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Un Protocole d’Accès Multiple Aléatoire avec

Interactions Spatiales

Résumé : Nous étudions un protocole d’accès de type aloha où les utilisateurs ont des
interactions locales. Nous établissons que le modèle fluide de la charge du système satisfait
une équation différentielle. Nous établissons une condition sur la stabilité de cette équation
différentielle et en déduisons une condition suffisante pour la stabilité du protocole. La
condition nécéssaire est discutée.

Mots-clés : Protocole ALOHA, Interactions spatiales, Stabilité de processus, Limites
fluides.
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1 Introduction and Main Result

1.1 A Spatial ALOHA

We consider a random spatial service system governed by an ALOHA-type algorithm. More
precisely, time is slotted, during each time slot n a random number ξn of users arrive in
the system, and at each slot every user in the system requires service (transmission) with a
certain probability (transmission probability) independently of all others. Usually a sequence
{ξn} is assumed to be i.i.d.

The ALOHA multi-access algorithm was first proposed by Abramson [1]. The slotted
scheme was introduced by Roberts [15]. We consider the latter setting. In the conventional
slotted ALOHA model, there is one server. If, at the beginning of a time slot n, a total
number Wn of users in the system is known, each of them asks for service (transmission)

with probability pn =
1

Wn

independently of the other users. If two or more users require

transmissions simultaneously, then transmissions collide, the users stay in the system and
try to emit later. All service times are equal to 1, and the server is always free at the
beginning of any time slot. It is easy to show that for this system the maximum throughput
is equal to e−1. Further, the Markov chain {Wn} is positive recurrent if Eξ1 < e−1 and
transient if Eξ1 > e−1.

When information on the numbersWn of users is unavailable, various decentralised adap-
tive algorithms have been introduced and studied. Algorithms of this type use information
on what occurred in the previous time slot: either conflict or successful service or an empty
session. More precisely, let Bn be the number of users trying to transmit at time n. In
decentralised algorithms, there are only values of min{Bn, 2} available at time n + 1. For
such a system, under independence and exponential moment assumptions for ξn, Hajek
[11] proved that Eξn < e−1 ≈ 0.37 is necessary and sufficient for the existence of a sta-
ble algorithm. Mikhailov [14] generalised this result by weakening the exponential moment
assumption to the requirement that only the second moment needs to exist, while Foss [9]
generalised it further by dropping this as well as the independence assumption. We also
refer to Ephremides and Hajek [6] for a survey which includes, in particular, results in this
direction.

These analyses ignore the network’s spatial diversity and, in particular, the fact that
there may be only partial interaction between users, depending on the distance between
them. A development of random access protocols for wireless networks has created a new
need of theoretical results on the stability and performance of such protocols when spatial
interaction between the sources is taken into account.

In this work, a new model is presented, which captures the main feature of wireless
networks: the spatial reuse of a common communication channel. This feature brings a new
conceptual difficulty into the analysis of the stability of random access protocols. Here we
consider only spatial centralised schemes, the study of decentralised ones is a subject of our
future research.
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4 Bordenave, Foss & Shneer

The remainder of this paper is organised as follows. The end of this introduction is
devoted to the description of the model and the statement of our main result. In Section
2 we prove that fluid limits of the workload in the system satisfy a differential equation.
Section 3 is devoted to the behavior of the fluid limits on the boundary of the positive
orthant. In Section 4 we present the proof of our main result and formulate one of its
possible generalisations. In Section 5 we present a result on rates of convergence to the
stable regime of the system. Sections 6 and 7 contain some interesting results on behaviour
of the solutions to the differential equation satisfied by fluid limits. Finally, in Section 8 we
conclude by some extensions of our model.

1.2 Model Description

Let G = (V , E) be a non-directed graph with a finite set of vertices, say V = {1, ...,K}.
We suppose that G is connected. For the graph G we use the standard notion of the graph
distance. Denote by D the maximum graph distance in G (the diameter of G). For i ∈ V , let
Vi = {i} ∪ {j ∈ V : such that (i, j) ∈ E}, that is the set of vertices at a maximum distance
of 1 from the point i in the graph.

We introduce the following service system with spatial (neighborhood) interactions as-
sociated with the graph G. We assume that time is slotted, i.e., arrivals and services may
occur only at times n = 1, 2, . . .. Suppose that there are service stations at each point of G.
The arrival process is denoted by A = (A(n))n∈N, where A(n) ∈ N

K is the number of users

arriving at time n at each vertex. For t > s, denote by A(t, s) =
∑dse−1

n=dte A(n) the number

of users arriving between time t and s−. We suppose that (A(n)) is an i.i.d. sequence. We
also suppose that EAi(n) = λi > 0 for every i = 1, . . . ,K.

Let W (n) ∈ R
K
+ be the workload at time n in the system, that is, Wi(n) is the number

of users at vertex i at time n. At time n, a user at vertex i requires service independently
of the others with probability 1/

∑
j∈Vi

Wj(n). This user receives service if he is the only
user requiring service in Vi at time n. We suppose that all service times are equal to 1
and that any user leaves the system immediately upon service completion. Let Ni(n) be
the number of users requiring service at time n at vertex i. Ni(n) is a binomial random

variable with parameters

(
Wi(n),

1∑
j∈Vi

Wj(n)

)
and (Ni(n)), 1 ≤ i ≤ K are independent

variables conditioned on W (n). W is clearly an irreducible Markov chain on N
K . We have

the following relation on the values of the workload at subsequent time instances:

Wi(n) = Wi(n− 1) +Ai(n) − 11(Ni(n− 1) = 1)
∏

j∈Vi\{i}

11(Nj(n− 1) = 0). (1)

To explicitly show the dependence of W (n) on the initial condition W (0) = x, we may
sometimes write W x(n).

INRIA



A Random Multiple Access Protocol 5

If xi > 0, the i-th component of drift vector is given by the following expression:

E
[
Wi(1)−Wi(0)|W (0) = x

]
= λi−

xi∑
k∈Vi

xk

(
1 −

1∑
k∈Vi

xk

)xi−1 ∏

j∈Vi\{i}

(
1−

1∑
k∈Vj

xk

)xj

,

(2)
and if xi = 0, then E

[
Wi(1) −Wi(0)|W (0) = x

]
= λi.

We re-write the expression for the drift vector in the following way:

E
[
W (1) −W (0)|W (0) = x

]
= λ−G(x).

Here λ is the K-dimensional vector with it’s i-th component equal to λi and G is a function
from R

K to R
K defined by

Gi(x) =





xi∑
k∈Vi

xk

(
1 − 1∑

k∈Vi
xk

)xi−1∏
j∈Vi\{i}

(
1 − 1∑

k∈Vj
xk

)xj

, if xi > 0,

0, if xi = 0.

For x ∈ R
K , we define φi(x) = xi∑

j∈Vj
xj

. Let φ(x) = (φ1(x), ..., φK(x))′. Note that Gi is

bounded by 1 and if
∑

k∈Vi
xk > 0 then

lim
t→+∞

Gi(tx) = G̃i(x) = φi(x)e
−
∑

j∈Vi
φi(x).

In particular G̃i is homogeneous of order 0, i.e. G̃i(cx) = G̃i(x) for any c > 0.
We now make some comments on the model. In this paper, we mostly consider the

so-called symmetric case, i.e. when λi = λ for all i = 1, . . . ,K and the graph G is V − 1
regular: the cardinal of Vi is equal to V for all i. First notice that even in this case, the
graph G is not necessarily completely symmetric. Figure 1 shows an example of a 3-regular
graph which is not completely symmetric.

