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Abstract. I address the problem of optimizing projective motion over a mini-
mal set of parameters. Most of the existing works overparameterize the problem.
While this can simplify the estimation process and may ensure well-conditioning
of the parameters, this also increases the computational cost since more unknowns
than necessary are involved.
I propose a method whose key feature is that the number of parameters employed
is minimal. The method requires singular value decomposition and minor al-
gebraic manipulations and is therefore straightforward to implement. It can be
plugged into most of the optimization algorithms such as Levenberg-Marquardt
as well as the corresponding sparse versions. The method relies on the orthonor-
mal camera motion representation that I introduce here. This representation can
be locally updated using minimal parameters.
I give a detailled description for the implementation of the two-view case within a
bundle adjustment framework, which corresponds to the maximum likelihood es-
timation of the fundamental matrix and scene structure. Extending the algorithm
to the multiple-view case is straightforward. Experimental results using simulated
and real data show that algorithms based on minimal parameters perform better
than the others in terms of the computational cost, i.e. their convergence is faster,
while achieving comparable results in terms of convergence to a local optimum.
An implementation of the method will be made available.

1 Introduction

The problem of recovering structure and motion from images is one of the central chal-
lenges for computer vision. The use of image feature correspondences (e.g. points,
lines) through different views and the study of geometrical aspects of the image for-
mation process have led to numerous techniques acting in metric, affine or projective
space, depending on whether camera calibration is fully, partially or not available.

Most of the time, a sub-optimal solution is obtained using linear techniques for mo-
tion then for structure recovery [3] or jointly [16] and subsequently refined. One of the



2

most efficient techniques for such a structure and motion optimization is bundle ad-
justment. It involves minimizing a non-linear cost function based on the discrepancy
between reprojected and original image features [15, 17]. The behaviour of such tech-
niques, in terms of convergence properties to a local optimum of the cost function and
computational cost, greatly depends on the algebraic representation of the problem, i.e.
of structure and motion, and in particular, numerical conditioning and whether the num-
ber of parameters employed is minimal. For bundle adjustment, preserving the original
noise model on image features is also crucial.

While bundle adjustment is theoretically well-defined (it corresponds to the maxi-
mum likelihood estimator, see e.g. [17]) there are still practical optimization problems
since the employed cost functions have many local minima [13] where optimization
processes may get trapped.

I address the problem of representing motion. The goal is to obtain minimal esti-
mators, i.e. where the number of parameters considered for optimization is minimal. I
focus on the projective case, i.e. when camera calibration is unknown. This topic is of
primary importance since an accurate projective reconstruction is necessary to subse-
quently succeed in self-calibration.

Consider two perspective views of a rigid scene. The image signature of their rel-
ative position is the projective two-view motion or the epipolar geometry, usually de-
scribed by the (3× 3) rank-2 and homogeneous fundamental matrix [10, 18]. A funda-
mental matrix has 7 degrees of freedom. Therefore, 7 parameters should be enough to
optimize the projective two-view motion.

However, it has been seen that there does not exist a universal parameterization of
the fundamental matrix using 7 parameters. This is due to the non-linear rank-2 con-
straint and the free-scale ambiguity. Existing works may fall into the following cate-
gories:

– overparameterization, e.g. the 12 entries of a perspective camera matrix [7]. More
unknowns than necessary are involved to simplify the representation;

– multiple minimal parameterizations, 3 in [2] or 36 in [18];
– minimal parameterizations combined to image transformations [2, 19] to reduce the

number of parameterizations.

Other techniques optimize over the 9 parameters of the fundamental matrix while adding
the non-linear rank-2 constraint and the normalization constraint as virtual measure-
ments.

This paper makes the following contributions.
Firstly, I address the projective two-view motion case in §2. I introduce what I call

the orthonormal representation of projective two-view motion. Based on this, I show
how one can non-linearly estimate the projective two-view motion using a minimal
number of 7 parameters. An important point is that this method does not depend upon
the optimization technique considered.

Secondly, I illustrate the use of this method in a bundle adjustment framework based
on [8] in §3. The result is a minimal maximum likelihood estimator for the fundamental
matrix as well as scene structure. The reader who is interested into practical issues only
should refer directly to this section.
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Thirdly, I extend the framework to multiple views in §4 where I introduce the or-
thonormal representation of projective multiple-view motion. I derive, similarly to the
two-view case, a means to perform optimization over a minimal set of parameters.

