominates the residue class b (mod d) in a
partition if there are more parts ≡ a (mod d) than parts ≡ b (mod d), and that the residue
class a (mod d) is a champion relative to a given partition if the residue class a (mod
d) contains at least as many summands of the partition as any other residue class. We
conjecture that if d is fixed, then in case of unrestricted partitions there is a c = c(d) > 0
so that if 1 6 a < b 6 d and n > n0(d), then the residue class a (mod d) dominates
the residue class b (mod d) in more than (1/2 + c)p(n) partitions ; on the other hand,
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in case of unequal partitions, if 1 6 a < b 6 d and n → ∞ then the residue class a
(mod d) dominates the residue class b (mod d) in (1/2 + o(1))q(n) partitions. Moreover,
we conjecture that in case of unrestricted partitions there is a c′ = c′(d) > 0 so that
the residue class 1 is a champion in more than (1/d + c′)p(n) partitions, while in case of
unequal partitions every residue class mod d is a champion in (1/d+ o(1))q(n) partitions.
In [2], we obtained results of this type but only with c = c′ = 0. We will return to these
questions in a subsequent paper.

In [2] and [4] in case of unrestricted partitions we utilized our well distribution results
by studying certain arithmetic properties of the parts of random partitions : we studied
the rate of the square-free parts to all parts, the maximum of the ω and Ω functions
over the parts, and we also proved a Hardy-Ramanujan type theorem about the values of
ω assumed over the parts. In the unequal case we could prove similar results in similar
manner; since both the results and the methods are nearly the same, thus we do not
present the details here.

On the other hand, there are arithmetic properties whose behaviour is significantly
different in the unrestricted, resp. unequal case; we expect that this is so, e. g., in case of
the rate of the prime parts to all parts of the partition. We will analyze this problem in
a subsequent paper.
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Mathematics (to the Memory of Paul Turán), 187–212, Akadémiai Kiadó, Budapest, 1983.
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[9] P. Erdős and M. Szalay, On some problems of the statistical theory of partitions, In: Number
theory, Vol. I (Budapest, 1987), 93–110, Colloq. Math. Soc. János Bolyai, 51, North-Holland,
Amsterdam, 1990.

[10] G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proc. London
Math. Soc., 17 (1918), 75–115.
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