Figure 1: A regular graph which is not completely symmetric.

Note also that the system is not monotone. Indeed, x ≤ y (component-wise) does not
imply that W x(1) is dominated stochastically by W y(1) (check this by coupling). The

RR n° 5975



6 Bordenave, Foss & Shneer

system is neither monotone with respect to the graph structure. If G1 is embedded into G2,
this does not imply that the workload process built on graph G1 is dominated stochastically
by the workload built on graph G2.

Let G∅ denote the fully isolated graph (that is, the set of edges of G∅ is empty). The
workload built on G∅ is the usual slotted ALOHA on each node. Remark that a necessary
condition for a user to leave the system is to be the single user in its node to emit. We then
deduce that the workload built on G∅ is dominated stochastically by the workload built on
any other graph. The stability condition of the usual slotted ALOHA is λ < e−1, we will
thus suppose throughout that λ < e−1.

Similarly, let GK be the complete graph on V : the sum of the workloads
∑K

i=1Wi is the
usual slotted ALOHA. A sufficient condition for a user to leave the system is to be the single
user in the whole system to emit. Thus the workload built on GK dominates stochastically
the workload built on all its subgraphs. Thus a sufficient condition for stability is λ < e−1/K.

In this work, we also present some results on the non-symmetric case. In particular,
using methods suggested recently in [18], in Remark 3 we give sufficient conditions for the
stability of the system with space-inhomogeneous input (not necessarily identical λ’s). Some
other generalisations of the model are described in Section 8.

1.3 Main Result

We first explain the intuition hidden behind the result.
The access protocol favours an equilibrium of the workload in the network: assume that

the workload at node i is much larger than the workload in its neighbouring nodes, Vi. Then
φi(x) will be close to 1, whereas for all the nodes j in Vi, φj(x) will be close to 0. Thus the
workload at node j in Vi will tend to get closer to the workload at node i. This balance
mechanism hints that the diagonal ∆ = {x ∈ R

K : x1 = x2... = xK} is attractive.
If the workload is on the diagonal: W (0) = c11 where c ∈ N

∗, we obtain:

E(W (1) −W (0)|W (0) = c11) =

(
λ−

1

V

(
1 −

1

V c

)V c−1
)

11.

Hence, as c tends to infinity, the drift vector converges to (λ− e−1/V )11.
So finally, we end up with the conjecture that if λ < e−1/V , the Markov chain W is

ergodic.
This conjecture is clearly true for G∅ and GK .
The reasons that led to this conjecture appear to be wrong (as will follow from the results

of Sections 6 and 7, in general the diagonal is not attractive). However, the conjecture itself
is true and we can formulate our main result that will be proved in Section 4.

Theorem 1. If λ < e−1/V , the Markov chain W is ergodic.

A classical strategy to analyse the positive recurrence of this type of Markov chain is via
the fluid approximation. We will prove that the fluid approximation satisfies an ordinary
differential equation.

INRIA



A Random Multiple Access Protocol 7

2 Fluid Approximation Method

This section deals with a general (not necessarily symmetric) case.

2.1 General Properties

In what follows, we endow R
K with the L1-norm: |x| =

∑K
k=1 |xk |. Let (xn), n ∈ N, be a

sequence in N
K such that limn |xn| = ∞. For t ∈ [0, T ], we define:

Xn(t) =
W xn

(d|xn|te)

|xn|
.

To simplify the notation, for t ∈ R+, we set W (t) = W (dte).
Let D([0, T ],RK) denote the space of càdlàg functions from [0, T ] to R

K endowed with
the usual Skorokhod topology, i.e. the distance between the functions f1 and f2 is given by
the following expression:

dT (f1, f2) = inf sup
t∈[0,T ]

{|g(t) − t| + ρ(f1(g(t)), f2(t))},

where ρ is the L1-metric in RK and the outer infimum is taken over all monotone continuous
functions g : [0, T ] → [0, T ] such that g(0) = 0 and g(T ) = T . Denote by D([0,∞)) the
space of RK–valued càdlàg functions on [0,∞) with the metric

d(f1, f2) =

∞∑

1

2−T dT (f1, f2)

1 + dT (f1, f2
.

Note that Xn ∈ D([0, T ],RK) for all n.

Lemma 1. (i) For any sequence xn such that |xn| → ∞, a.s. the family {(Xn), n ∈ N} has
a compact closure in the Skorokhod topology, and any accumulation point z of A is almost
surely continuous.

(ii) Function z is Lipschitz with the constant Kmax{λ, 1} where λ =

∑K
i=1 λi

K
.

Proof of Lemma 1
(i) One can obtain the proof of this assertion by following the lines of the proof of [3],

Theorem 4.1 or [17], Theorem 7.1. Formally, the proofs of the mentioned theorems are given
for multi-class networks. However, as pointed out in [10], the tightness of such families holds
under weaker conditions (see [10], Assumption 2.19).

(ii) Since Gi is bounded by 1:

|Xn(t) −Xn
i (s)| ≤ max

{
|A(s|xn|, t|xn|)|

|xn|
,
K|xn|(t− s)

|xn|

}

≤ max





1

|xn|

b|xn|tc∑

k=d|xn|se

Vk,K(t− s)



 ,

RR n° 5975



8 Bordenave, Foss & Shneer

where Vk is the total number of arrivals at time k. Sequence {Vk}k∈N consists of i.i.d.
random variables with EVk = Kλ. By the law of large numbers, the result now follows if
we let n→ ∞.

Definition 1. Any accumulation (in the Skorokhod topology) point z of the sequence Xn is
called fluid limit. The collection of all fluid limits is called the fluid model.

Note that it follows from the definition of Xn and z that zi(t) ≥ 0 for all i = 1, . . . ,K
and for all t.

Corollary 1. The trajectories of fluid limits are self-similar. More precisely, for any fluid
limit z and for any u > 0 such that P(|z(u)| > 0) > 0, the random process {z̃(t), t ≥ 0} with
conditional distribution

P(z̃(t) ∈· ) = P

(
z(u+ t)

|z(u)|
∈·
∣∣z(u)

)

is also a fluid limit on the set |z(u)| > 0.

This result may be obtained by following the lines of the proof of Stolyar [17], Lemma
6.1. However, the same remark as the one given in the proof of Lemma 1, (i) applies here.

Definition 2. We say that the fluid model is stable if there exists a deterministic time t0
and ε ≥ 0, such that for all fluid limits z satisfying |z(0)| = 1, |z(t)| ≤ ε for t ≥ t0 a.s.

The definition of fluid stability is standard and appears in most papers dealing with the
fluid approximation method.

2.2 Fluid Model Criterion for Stability

Theorem 1 can be restated via the fluid approximation method.

Lemma 2. If the fluid model is stable then W is ergodic.

Proof. (i) One can again obtain a proof of this assertion by following the lines of the proofs
of Dai [3] or Stolyar [17] which are given for multi-class networks.

(ii) Theorem 3.2 of Meyn [12] contains the statement (ii) for multi-class queueing net-
works. Here again, the Meyn’s proof also applies to our framework without major changes.

�

By Lemma 2, Theorem 1 can be restated as:

Theorem 2. If λ < e−1/V , the fluid model is stable.