Finally, experimental results on simulated and real data are shown in §§5 and 6
respectively. They show that algorithms based on minimal motion parameters, and in
particular on the orthonormal representation, perform better than the others, in terms of
computational cost, while achieving equivalent performances in terms of convergence
properties. This is followed by my conclusions in §7.

2 The Projective Two-View Motion

2.1 Preliminaries

Let us consider two (3 × 4) uncalibrated perspective camera matrices. Due to homo-
geneity, each one has 11 degrees of freedom. Since there is a 15-degrees of freedom
coordinate frame ambiguity on structure and motion, the projective two-view motion
has 11 · 2− 15 = 7 degrees of freedom.

The corresponding (3 × 3) fundamental matrix F has 9 entries but 7 degrees of
freedom since it is homogeneous and has rank 2. It allows one to extract projection
matrices for the two views while fixing the coordinate frame. These projection matrices
constitute a realization of the fundamental matrix. Among the 15-parameter family of
realizations, a common choice is the canonic projection matrices P and P′ [11]:

P ∼ (I(3×3) 0(3×1)) and P′ ∼ (H? e′), (1)

where e′ is the second epipole defined as the right kernel of F, FTe′ ∼ 0(3×1) and
H? ∼ [e′]×F is the canonic plane homography. This defines the canonic coordinate
frame which is unique, provided normalization constraints for H? and e′. It will be
seen in §2.3 that ||e′||2 = 1 and ||H?||2 = γ, where γ is an unknown constant scalar,
is a convenient choice for my method. Note that ∼ means “equal up to scale” and
[.]× is the cross-product skew-symmetric (3× 3)-matrix. All entities are represented in
homogeneous coordinates, i.e. are defined up to scale.

2.2 Relation to Previous Work

Most of the previous work on minimally parameterizing projective two-view motion
deals with directly parameterizing the epipolar geometry. The fundamental matrix F is
decomposed into the epipoles e and e′ and the epipolar transformation, which is a 1D

projective transformation relating the epipolar pencils, represented by an homogeneous
(2× 2)-matrix g.

Representing these entities with minimal parameters requires eliminating their ho-
mogeneity. This is usually done by normalizing each of them so that their largest entry
is unity, which yields 3 possibilities for each epipole and 4 for the epipolar transforma-
tion, so 3 · 3 · 4 = 36 possible parameterizations.

Obtaining the fundamental matrix —or any other 2D entity such as the extended
epipolar transformation [2] or the canonic plane homography H?— from e, e′ and g
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requires then the use of 9 distinct parameterizations to model all cases [18]. These
cases coincide with 9 of the 36 previous ones.

In [10], the author proposes to restrict the two-view configurations considered to the
cases where both epipoles are finite and can therefore be expressed in affine coordinates.
Due to the homogeneity of the epipolar transformation, 4 distinct parameterizations are
still necessary for g. A unique parameterization can then be used to form the fundamen-
tal matrix.

The method has been extended in [18] to the general case, i.e. when the epipoles
can be either finite or infinite. In this case, it is shown that the full 36 distinct parame-
terizations are necessary. This leads to a cumbersome and error-prone implementation
of the optimization process.

In [2, 19], the method has been revised so as to reduce the number of parameteriza-
tions using image transformations. In [2], the image transformations used are metric and
the number of distinct parameterizations restricted to 3 plus one bilinear constraint on
the entries of g, while in [19], the transformations used are projective, which allows one
to reduce the number of parameterizations to 1. The main drawback is that in the trans-
formed image space, the original noise model on the image features is not preserved. A
means to preserve it, up to first order approximation, has been proposed in [19] for the
gradient-weighted criterion, which is not the one used for bundle adjustment.