INRIA



A Random Multiple Access Protocol 9

2.3 Fluid Limit Evolution Equation

In what follows we write ϕi(t) = φi(z(t)) =
zi(t)∑

j∈Vi

zj(t)
.

Theorem 3. Take any fluid limit z. Assume for all i,
∑

j∈Vi
zj(t) > 0. If t > 0, zi has a

derivative at point t and a right derivative at 0 if t = 0. Moreover, for t > 0:

z
′

i(t) = λi − ϕi(t)e
−

∑
j∈Vi

ϕj(t)

= λi − G̃i(zi(t)). (3)

For t = 0 this equation holds with the right derivative.

Under the assumptions of the Theorem, this differential equation admits a unique solu-
tion, thus all the converging subsequences of (Xn) converge toward the same deterministic
limit.

When the assumption: for all i,
∑

j∈Vi
zj(0) > 0 is not fulfilled, some boundary effects

arise. These boundary conditions are discussed in Section 3.
Proof of Theorem 3
(i) We first suppose that zi(t) > 0. To treat this case, we need the following technical

result.

Lemma 3. There exists C > 0 such that |Gi(x) − G̃i(x)| ≤ min(1, C/xi) if xi ≥ 2.

Proof of Lemma 3
Using that |e−y1 − ey2 | ≤ |y1 − y2| for all y1, y2 ≥ 0, we obtain the following:

|Gi(x) − G̃i(x)| ≤

∣∣∣∣∣ln
(

1 −
1∑

k∈Vi
xk

)∣∣∣∣∣+

∣∣∣∣∣∣
∑

j∈Vi

(
xj ln

(
1 −

1∑
k∈Vj

xk

)
+

xj∑
k∈Vj

xk

)∣∣∣∣∣∣
.(4)

For every j, denote yj =
1∑

k∈Vj
xk

. Then, using that | ln(1 − y) + y| ≤
y2

2(1 − y)2
for

y ∈ (0, 1) , we obtain that

|Gi(x) − G̃i(x)| ≤ yi +
y2

i

2(1 − yi)2
+
∑

j∈Vi

xjy
2
j

2(1 − yj)2
.

The required bound now follows from the facts that

yj ≤ 1/xi, xjyj ≤ 1 and yj ≤ 1/2

for all j ∈ Vi.

RR n° 5975



10 Bordenave, Foss & Shneer

Assume now that t = 0 (the result for an arbitrary t follows from the self-similarity of
fluid limits). Let x = z(0). Suppose that s < xi. Let k ≤ |xn|s, then W xn

i (k) ≥ xn
i − k ≥

|xn|(xn
i /|x

n| − s). Hence, W xn

i (k) ≥ 2 for k ≤ |xn|s for large enough n.

We need to show that lims→0
zi(s) − zi(0)

s
= λi − G̃i(z(0)). Consider the following

expression:

Xn
i (s) −Xn

i (0) =
1

|xn|

b|xn|sc−1∑

k=0

(
W xn

i (k + 1) −W xn

i (k)
)

=
1

|xn|

b|xn|sc−1∑

k=0

E

[
W xn

i (k + 1) −W xn

i (k)|W xn

(k)

]

+
1

|xn|

b|xn|sc−1∑

k=0

(
W xn

i (k + 1) −E[W xn

i (k + 1)|W xn

i (k)]
)

=
1

|xn|

b|xn|sc−1∑

k=0

(
λi −Gi(W

xn

(k))
)

+
1

|xn|

b|xn|sc∑

k=1

Dn
k , (5)

where

Dn
k = W xn

i (k) −E
(
W xn

i (k)|W xn

(k − 1)
)

= Ai(k) − λi + qi(k) −E
(
qi(k)|W

xn

(k − 1)
)

with qi(k) = I(Ni(k − 1) = 1)
∏

j∈Vi\{i} I(Nj(k − 1) = 0). We have
1

|xn|

∑b|xn|sc
k=1 (Ai(k) −

λi) → 0 a.s. when n→ ∞ and we can use Theorem VII.3 of Feller [8] (applied to bk = 1/k)
to deduce that almost surely

1

|xn|

b|xn|sc∑

k=1

(
qi(k) −E

(
qi(k)|W

xn

(k − 1)
))

→ 0 (6)

as n→ ∞.
It remains to find the limit of the first term in equation (5). We decompose this term as

follows:

1

|xn|

b|xn|sc−1∑

k=0

(
λi −Gi(W

xn

(k))
)

=
1

|xn|

b|xn|sc−1∑

k=0

(
λi − G̃i

(
Xn

(
k

|xn|

)))
+ ε(s, n),

where by Lemma 3

|ε(s, n)| ≤ C
1

|xn|

b|xn|sc−1∑

k=0

1

W xn

i (k)
≤ C

1

|xn|

b|xn|sc−1∑

k=0

1

xn
i − k

→ 0

INRIA



A Random Multiple Access Protocol 11

as n → ∞ uniformly in s ≤ xi. Further, from the uniform convergence of Xn to z and the
continuity of G̃ we deduce that

zi(s) − zi(0)

s
= λi − lim

n→∞

b|xn|sc−1∑
k=0

G̃i

(
z
(

k
|xn|

))

|xn|s
.

Since 1
|xn|

∑b|xn|sc
k=1 G̃i(z(

k−1
|xn| )) is a Riemann sum of a continuous bounded function, it con-

verges to
∫ s

0 G̃i(z(u))du and we have

lim
s→0

zi(s) − zi(0)

s
= λi − lim

s→0

∫ s

0
G̃i(z(u))du

s
= λi − G̃i(z(0)). (7)

(ii) it remains to treat the following case: zi(0) = 0 and
∑

j∈Vi
zj(0) > 0. Notice that

G̃i(zi(0)) = 0. In view of equations (5) and (6) it suffices to show that:

lim
s→0+

lim
n→∞

1

|xn|s

b|xn|sc−1∑

k=0

Gi(W
xn

(k)) = 0. (8)

By assumption, there exits j ∈ Vi such that zj(0) = limn→∞ xn
j /|x

n| > α > 0. Let ε > 0,
in particular, there exists n0 such that for all n ≥ n0, x

n
j /|x

n| > α and xn
i /|x

n| < ε.

Let n ≥ n0, pick 0 < s < α and fix ε < α, then for n large enough, W xn

i (k) ≤
ε|xn| +Ai(0, k), W

xn

j (k) ≥ α|xn| − k and:

Gi(W
xn

(k)) ≤
W xn

i (k)

W xn

i (k) +W xn

j (k)

≤
ε|xn| +Ai(0, k)

(α+ ε)|xn| − k

By the strong law of large numbers, a.s. limt→+∞Ai(0, t)/t = λi. Let λ̃ > λi. It is clear
that a.s. we may find k0 such that for k0 ≤ k ≤ s|xn| (we may suppose that |xn| is large
enough to be larger than k0/s):

Gi(W
xn

(k)) ≤
ε|xn| + λ̃k

(α+ ε)|xn| − k
,

and

1

|xn|

b|xn|sc−1∑

k=0

Gi(W
xn

(k)) ≤
k0

|xn|
+

ε

α+ ε− s
+

1

|xn|

b|xn|sc−1∑

k=0

kλ̃

α|xn| − k

RR n° 5975



12 Bordenave, Foss & Shneer

A direct computation shows that:

lim
n→∞

1

|xn|

b|xn|sc−1∑

k=0

kλ̃

α|xn| − k
= −λ̃(s+ α ln(1 −

s

α
)).

We obtain, almost surely:

lim sup
n

1

|xn|

b|xn|sc−1∑

k=0

Gi(W
xn

(k)) ≤
ε

α+ ε− s
− λ̃(s+ α ln(1 −

s

α
))

Since this last inequality holds for all ε > 0 and λ̃ > λi, we have:

lim sup
n

1

|xn|

b|xn|sc−1∑

k=0

Gi(W
xn

(k)) ≤ −λi(s+ α ln(1 −
s

α
)).

It then follows immediately that:

lim
s→0+

lim sup
n

1

|xn|s

b|xn|sc−1∑

k=0

Gi(W
xn

(k)) = 0.

3 Properties of the Fluid Limit on the Boundary

Conjecture 1. We think that any fluid limit z has a right derivative at point 0 in all
coordinates for any vector z(0) (even if there exists i such that xj = zj(0) = 0 for all

j ∈ Vi). We also believe that z
′

(0) does not depend on the sequence xn and only depends on
x = limn x

n/|xn|. If it is so then all fluid limits are deterministic functions.

In this Section, we will prove a weaker statement that will be sufficient to prove that the
boundary of the positive orthant does not play any role in the stability of the fluid model.
Denote

τh = inf{t ≥ 0 : |z(t)| < h}.

Denote also λ∗ = min{λ1, . . . , λK} > 0. Assume that |z(0)| = 1 then maxi zi(0) ≥ 1/K.
The fact that z

′

i(t) ≥ λ∗ − 1 for all i and t also implies that

τ1−ε ≥
ε

K(1 − λ∗)
. (9)

Theorem 4. Assume that |z(0)| = 1. Then there exist positive constants b and ε0 such that
for any ε ∈ (0, ε0), mini zi(t) ≥ bε for any t ∈ [cε, τ1−ε) where c = 1/K(1− λ∗).

INRIA



A Random Multiple Access Protocol 13

The following corollary is immediate:

Corollary 2. For any 0 < ε < 1, zi(t) > 0 for all 0 < t < τ1−ε.

The forthcoming Lemma 9 and Corollary 2 imply:

Corollary 3. Assume that |z(0)| > 0, then either:

- there exists c such that z(c) = 0 and z(t) remains in H for all t ∈ (0, c) or

- z(t) remains in H for all t > 0.

The rest of this paragraph is devoted to the proof of Theorem 4. We begin with some
technical lemmas.

Lemma 4. There exist positive constants K1 > 1 and K2 such that, for any fluid limit z,
if zi(t) > K1zj(t) for two neighboring nodes i and j then z

′

j(t) > K2.

Proof of Lemma 4
Note that the existence of z

′

j(t) is guaranteed by Theorem 3. Indeed zi(t) > 0 and
therefore

∑
k∈Vj

zk(t) > 0. To prove Lemma 4, note that

z
′

j(t) > λ∗ −
zj(t)∑

k∈Vj
zk(t)

≥ λ∗ −
zj(t)

zi(t) + zj(t)
> λ∗ −

1

1 +K1

and we may take K1 = 2/λ∗ − 1 and K2 = λ∗/2.

Lemma 5. There exist constants C1 ≥ C2 > 0 such that for any h > 0 if |z(0)| ≥ h1 and
mini zi(0) ≥ C1h then mini zi(t) ≥ C2h1 for all t ≤ τh.

Proof of Lemma 5

Let D be the maximum graph distance of G. Put C1 =
1

KKD+1
1

and put C2 =
C1

KD−1
1

.

We may prove Lemma 5 for h = 1. The result for arbitrary h follows from the self-similarity
of fluid limits.

It is sufficient to show that for any t < τ1 if mini zi(t) ≥ C1 then there exists 0 < s <∞
such that

min
i
zi(t+ s) ≥ C1 (10)

and
min

i
zi(u) ≥ C2 for all t ≤ u ≤ t+ s. (11)

Indeed, assume that the last statement holds and Lemma 5 is not valid. Then there exists
t ≤ τ1 such that mini zi(t) < C2. It follows from the continuity of fluid limit that there
exists the last moment v < t when mini zi(v) ≥ C1. However, our last statement implies that
there exists s > 0 such that mini zi(v + s) ≥ C1 and mini zi(u) ≥ C2 for all v ≤ u ≤ v + s.
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14 Bordenave, Foss & Shneer

Clearly, v + s < t, which contradicts our assumption on v being the last moment before t
when mini zi(v) ≥ C1.

Let now t be any time such that t < τ1 and mini zi(t) ≥ C1. Note that maxi zi(t) ≥
1/N = C1K

D+1
1 since t < τ1. To simplify the notation, assume that z1(t) = maxi zi(t). Let

T be such that z1(t+ u) ≥ C1K
D
1 for all 0 ≤ u ≤ T . Note that z

′

i(u) ≥ λ∗ − 1 for all i and
u. This implies that

T ≥
C1(K

D+1
1 −KD

1 )

1 − λ∗
=
C1K

D
1 (K1 − 1)

1 − λ∗
. (12)

Let now d be the maximum distance in G from node 1. Clearly, d ≤ D. For j = 1, . . . , d,
denote by Aj the set of nodes at distance j from node 1.

We show that there exists 0 < s < T such that (10) and (11) hold. First, we show that
min zi(u) ≥ C2 for all t ≤ u ≤ t+ T . Note that zi(u) ≥ C1 for all i ∈ A1 and t ≤ u < t+ T .
Indeed, assume that there exist i ∈ A1 and t ≤ u < t + T such that zi(u) < C1. Then, by
continuity, there exists a last moment t ≤ u1 < u such that zi(u1) ≥ C1. Lemma 4 implies
that z

′

i(u1) ≥ K2 > 0 and hence, there exists time u2 > u1 such that zi(u2) ≥ C1 that
contradicts our assumption on u1. Using induction and following the same arguments, we
can show that zi(u) ≥ C1/K

j−1
1 for all i ∈ Aj and t ≤ u ≤ t+T for any j = 1, . . . , d. Hence,

mini zi(u) ≥ C1/K
d−1
1 ≥ C1/K

D−1
1 = C2 for all t ≤ u ≤ t+ T .

Let us now show that there exists 0 < s < T such that (10) holds. For every j = 1, . . . , d,

denote by tj the time needed to achieve the level C1K
d−j
1 starting from the level C1/K

j−1
1

and moving with the speed K2. Clearly, tj =
C1(K

d−1
1 − 1)

K2K
j−1
1

. Note that (10) and (11) hold

with s =
d∑

j=1

tj if T ≥
d∑

j=1

tj . Indeed, minj∈A1
zj will achieve the level C1K

d−1
1 no later than

t + t1 and will not become smaller than this level before time t + T , since all nodes in A1

are neighbours of node 1 and z1(u) ≥ KD
1 for all t ≤ u ≤ t+ T . Note also that minj∈A2

zj

will become greater than C1K
d−2
1 no later than t + t1 + t2 since it cannot become smaller

than C1/K1 before the time t + t1, and after this time it is either greater than C1K
d−2
1 or

it grows with at least the speed K2 (this follows from Lemma 4 and the fact that any node
in A2 has a neighbour in A1). We can continue these arguments to prove that minj∈Ad

zj

will become greater than C1 no later than t+
d∑

i=1

ti if T ≥
d∑

i=1

ti.