2.3 The Orthonormal Representation

Derivation. I introduce what I call the orthonormal representation of projective two-
view motion. I consider the fundamental matrix representation of the motion. Any
(3 × 3) rank-2 matrix is a fundamental matrix, i.e. represents a motion. Conversely, a
projective two-view motion is represented by a unique fundamental matrix (up to scale).
Therefore, deriving a minimal representation of projective two-view motion from its
fundamental matrix representation implies considering two constraints; the rank-2 con-
straint and a normalization constraint, which fixes the relative scale of the fundamental
matrix. Previous work has shown that these constraints are quite tricky to enforce di-
rectly on the fundamental matrix [2, 10, 18, 19].

To overcome this problem, instead of considering directly the fundamental matrix, I
rather analyze its singular value decomposition F ∼ UΣVT, where U and V are (3× 3)
orthonormal matrices and Σ a diagonal one containing the singular values of F. The
orthonormal representation is then derived while enforcing the constraints:

– rank-2: since F is a rank-2 matrix, Σ ∼ diag(σ1, σ2, 0) where σ1 and σ2 are strictly
positive scalars and σ1 ≥ σ2 > 0;

– normalization: since F is an homogeneous entity, I can scale its singular value
decomposition such that F ∼ U·diag(1, σ, 0)·VT where σ = σ2/σ1 and 0 < σ ≤ 1
(σ1 6= 0 since F is rank-2).

This decomposition shows that any projective two-view motion can be represented by
two (3× 3) orthonormal matrices and a scalar.

This gives the orthonormal representation of projective two-view motion as:

(U, V, σ) ∈ F where F ≡ O(3)2 × {σ
∣∣ 0 < σ ≤ 1}, (2)



5

where O(3) is the Lie group of (3 × 3) orthonormal matrices. This representation is
minimal in that it has 3 + 3 + 1 = 7 degrees of freedom. It can easily be computed
from the singular value decomposition of the fundamental matrix. Note that σ = 1 may
correspond to the case of an essential matrix, i.e. when cameras are calibrated.

Any element of F represents a unique two-view motion since it can be used to
recompose a unique fundamental matrix (see next paragraph), i.e. a (3 × 3) matrix
where both the rank-2 and a normalization constraints have been enforced. However, a
fundamental matrix has more than one orthonormal representations. For instance, given
an orthonormal representation (U, V, σ) ∈ F, one can freely switch the signs of u3 or
v3 while leaving the represented motion invariant. However, the space of fundamental
matrices and the orthonormal representation are both 7-dimensional, which allows for
minimal estimation.

Recovering 2D entities. The fundamental matrix corresponding to an orthonormal rep-
resentation (U, V, σ) ∈ F can be recovered by simply recomposing the singular value
decomposition:

F ∼ u1v
T

1 + σu2v
T

2 , (3)

where ui and vi are the columns of U and V respectively. Among all potential applica-
tions of the orthonormal representation, I will use it for bundle adjustment. Therefore,
I will need to extract projection matrices from the fundamental matrix. This can be
achieved directly from the orthonormal representation by recovering the second epipole
and the canonic plane homography of [11], equation (1).

The second epipole is the last column of U: e′ ∼ u3, while the canonic plane
homography can be formulated as H? ∼ [e′]×F ∼ [u3]×

(
u1v

T

1 + σu2v
T

2

)
. Since U is

an O(3) matrix, [u3]×u1 = ±u2 and [u3]×u2 = ∓u1 which yields the canonic plane
homography as H? ∼ u2v

T

1 − σu1v
T

2 and the second projection matrix as:

P′ ∼
(
u2v

T

1 − σu1v
T

2 | u3

)
. (4)

Normalization constraints discussed in §2.1 are clearly satisfied. This guarantees that
the same canonic basis will be used through the optimization process.

2.4 Estimation Using Minimal Parameters

In this section, I use the previously described orthonormal representation of projective
two-view motion to locally update a “base” estimate using the minimum 7 parameters.

Update using minimal parameters. Before going further, let us examine the case of
3D rotations. There does not seem to exist a minimal, complete and non-singular pa-
rameterization of the 3-dimensional set of rotations in 3D space. For example, consider
the (3 × 3) rotation matrix R ∈ SO(3). Minimal representations, such as the 3 Euler
angles θ lead to singularities. However, one can find representations that are locally
minimal and non-singular, e.g. in a neighbourhood of R = I(3×3), i.e. θ = 0(3×1).
Therefore, most of the estimation processes of 3D rotations do not minimally parame-
terize the current estimate, but rather locally update its overparameterization. A typical
example is to use a (3 × 3) rotation matrix representation that is locally updated as
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R← R · R(θ) where R(θ) is any minimal and locally non-singular parameterization of
3D rotations, e.g. Euler angles. This method is used in [6] for the non-linear recovery of
metric structure and motion, where R is updated and θ reset to zero after each iteration
of the optimizer.