Note that

d∑

i=1

ti =
C1(K

d−1
1 − 1)(1 +K1 + . . .+Kd−1

1 )

K2K
d−1
1

=
C1(K

d−1
1 − 1)(Kd

1 − 1)

K2K
d−1
1 (K1 − 1)

≤
C1(K

d
1 − 1)

K2(K1 − 1)
≤
C1(K

D
1 − 1)

K2(K1 − 1)
(13)

If we take K2 = λ∗/2 and K1 = 2/λ∗ − 1 then (1 − λ∗)/K2 = K1 − 1. Note also that in

this case K1 ≥ 2. It now follows from (12) and (13) that T ≥
d∑

i=1

ti.
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One can see from the proof of Lemma 5 that the following (stronger) result holds.

Lemma 6. For any h1 > 0 there exists ĥ2 > 0 such that for any h2 ≤ ĥ2 there exists
0 < h3 ≤ h2 such that if |z(0)| ≥ h1 and mini zi(0) ≥ h2 then mini zi(t) ≥ h3 for all t ≤ τh1

.

Remark 1. Lemma 6 is valid with ĥ2 =
h1

KKD+1
1

.

Proof of Theorem 4
The proof of Theorem 4 is similar to that of Lemma 5.

Take ε0 such that
K2(K1 − 1)ε

(KD
1 − 1)

≤
1 − ε

KKD+1
1

for all ε ≤ ε0 and take a =
K2(K1 − 1)

(KD
1 − 1)

. In

this case aε ≤
1 − ε

KKD+1
1

, and in view of Lemma 6 and Remark 1, it is enough to prove that

mini zi(cε) ≥ aε.
Let D be the graph distance of G. Note that maxi zi(0) ≥ 1/K. Assume that z1(0) =

maxi zi(0).
Let T be such that z1(u) ≥ aεKD

1 for all 0 ≤ u ≤ T . Note that z
′

i(t) ≥ λ∗ − 1 for all i
and t. This implies that

T ≥
1/K − aεKD

1

1 − λ∗
=

1 −KaεKD
1

K(1− λ∗)
. (14)

Now let d be the maximum distance in G from node 1. Clearly, d ≤ D. For j = 1, . . . , d,
denote by Aj the set of nodes at distance j from node 1. For every j = 1, . . . , d, denote by

tj the time needed to achieve the level aεKd−j
1 starting from the level 0 and moving with

the speed K2. Clearly, tj =
aεKd−j

1

K2
. Denote T1 =

D∑
j=1

tj . Note that

T1 =
aε(KD

1 − 1)

K2(K1 − 1)
=

ε

K(1 − λ∗)
= cε. (15)

Following the same arguments as in the proof of Lemma 5, we can show that mini zi(cε) =
mini zi(T1) ≥ aε if T1 ≤ T .

It remains to prove that T1 ≤ T . This is so due to (14), (15) and the fact that aε ≤
1 − ε

KKD+1
1

.

Remark 2. Denote by ν(z, h, b) = inf{t ≥ z : |z(t)| < h or mini zi(t) < b} the time
(after moment z) of the first exit from the set {|z| ≥ h} ∩ {mini zi ≥ b}. Theorem 4 implies
that there exist b > 0 and z ≥ 0 such that τ1−ε = ν(zε, 1 − ε, bε) for any initial condition
z(0) with |z(0)| = 1.
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16 Bordenave, Foss & Shneer

4 Proof of Theorem 1

In this Section we first present the proof of our main result and then formulate its general-
isation. Recall that here we deal with the symmetric case. We start with the proof of the
stability. Due to Theorem 2 it is enough to prove that there exists a deterministic time t0
such that for all fluid limits z satisfying |z(0)| = 1, z(t) = 0 for t ≥ t0 a.s.

Lemma 7. If zi(t) > 0 for all i = 1, . . . ,K then

(∑

i

z2
i (t)

)′

≤

(
λ−

e−1

V

)∑

i

zi(t)

and hence, if λ < e−1

V
, (∑

i

z2
i (t)

)′

≤ −ε
∑

i

zi(t)

for some ε > 0.

Proof of Lemma 7.
Clearly, it is sufficient to prove the following inequality

∑
i

ziϕi exp

{
−
∑

j∈Vi

ϕj

}

∑
k

zk

≥
e−1

V
(16)

where we slightly abuse the notation by writing zi instead of zi(t). We can write the LHS
of the previous inequality in the following form:

∑

i

pif(yi)

where pi =
zi∑

k

zk

, yi = −
∑

j∈Vi

ϕj − ln
1

ϕi

and f(z) = ez. Function f is convex and

∑
i

pi = 1, hence,
∑
i

pif(yi) ≥ f(
∑
i

piyi) and

∑
i

ziϕi exp

{
−
∑

j∈Vi

ϕj

}

∑
k

zk

≥ exp



−

∑

i

zi∑
k

zk

∑

j∈Vi

ϕj −
∑

i

zi∑
k

zk

ln
1

ϕi



 . (17)
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Now consider
∑
i

zi∑
k

zk

∑
j∈Vi

ϕj and
∑
i

zi∑
k

zk

ln
1

ϕi

separately:

∑

i

zi∑
k

zk

∑

j∈Vi

ϕj =

∑
i

zi

∑
j∈Vi

ϕj

∑
k

zk

=

∑
j

ϕj

∑
i∈Vj

zi

∑
k

zk

=

∑
j

zj

∑
k

zk

= 1. (18)

(we used the facts that j ∈ Vi if and only if i ∈ Vj and that ϕj

∑
i∈Vj

zi = zj .)

Note that the function ln is concave, hence,

∑

i

zi∑
k

zk

ln
1

ϕi

≤ ln


∑

i

zi∑
k

zk

1

ϕi


 = ln



∑
i

zi

ϕi

∑
k

zk


 = ln




∑
i

∑
j∈Vi

zj

∑
k

zk


 = lnV. (19)

Inequality (16) follows now from (17), (18) and (19).

Proof of Theorem 1.
Corollary 2 implies that if |z(0)| = 1, then zi(t) > 0 for all i = 1, . . . ,K and all t > 0.

Then we can use Lemma 7. Note also that for any positive values of {xi} it holds that
∑
i

xi ≥
√∑

i

x2
i . Hence, Lemma 7 implies that

(∑

i

z2
i (t)

)′

≤ −ε

√∑

i

z2
i (t)

and hence, 

√∑

i

z2
i (t)




′

≤ −ε/2

and the result follows.

Remark 3. By applying methods used in [18], we can get a similar (but less explicit) stability
result in a more general situation. Assume now that the system is not symmetric, in general,
i.e. that values of λi may differ for different i and the graph G may be irregular. Results of
Sections 2 and 3

Let

M = {µ : µi = pie
−
∑

j∈Vi
pj , i = 1, . . . ,K, for some p = (p1, . . . , pK) with pi ≥ 0}.

One can show that the vector (ϕ1, . . . , ϕK) with ϕi =
zi∑

j∈Vi
zj

maximises the function

K∑
i=1

zi lnµi over all vectors µ ∈M . Based on that, one can obtain the following.
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18 Bordenave, Foss & Shneer

Theorem 5. Assume that there exists a vector µ ∈ M such that λ ≤ µ component-wise.
Then the Markov chain Wn is recurrent.