The same scenario arises for the projective two-view motion. There does not seem
to exist a minimal, complete and non-singular parameterization of the corresponding
7-dimensional space. Consequently, I propose locally updating a given estimate using
minimal parameters.

Let us consider the orthonormal representation (U, V, σ) ∈ F of a given projec-
tive two-view motion. Each matrix (U, V) ∈ O(3)2 can be locally updated using 3
parameters by considering the method described above for 3D rotations. The scalar
σ ∈ {σ

∣∣ 0 < σ ≤ 1} is completely included into the parameterization. A means to
ensure 0 < σ ≤ 1 is described below.

Completness. A first remark that immediately follows about the above-proposed method
is whether all two-view configurations are covered. This arises from the fact that U and
V are O(3) matrices, which may have positive or negative determinants, and are updated
using SO(3) matrices, R(x) and R(y) respectively, which have only positive determi-
nants. Therefore, the signs of det(U) and det(V) are not allowed to change during the
optimization process. I claim that this is not a problem and that any fundamental ma-
trix F can be reached from any initial guess F0, even if sign(det(U0)) 6= sign(det(U)),
sign(det(V0)) 6= sign(det(V)) or both. To prove this claim, I show that any fundamen-
tal matrix F represented by (U, V, σ) has alternative representations where the signs of
either det(U) or det(V), or both, have been switched. This is due to the non-uniqueness
of the singular value decomposition, see e.g. [14]. Consider the recomposition equation
(3) and observe that u3 and v3, the third columns of U and V respectively, do not af-
fect the result. Therefore, they are only constrained by the orthonormality of U and V.
Hence, their signs can be arbitrarily switched, which accordingly switches the sign of
the determinant of the corresponding matrix. For example, u3 ← −u3 switches the sign
of det(U) while leaving invariant the represented fundamental matrix. This concludes
the proof.

Implementation details. Through the iterations, σ may go outside of its boundaries.
This is not a problem since the corresponding motion is still valid.

There are several possibilities to ensure the boundaries of σ such as using linear
constraints. I propose to enforce these boundaries at each iteration while leaving the
current estimate invariant. However, I have found during my experiments of §§5 and
6 that in practice, this does not affect the behaviour of the underlying optimization
process. A way to proceed is:

– if σ < 0 then σ ← −σ, u2 ← −u2, u3 ← −u3;
– if σ > 1 then σ ← 1

σ
, swap(u1,u2), u3 ← −u3, swap(v1,v2), v3 ← −v3.

One can easily check that these changes on the orthonormal representation leave the
represented motion invariant.
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3 Bundle Adjustment

In this section, I show how the orthonormal representation can be used for bundle ad-
justment of point features seen in two views. This is summarized in table 1. Similar
results could be derived for other criteria, such as the minimization of the distances
between points and epipolar lines or the gradient-weighted criterion [10, 18].

Two-view projective bundle adjustment expressed within the framework of [8], p.574
(algorithm A4.1). The initial guess of the fundamental matrix is denoted by F0.

Add the following steps:
(i’) Initialize the orthonormal representation (U, V, σ) by a scaled singular value de-

composition of F0:
F0 ∼ U · diag(1, σ, 0) · VT

.

(ii’) Turn the full (r × 12) camera Jacobian matrix A = Ā into the minimal (r × 7)
Jacobian matrix of the orthonormal representation:

A← A · A
ortho

,

where A
ortho is given by equations (5,6);

Change the parameter update step as:
(viii) Update the orthonormal representation as:

U← U · R(x) V← V · R(y) σ ← σ + δσ,

where δa
T = (xT

y
T δσ) are the 7 motion update parameters, update the structure

parameters by adding the incremental vector δb and compute the new error vector;

Add the last step:
(xi) Return the computed F using equation (3) as:

F ∼ u1v
T

1 + σu2v
T

2 .