A proof of Theorem 5 follows the lines of the proof of Theorem 4 in [18].

5 Rates of Convergence

In this section, we again consider the symmetric case. We will obtain rates of convergence
of Wn to its stationary distribution in the total variation norm.

Define the total variation distance between measures π1 and π2 by

||π1(· ) − π2(· )|| = sup
|g|≤1

∣∣∣∣
∫
g(y)π1(dy) −

∫
g(y)π2(dy)

∣∣∣∣ .

Theorem 6. Assume that λ < e−1/V and EAi(n)p+1 < ∞ for some p ≥ 1 and for all
i = 1, . . . ,K and n. Then

lim
n→∞

np||Pn(x, · ) − π(· )|| = 0, x ∈ N
K ,

where P
n(x, · ) — distribution of W x(n) and π(· ) — stationary measure for W .

Proof of Theorem 6
The proof of Theorem 6 is based on the following lemma which is an analogue of Propo-

sition 5.3 of Dai and Meyn [4].

Lemma 8. Assume that the conditions of Theorem 6 are satisfied. Then, for some constants
c <∞, δ > 0 and a finite set C,

E




τC(δ)∑

n=0

|W x(n)|p


 ≤ c|x|p+1

for any x ∈ N
K , where τC(δ) = min(n ≥ δ : W (n) ∈ C).

Proof of Lemma 8
The proof of Lemma 8 follows the lines of the proof of Proposition 5.3 of [4].
It follows from Theorem 2 that there exists t0 such that

lim
|x|→∞

W x(|x|t0)

|x|
= 0

a.s. Note also that the family of random variables

{
|W x(|x|t0)|

p+1

|x|p+1

}
is uniformly integrable,

since

|W x(|x|t0)|
p+1

|x|p+1
≤

(∑|x|t0
m=0

∑K
i=1 Ai(m)

)p+1

|x|p+1
≤ tp+1

0

∑|x|t0
m=0

(∑K
i=1Ai(m)

)p+1

|x|t0
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and the family





∑|x|t0
m=0

(∑K
i=1 Ai(m)

)p+1

|x|t0





is uniformly integrable. The latter is guaran-

teed by the existence of EAi(m)p+1 for all i = 1, . . . ,K and for all m. Hence,

lim
|x|→∞

E
[
|W x(|x|t0)|

p+1
]

|x|p+1
= 0.

Choose L such that

E
[
|W x(|x|t0)|

p+1
]
≤

1

2
|x|p+1 (20)

for |x| ≥ L. Define, as in the proof of Proposition 5.3 of [4], the sequence of stopping
times σ0 = 0, σ1 = t(x), and σk+1 = σk + θσk

σ1, k ≥ 1, where t(x) = t0 max(L, |x|), θ —
shift operator on the sample space. We assume that t0 is integer. The stochastic process
Ŵk = W (σk) is a Markov chain with the transition kernel

P̂ (x,A) = P(W x(t(x)) ∈ A).

Now (20) implies that

E
{
|Ŵ1|

p+1 − |Ŵ0|
p+1|Ŵ0 = x

}
≤ −

1

2
|x|p+1 + bIC(x),

where set C = {x : |x| ≤ L} and b is some constant. The Comparison Theorem (Meyn and
Tweedie [13], p. 337) yields that

E

[
k∗−1∑

n=0

|W x(σk)|p+1

]
= E

[
k∗−1∑

n=0

|Ŵ (k)|p+1

]
≤ 2

{
|x|p+1 + bIC(x)

}
(21)

where k∗ = min(k ≥ 1 : Ŵ (k) ∈ C}. To prove Lemma 8 , we first show that for some
constant c0

E

[
σk+1∑

n=σk

|W x(n)|p|Fσk

]
≤ c0W

x(σk)p+1 (22)

which by the strong Markov property amounts to

E

t(x)∑

n=0

|W x(n)|p ≤ c0|x|
p+1

This follows from the fact that

t(x)∑

n=0

|W x(n)|p ≤

t(x)∑

n=0

(
n∑

m=0

K∑

i=1

Ai(m)

)p

≤

t(x)∑

n=0




t(x)∑

m=0

K∑

i=1

Ai(m)




p
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a.s. and from our assumption that EAi(m) < ∞ for all i = 1, . . . ,K and for all m.
Substituting (22) into (21), we have

E

[
∞∑

k=0

E

[
σk+1∑

n=σk

|W x(n)|p|Fσk

]
Ik < k∗

]
≤ c|x|p+1.

By the Fubini theorem and the smoothing property of the conditional expectation, the
LHS is precisely E

[∑σk∗

n=0(1 + |W x(n)|p)
]
. The proposition now follows from the fact that

σk∗
≥ τC(t0L).

We now use Proposition 5.4 of [4] with t = 1. Applied to our case, it gives the following
bound:

E {V (W (1)) − V (W (0))|W (0) = x} ≤ −f(x) + κ (23)

with V (x) = E
(∑τC(δ)

n=0 |W x(n)|p
)

and f(x) = |x|p.

Note that Lemma 8 implies that V (x) ≤ c|x|p+1. Now (23) yields that

E {V (W (1)) − V (W (0))|W (0) = x} ≤ V (x)
p

p+1 + bIC

for the set C = {x : |x| ≤ L} and for some constant b. The result now follows from Theorem
2.5 of Douc et al. [5].

6 Local Stability of Fluid Limits on the Positive Orthant

In this Section we investigate the behaviour of the solution to the differential equation
satisfied by fluid limits. In particular, we show that if the input rate λ is sufficiently small,
then the diagonal is locally unstable.

6.1 Orbits of the Fluid Limits

Denote H = {x ∈ R
K : xi > 0 for all i = 1, . . . ,K} and 11 = (1, ..., 1)′. For z(t) in H , the

differential equation (3) is restated in closed form as:

ż(t) = F (φ(z(t))), (24)

with F (x)i = λ − xie
−
∑

j∈Vi
xj . Let ∆ = {x ∈ H : x1 = x2... = xK} and Cu = {x ∈ H :

|x/|x| − 11/K| ≤ u}, u > 0, Cu is a cone with direction ∆. We note that the diagonal is an
orbit of the differential equation: F (φ(c11)) = (λ− e−1/V )11. We are going to prove that the
diagonal is also locally attractive.

Lemma 9. Assume that z(0) ∈ H, then:

- there either exists c such that z(c) = 0 and z(t) remains in H for all t ∈ (0, c) or
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- z(t) remains in H for all t > 0.

Proof of Lemma 9.
Restricted on the open set H , F ◦φ is C∞(Rn). Therefore, the solutions of equation (24)

are locally uniquely defined as long as z(t) remains in H . Now, suppose the contrary: that
t 7→ z(t) leaves H at time c at y = limt→c− z(t) ∈ ∂H\{0}.

Let ai = lim supt→c− φ(z(t)), ai ∈ [0, 1]. Since y 6= 0, there exist i1 and i2 such that
yi1 = 0 and yi2 > 0. Note also that G is connected, this implies that there exists k such
that yk = 0 and

∑
j∈Vk

yk > 0 (consider the path from i1 to i2). Hence, ak = 0 and
limt→c− Fk(φ(z(t))) = λ > 0, this implies that t 7→ xk(t) increases on a left neighbourhood
of c, which is contradictory with yk = limt→c− z(t) = 0.