Table 1. Implementing my minimal estimator within the bundle adjustment Levenberg-
Marquardt-based framework given in [8], p.574 (algorithm A4.1). Note that r is the number
of residuals and that the second projection matrix have to be extracted from the orthonormal
representation using equation (4) (for e.g. computing the error vector).

Cost function. Bundle adjustment consists in solving the following optimization prob-
lem, see e.g. [12, 17, 18]:

min
a,b

rTr,

where:
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– a and b are respectively motion and structure parameters (or parameters used to
update them);

– r is the vector of residual errors;
– r2

i = d2(qi, PQi) + d2(q′

i, P
′Qi) is the i-th point residual error (d is the 2D Eu-

clidean distance) corresponding to its reprojection error;
– qi and q′

i are corresponding image points for the first and second images;
– Qi are 3D reconstructed points and depend upon b;
– P and P′ are projection matrices corresponding to the current motion estimate rep-

resented by a. They must correspond to a realization of the fundamental matrix. I
have shown in §2.3, equation (4), how the canonic realization can be directly ob-
tained from the orthonormal representation.

Analytical differenciation. Newton-type optimization methods, such as the widely used
Levenberg-Marquardt, necessitate computing the Jacobian matrix J = (A | B) of the
residual vector r with respect to motion and structure parameters a and b. While this
can be achieved numerically using e.g. finite differences [14], it may be better to use an
analytical form for both computational efficiency and numerical accuracy. I focus on the
computation of A = ∂r

∂a
since B = ∂r

∂b
only depends upon structure parameterization. I

decompose it as A(r×7) = Ā(r×12) · A
ortho
(12×7) where:

– r is the number of residuals;
– only the 12 entries of P′ are considered since P is fixed in the canonic reconstruction

basis (1);
– Ā = ∂r

∂p′
(p′ = vect(P′) where vect(.) is the row-wise vectorization) depends on

the chosen realization of the fundamental matrices, i.e. on the coordinate frame
employed. I have chosen the canonic projection matrices (1). This Jacobian matrix
is employed directly for the overparameterization of [8]. Deriving its analytical
form is straightforward;

– Aortho = ∂p′

∂a
is related to the orthonormal motion representation.

I therefore concentrate on deriving a closed-form expression for Aortho. If the minimal
method of e.g. [18] were used, 36 different Jacobian matrices corresponding to each
parameterization would have to be derived.

One of the advantages of my update scheme shown in table 1 and based on the or-
thonormal representation is that there exists a simple closed-form expression for Aortho.

Let us consider the orthonormal representation (U, V, σ). In this case, the motion
update parameters are minimal and defined by a = (x1 x2 x3 y1 y2 y3 σ)T, where
x = (x1 x2 x3)

T and y = (y1 y2 y3)
T are used to update U and V respectively. Since

U and V are updated with respect to the current estimate, Aortho is evaluated at (U, V, σ),
i.e. at a = a0 = (0(6×1) σ)T. Let Ũ = U · R(x) and Ṽ = V · R(y) be the updated U

and V. Equation (4) is used to derive a closed-form expression of the second canonic
projection matrix after updating, i.e. corresponding to the orthonormal representation
(Ũ, Ṽ, σ). By expanding, differentiating and evaluating this expression at a0, I obtain:

Aortho =
∂p′

∂a
=

∂p′

∂(x1 . . . y3 σ)
=

((
∂p′

∂x1

)
. . .

(
∂p′

∂y3

) (
∂p′

∂σ

))
, (5)
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where:

∂p′ =





vect(u3v1
T | − u2) · ∂x1

vect(−σu1v3
T | 0) · ∂x2

vect(σu3v2
T | u1) · ∂x3

vect(−u2v3
T | 0) · ∂y1

vect(−u1v1
T − σu2v2

T | 0) · ∂y2

vect(u2v2
T + σu1v1

T | 0) · ∂y3

vect(−u1v2
T | 0) · ∂σ.

(6)

4 The Multiple-View Case

In this section, I extend my projective two-view motion modelisation to multiple views.
I analyse how to model additional views. I propose the orthonormal representation of
projective multiple-view motion. As in the two-view case, this serves to devise elements
for optimizing projective multiple-view motion over minimal parameters.