Lemma 9 implies that for an initial condition in H the fluid limit z(t) remains in H or
finally reaches 0 at time c. By convention, we set that φ(0) = 11/V , thus after time c, the
orbit of z remains on the diagonal: for t ≥ 0, z(t+ c) = (λ− e−1/V )11t. Notice also that if
x ∈ H , then F (φ(z)) ≤ λ11 (component-wise). In view of Lemma 9 this immediately implies
that if z(0) is in H then the maximal solution of equation (24) is defined on R+. Lemma 9
also implies that if z(0) = limn x

n/|xn| ∈ H then the fluid limit is deterministic.
Let A be the adjacency matrix of G and {ν1, ..., νK} its eigenvalues with νi ≤ νi+1. The

spectral gap γ is defined by:

γ = min
i<K

(νK − νi) = νK − νK−1.

Note that since G is V − 1 regular, νK = V . The main result of this section is the following.

Theorem 7. If λ > e−1

V
(1 − γ2

V 2 ), there exists u > 0 such that for all solutions t → z(t) of
equation (24) with the initial condition in Cu,

lim
t→+∞

φ(z(t)) = 11/V.

If λ < e−1

V
(1 − γ2

V 2 ), the diagonal is locally unstable.

Corollary 4. If λ > e−1

V
(1 − γ2

V 2 ), there exists u > 0 such that if z(t) is a solution of
equation (24) with an initial condition z(0) in Cu,

- if λ < e−1/V , then there exists c > 0 such that z(c) = 0.

- if λ > e−1/V , then z(t) ∼ (λ − e−1/V )t.

Proof of Corollary 4
Let z(t) be the maximal solution with z(0) ∈ H . From Theorem 7, limφ(z(t)) = 11/V .

Since F is C∞(Rn) on a neighborhood of 11/V , limt→+∞ ż(t) = (λ−e−1/V )11. If λ 6= e−1/V ,
this implies that, as t tends toward infinity:

z(t) ∼ (λ− e−1/V )t11. (25)
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Suppose first that λ − e−1/V < 0 then from equation (25), z(t) leaves H in finite time.
Lemma 9 implies in turn that there exists c > 0 such that z(c) = 0. The first assertion of
Corollary 4 is proved.

Remark 4. The first statement of Corollary 4 can be strengthened in the following way:

there exists δ > 0 and v > 0 such that for all z(0) ∈ Cv, z(δ|z(0)|) = 0.

Indeed, let δ such that 0 < δ−1 < e−1/V − λ. There exists ε > 0 such that for all i and
z ∈ Cε, φ(z)i < −δ. We then define v = min(u, ε)

6.2 Proof of Theorem 7

The proof of this theorem is an application of the stability theory for differential equations.

6.2.1 Spectral Analysis

We need to consider the eigenvalues of D(F ◦φ)(x) for x ∈ ∆, where Df(x) is the differential
of f at x. F ◦ φ is homogeneous of order 0: for all c > 0, F (φ(cx)) = F (φ(x)). Hence:

D(F ◦ φ)(c11) = c−1D(F ◦ φ)(11).

Since ∆ is an orbit of equation (24), 11 is an eigenvector of D(F ◦ φ)(11) associated with the
eigenvalue 0.

Lemma 10. The eigenvalues of D(F ◦ φ)(11) are (0, η1, · · · , ηK−1) with ηi = − e−1

V 3 (V −
νK−i)

2 . In particular, for all i ≥ 1, ηi < 0.

Proof of Lemma 9.
A direct computation leads to:

(D(F ◦ φ)(11))ij =





− e−1(V −1)
V 2 if j = i

e−1

V 3 |Vi ∪ Vj | if j ∈ Vi\i

− e−1

V 3 |Vi ∩ Vj | if j 6∈ Vi

,

Not surprisingly, D(F ◦ φ)(11).11 = 0. Indeed, let M = −eV 3D(F ◦ φ)(11). Using the fact
that |Vi ∪ Vj | = 2V − |Vi ∩ Vj |, we deduce that:

(M1)i = V (V − 1) − 2V (V − 1) +
∑

j 6=i

|Vi ∩ Vj | =

K∑

j=1

|Vi ∩ Vj | − V 2 = 0.

Let E denote the identity matrix and A the adjacency matrix of G, since (A2)ij = |Vi∩Vj |,
we have the following decomposition:

M = V 2E − 2V A+A2 = (A− V E)2.
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The matrix A is irreducible by hypothesis (G is connected), thus (A − V E) is an ML-
Matrix (refer to Seneta [16]). In graph theory, this matrix is referred as the Laplacian matrix
of G. From Corollary 1 of Theorem 1 in Seneta [16], the spectral radius of A is V , Theorem
2.6 (d) of [16] implies that dimKer(A−V E) = 1 and all the eigenvalues of (A−E)2 different
from 0 are positive reals (remind that the spectrum of A is real).

6.2.2 Orbit of ψ ◦ z

We define:

Σ = {x ∈ H :

K∑

i=1

xi = 1} = H ∩ 〈11, ·〉−1({1}) = ψ(H),

where ψ(x) = x/|x|. Σ is clearly a C∞-convex manifold of codimension 1. We define the
following differential equation on Σ:

ẏ = Dψ(y)F (φ(y)) = α(y) (26)

with an initial condition y(0) in Σ. α is a C∞(Σ) function and α(y) ∈ Ty(Σ) the tangent
space of Σ at y. The next step is to compare the orbits of equation (26) and equation (24).
The next lemma asserts that the orbits of the solution of ẏ = α(y) and ψ ◦x where t 7→ z(t)
is a solution of equation (24) are indeed equal.

Lemma 11. Let z(0) be in H and let z(t) be the maximal solution of equation (24). Let
y(t) be the maximal solution of ẏ = G(y), with the initial condition y(0) = ψ(z(0)). Then it
is defined on R+, and there exists an increasing continuous bijective function µ : R+ → R+

such that:
y ◦ µ = ψ ◦ z

Proof of Lemma 11.
This lemma is a classical result. For an initial condition in H , we have F (z(t)) ≤ λ11.

Indeed, while z(t) ∈ H it is clear. If z(t) 6∈ H , from Lemma 9, z(t) ∈ ∆ ∩ −H, thus
F (z(t)) = (λ− 1/V e−1)11 ≤ λ11). It follows that |z(t)| =

∑n
j=1 zj(t) ≤ Kλt+

∑n
j=1 zj(0).

Suppose now that for all t, z(t) ∈ H , then
∫ +∞

0
ds∑

n
j=1

zj(s)
diverges. By the intermediate

value theorem, we deduce that there exists an increasing continuous function ν such that:

for all t ≥ 0,

∫ ν(t)

0

ds
∑K

j=1 zj(s)
= t. (27)

In particular:

ν̇(t) =

K∑

j=1

zj(ν(t)).

Let w = ψ ◦ z ◦ ν, w(0) = ψ(w(0)) = y(0). We have:
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ẇ(t) = ν̇(t)
d

ds
ψ(z(s))

∣∣∣
s=ν(t)

=
( K∑

j=1

zj(ν(t))
)
Dψ(z(ν(t))).F (w(t)).

The function ψ is homogeneous of order 0 and thus Dψ(cz) = c−1Dψ(z) for all c > 0.
It follows that:

ẇ(t) = Dψ(
z(ν(t))∑n

j=1 zj(ν(t))
).F (w(t))

= G(w(t)).