4.1 Modeling Additional Views

Once two views have been modeled, the coordinate frame is fixed. Therefore, an addi-
tional view does not have any free gauge and its complete projection matrix has to be
modeled. Let P be such a (3× 4) projection matrix. Since it is homogeneous, it has 11
degrees of freedom. This can be seen in several other ways. For example, one can con-
sider the metric decomposition P ∼ K(R t). However, this decomposition is not avail-
able here since I deal with uncalibrated cameras. One may also interpret P ∼ (H αe),
where H is a (3×3)-matrix, as a plane homographyH with respect to the reference view,
i.e. thus for which the projection matrix is (I(3×3) 0(3×1)), e a 3-vector that represents
an epipole with the same view and α a scalar that accounts for the relative scale between
H and e. Therefore, P has 8 + 2 + 1 = 11 degrees of freedom. This interpretation is
related to that of plane+parallax, see e.g. [9].

4.2 Relation to Previous Work

A common strategy for optimizing an homogeneous entity such as P is to overparam-
eterize it by using all its entries. A normalization constraint is then softly imposed by
using an hallucinated measurement, e.g. on the norm of P as ||P||2 − 1 = 0. The
drawback of this method is that more parameters than necessary are estimated, which
increases the computational cost of the estimation process and may cause numerical
instabilities. One could also renormalize P after each iteration as P ← P/||P||2. Alter-
natively, one could fix one entry of P to a given value, e.g. 1, but this representation
would have singularities.

The main drawback of these techniques is that a unique minimal parameterization
does not suffice to express all cases. This leads to the necessity for multiple expres-
sions of e.g. the Jacobian matrix for Newton-type optimizers, which might complexify
implementation issues.
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4.3 The Orthonormal Representation

The orthonormal representation of P ∼ (H αe) can be derived as follows. Let s = αe.
This inhomogeneous 3-vector is a scaled version of e which has 3 degrees of freedom
since it also encapsulates the relative scale α between H and e. Therefore, s ∈ R

3 and
it can be directly parameterized by its 3 elements.

Consider now the homogeneous (3×3)-matrix H. As in the case of the fundamental
matrix, see §2.3, I examine its singular value decomposition H ∼ UΣVT where U and V

are (3×3) orthonormal matrices and Σ a diagonal one containing the singular values of
H. Since H may be singular, see e.g. in §2.1 the canonic plane homography of [11], but
must not be rank-1 or null, Σ ∼ diag(1, σ1, σ2), where 0 < σ1 ≤ 1 and 0 ≤ σ2 ≤ σ1.
Therefore, the orthonormal representation of H writes as:

(U, V, σ1, σ2) ∈ H where H ≡ F× {σ2

∣∣ 0 ≤ σ2 ≤ σ1},

and F ≡ O(3)2×{σ1

∣∣ 0 < σ1 ≤ 1}, see equation (2). As a byproduct, one can observe
that I have derived the orthonormal representation H of 2D homographies which can be
used as a starting point to devise minimal 8-parameter estimators for these transforma-
tions. Finally, I obtain the orthonormal representation of P, denoted by P as:

(U, V, σ1, σ2, s) ∈ P where P ≡ H× R
3.

It is minimal in that it has 3 + 3 + 1 + 1 + 3 = 11 degrees of freedom.

4.4 Optimization With Minimal Parameters.

Mimicking the method of §2.4 for the projective two-view motion case, I obtain a way
to minimally estimate projective multiple-view motion. Given a set of camera matrices,
I represent two of them using the orthonormal projective two-view motion of §2.3.
This fixes the coordinate frame. Each other view is then modeled by the orthonormal
representation (U, V, σ1, σ2, s) ∈ P described above. Each O(3) matrix U, V can be
updated using minimal parameters as e.g. U ← U · R(x) whereas σ1, σ2 and s are
directly optimized. As in the two-view case, one can derive algorithms to ensure the
boundaries on σ1 and σ2. A closed-form solution for the Jacobian matrix of the residuals
with respect to the motion parameters can be derived in a manner similar to the two-
view case. Another advantage of this representation is that one can directly compute
the inverse of H, the (3 × 3) leading part of P, from its orthonormal representation.
This may be useful for e.g. projecting 3D lines or estimating 2D homographies using a
symmetric cost function.