The solution of the differential equation is unique, therefore w(t) = y(t). The lemma is
proved with µ = ν−1.

If z(t) leaves H , then due to Lemma 9 there exists c such that z(c) = 0 and z(t) =
(λ − e−1/V )(t − c)11 for t ≥ c. Then the mapping ν is built on [0, c], as we did previously,
and ν(t) = ν(c) + t− c for t ≥ c. Then the same proof holds.

6.2.3 Local Stability of ψ ◦ z.

Clearly, y0 = 11/K is an equilibrium point of equation (26). In the next lemma we prove
that this equilibrium is locally stable.

Lemma 12. If λ > e−1

V
(1 − γ2

V 2 ), there exists u > 0 such that for all solutions t 7→ y(t) of
equation (26) with |y(0) − y0| < u,

lim
t→+∞

sup
y(0)∈Σ:|y(0)−y0|<u

|y(t) − 11/V | = 0.

Proof of Lemma 12.
We denote by Dα(y)|Ty(Σ) the differential of α at y restricted to the K − 1 dimensional

subspace Ty(Σ). We examine if all the eigenvalues of Dα(y0)|Ty(Σ) have a negative real part,
this will imply the local stability (refer for example to Coddington and Levinson [2]). Let
D2ψ(y)(·, ·) denote the second differential of ψ at y, seen as a bilinear mapping. We have:

Dα(y) = D2ψ(y)(F (φ(y)), ·) +Dψ(y)D(F ◦ φ)(y). (28)

The first term in this last equation is a matrix and its entry (i, j) is equal to:

K∑

k=1

∂2ψ(y)i

∂yj∂yk

F (φ(y))k .
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For y = y0, F (φ(y0)) = (λ− e−1/V )11, and a straightforward computation gives:

D2ψ(y0)(F (φ(y0)), ·) = (λ − e−1/V )(J −KE),

where E is the identity matrix and J is the matrix with all its entries equal to 1. We also
have Dψ(y0) = (KE − J)/K. Finally, equation (28) can be rewritten as:

Dα(y0) = 1/K(KE − J)
(
D(F ◦ φ)(y0) − (λ − e−1/V )E

)
.

(KE−J) commutes with all symmetric matrices and (KE−J) has two eigenvalues K (with
multiplicity K − 1) and 0 (with multiplicity 1, associated to the eigenvector 11). By Lemma
10, the eigenvalues of D(F ◦ φ)(y0) − (λ− e−1/V )E are

0 ≤ i ≤ K − 1 : µi = −e−1(V − νK−i)
2/V 3 − λ+ e−1/V.

The eigenvector associated to µ0 = λ− e−1/V is 11. Thus we have proved that λ− e−1/V is
an eigenvalue of multiplicity 1 for Dα(y0) and that the other eigenvalues are (µi)i≥1. These
eigenvalues have negative real parts if and only if µ1 = −e−1γ2/V 3 − λ + e−1/V < 0, that
is λ > e−1(1 − γ2/V 2)/V . The vector space generated by the associated eigenvectors is
precisely the tangent hyperplane Ty0

(Σ) = 11⊥, the hyperplane orthogonal to 11.
We can then prove Theorem 7. Let |z(0)| ∈ Cu and y(0) = z(0)/|z(0)|, by Lemmas 11

and 12:
lim

t→+∞
ψ(z(t)) = lim

t→+∞
y(µ(t)) = 11/K.

In particular, φ(z(t)) tends towards 11/V as t tends toward infinity.

7 Absence of Attraction to the Diagonal in One Partic-

ular Case

As it has already been pointed out in the previous Section, the diagonal may not be locally
stable for small enough values of λ. In this Section, we present an example of a graph
for which there are locally stable sets of parameters away from the main diagonal if λ is
sufficiently small.

Consider a graph G with 4 vertices placed on a circle. Number the vertices 1, 2, 3, 4
clockwise and assume that each vertex is linked with its 2 neighbours (so that, for example,
vertex 1 has links with 2 and 4). In this case, K = 4 and V = 3.

For a service system associated with this graph, consider the equation (26). It is clear
that we can write it in the form

ẏi(t) =
(
λ− ϕi(t)e

−
∑

j∈Vi
ϕj(t)

)
− yi

K∑

k=1

(
λ− ϕk(t)e

−
∑

j∈Vk
ϕj(t)

)
, i = 1, . . . ,K.

We are interested in the so-called stable points of the latter system of differential equa-
tions, i.e. points for which all the RHS’s in the system above are identically 0 and so if y(0) is
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such a point, y(t) stays at this point for all t ≥ 0. Clearly, one stable point is (1/K, . . . , 1/K),

which corresponds to the diagonal. However, if λ <
e−1

V

(
1 −

γ2

V 2

)
(= 5/27e−1 in our case),

then there exist other stable points.
Take y1(0) = y2(0) and y3(0) = y4(0). Since y1(0) + y2(0) + y3(0) + y4(0) = 1, the

equality y3(0) = (1− 2y1(0))/2 holds, and the system of differential equations at time t = 0
reduces to just one (i.e. any) of them. One can show that, for any λ < 5/27e−1, the RHS

of this equation equals 0 at three different points: at y(1) = (1/4, 1/4, 1/4, 1/4) and at two

others, say y(2) and y(3). One can find approximate values of these points numerically. For

instance, if λ = 0.001, then y(2) ≈ (0.01, 0.01, 0.49, 0.49) and y(3) ≈ (0.49, 0.49, 0.01, 0.01).
Numerical results also show that these points are locally stable.

8 Extensions of the Model

8.1 Random Neighbourhood

In this Subsection we consider a possible extension of our model. Assume there is a fixed

number of points 1, . . . ,K and a set of non-directed graphs
{
Gj
}L

j=1
each having points

1, . . . ,K as its vertices. Assume that at each time n the neighbourhood relations are given
by the graph Gηn where ηn are independent identically distributed random variables taking
the value j with probability pj . The need to consider such a variability of neigbourhood
relations may be justified by, for instance, the fact that a change of environment conditions
may lead to a change of the radius and/or direction of interactions.

Denote by Vj
i the neighbourhood of the point i in the graph Gj and by V j

i its cardinal.
We assume that the system is «regular» in some sense: EV η1

i = V for all i.
Following the proof of Theorem 3, one can show that fluid limits of the model described

above satisfy the following differential equation

z
′

i(t) = λ−
L∑

k=1

pkϕ
k
i (t)e

−
∑

j∈V k
i

ϕk
j (t)

where ϕk
i (t) are defined in an obvious way. Using the same methods as those used in the

proof of Theorem 1, it can be shown that the system with random neighbourhood is stable

if λ <
e−1

V
.

8.2 Non-Regular Graphs with Space-Inhomogeneous Input

Although Remark 3 provides sufficient conditions for stability in this case, they are not easy
to verify. Here we give some other conditions that are also sufficient for the stability of the
system. Assume now that EV η1

i = Vi, and Vi are not necessarily equal. Put V = max
i
Vi.

Assume also that Eξn
i = λi, so that the input is «space-inhomogeneous». Put λ = max

i
λi.
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Clearly, all the results concerning fluid limits also hold in this case, and it is easy to see that
one can prove the following result.

Theorem 8. The system described above is stable provided λ <
e−1

V
.
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