5 Experimental Results Using Simulated Data

In this section, I compare the algorithm using the orthonormal motion representation
(see table 1 and §§2.4 and 4.4) to existing ones using simulated data. I use the Levenberg-
Marquardt method to perform optimization. Points are minimally parameterized as in
[8], p.579. The test bench consists of 50 points lying inside a sphere with a radius of 1
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meter observed by cameras with a focal length of 1000 (expressed in number of pixels).
Each of these cameras is looking at the center of the sphere and is situated at a distance
of 10 meters from it. The baseline between two consecutive cameras is 1 meter.

Points are generated in 3D space, projected onto the images and corrupted by an
additive centered gaussian noise with varying standard deviation.

I measure the two quantities characteristic of a bundle adjustment process, com-
putational cost, i.e. CPU time to convergence and the error at convergence, versus the
standard deviation of added image noise. I also measure the error of the current esti-
mate as a function of time through the optimization processes. The plots correspond to
median values over 300 trials. The bundle adjustments are initialized by the values ob-
tained using the 8 point algorithm [4] and the triangulation method described in [5] for
two views. Each other view is then registered in turn by linearly computing its camera
matrix. I compare the following algorithms:

– ORTHO: uses the minimal methods given in table 1 and §§2.4 and 4.4;
– MAPS and IMROT (Image Rotation): are other minimal methods given in [1], the

associated research report. These methods are equivalent to those described in [18,
19] in the sense that the number of unknowns is minimal;

– FREE: uses an overparameterization with free gauges, namely all the entries of the
camera matrices are optimized;

– NORMALIZED: uses an overparameterization plus hallucinated measurements to
prevent the gauge to drift [12];

– PARFREE (Partially Free): uses a partially free gauge by completely parameterizing
all camera matrices except the first one [7];
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Fig. 1. Comparison of (a): the CPU time to convergence and (b): value of the error at convergence
versus varying image noise for different methods.

I conduct a serie of experiments using two cameras. One can observe on figure 1 (b)
that, roughly speaking, all methods converge to the same minimum of the cost function.
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Methods that have a slightly less reliable convergence than the others are FREE and
PARFREE.

Figure 1 (a) shows that, for roughly the same convergence properties, there are quite
big discrepancies between the computational cost of each method. The method that
has the highest computational cost is FREE, followed by NORMALIZED and PARFREE.
This can be explained by the fact that these methods have more unknowns to estimate
than the minimal ones. This requires more computational time for each iteration to be
performed. Finally, methods using the minimal number of parameters, MAPS, ORTHO

and IMROT have the lowest computational cost, roughly the same.
In the light of these results, it is clear that methods using minimal parameters should

be preferred for both computational cost and convergence properties. The method OR-
THO, relying on the orthonormal representation given in this paper has the advantage of
simplicity. However, in order to understand and explain the behaviour of the different
methods, I have measured the number of iterations and the computational cost of these
iterations. These results are shown on figure 2.
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Fig. 2. Comparison of (a): the number of iterations to convergence versus varying image noise
and (b): the evolution of reprojection errors.

MAPS ORTHO IMROT FREE NORMALIZED PARFREE

0.3841 0.3838 0.3864 0.4741 0.7043 0.4717

Table 2. CPU time per iteration (second) for each method.

In more detail, I have found that methods FREE or PARFREE, leaving the gauge
drift freely have very bad convergence properties, performing more iterations, roughly
twice more, than the others, see figure 2 (a). Method NORMALIZED performs a num-
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ber of iterations smaller than all the other methods but involves solving a much more
costly linear system at each iteration, see table 2. Methods using the minimal number
of parameters are trade-offs between the number of iterations and their computational
cost: each iteration has a low computational cost and the number of iterations needed
is in-between those of free gauge methods and NORMALIZED. This explains why these
methods achieve the lowest total computational cost.

Figure 2 (b) shows the evolution of reprojection error for the different optimization
processes. This experiment is useful in the sense that the time to convergence previously
measured is highly dependent on how convergence is determined, e.g. by thresholding
two consecutive errors, and does not account for the ability of the algorithms to quickly,
or not, reach almost the value of convergence. This experiment has been conducted
using the same test bench as previously with a noise level on image point positions of
0.5 pixel. One can see on this figure that methods based on a minimal parameterization
reach their value of convergence before the others. The NORMALIZED and PARFREE

methods take roughly twice the same time, while the FREE method takes three times
more.

Finally, I conduct experiments using 10 views. I observe that the differences be-
tween the algorithms observed in the two-view case are decreased while those requiring
the lowest computation time are the same, i.e. MAPS, ORTHO and IMROT. Other exper-
iments on the convergence properties of the algorithms in the multiple-view case yield
conclusions similar to the two-view case.

6 Experiments on Real Images

In this section, I validate my algorithms using real images. I first consider the case of
two images. In order to cover all possibilities for the epipoles to be close to the images
or at infinity, I use pairs of the images shown on figure 3. Initial values for structure and
motion are computed as in the case of simulated data.

A B C D

Fig. 3. Real images used to validate the algorithms.

Results are shown in table 3. For each combination of image pair and each algo-
rithm, I estimate the CPU time to convergence T and the error at convergence E . The
last row of the table show the mean values T̄ and Ē of T and E for each algorithm over
the set of image pairs. These results confirmed those obtained using simulated data.
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epipoles
views

MAPS ORTHO IMROT FREE NORMALIZED PARFREE

e e
′

E T E T E T E T E T E T

—∞ ∞
A, B 0.63 2.45 0.63 2.39 0.63 2.47 0.68 3.98 0.63 2.99 0.68 3.02
A, C 0.71 2.38 0.71 2.41 0.71 2.40 0.77 4.01 0.71 3.56 0.71 3.71

—∞ —∞ A, D 0.45 2.03 0.45 1.76 0.45 2.19 0.57 3.13 0.45 3.09 0.45 2.93
∞ ∞ B, C 0.88 3.53 0.88 3.39 0.88 3.55 1.23 6.70 0.88 5.12 0.88 4.63

∞ —∞
B, D 0.59 2.33 0.59 2.10 0.59 2.81 0.59 3.99 0.59 3.41 0.59 3.56
C, B 0.51 1.91 0.51 1.92 0.51 2.02 0.51 3.39 0.51 2.79 0.51 3.04

average Ē and T̄ 0.628 2.430 0.628 2.328 0.628 2.573 0.725 4.200 0.628 3.493 0.637 3.482

Table 3. Error at convergence E and time to convergence T obtained when combining pairs of
images from figure 3.

I have also tested the algorithms on all four images of figure 3. Initial values have
been obtained by registering each view to an initial guess of structure and motion ob-
tained from the two first ones. The results are the followings: all algorithms converge
with a final error of 0.73 pixels and their relative performances in terms of computation
times to convergence were equivalent to those obtained in the case of two views.

7 Conclusions

I studied the problem of optimizing projective motion over minimal sets of parameters.
I proposed the orthonormal representation of projective two-view motion. I showed
how this can be used to locally update projective two-view motion using a minimal
set of 7 parameters. The canonic projection matrices can be directly extracted from the
orthonormal representation. I extent this representation to projective multiple-view mo-
tion. As a byproduct, I derive the orthonormal representation of 2D homographies. The
method can be plugged into most of the (possibly sparse) non-linear optimizers such as
Levenberg-Marquardt. I gave a closed-form expression for the Jacobian matrix of the
residuals with respect to the motion parameters, necessary for Newton-type optimiza-
tion techniques.

The introduced orthonormal representation seems to be a powerful tool for minimal
optimization of homogeneous entities in particular.

I conducted experiments on simulated and real data. My conclusions are that meth-
ods based on minimal parameter sets perform better than the others, in terms of compu-
tational cost while achieving equivalent results in terms of convergence properties. The
most interesting results are obtained in the two-view case. Existing algorithms that do
not constrain the gauge by any means perform worse than the others.

I will make an implementation of the method available on my home-page.
In future work, I plan to investigate the use of the orthonormal representation in-

troduced in this paper to model other algebraic entities and devise minimal estimation
techniques for them.
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