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THE WAVE EQUATION FOR DUNKL OPERATORS

SALEM BEN SAÏD AND BENT ØRSTED

Abstract. Let k = (kα)α∈R be a positive-real valued multiplicity function related to
a root system R, and ∆k be the Dunkl-Laplacian operator. For (x, t) ∈ RN×R, denote
by uk(x, t) the solution to the deformed wave equation ∆kuk(x, t) = ∂ttuk(x, t), where
the initial data belong to the Schwartz space on RN . We prove that for k ≥ 0 and N ≥ 1,
the wave equation satisfies a weak Huygens’ principle, while a strict Huygens’ principle
holds if and only if (N−3)/2+

P
α∈R+ kα ∈ N. Here R+ ⊂ R is a subsystem of positive

roots. As a particular case, if the initial data are supported in a closed ball of radius
R > 0 about the origin, the strict Huygens principle implies that the support of uk(x, t)
is contained in the conical shell {(x, t) ∈ RN×R | |t|−R ≤ ‖x‖ ≤ |t|+R}. Our approach
uses the representation theory of the group SL(2, R), and Paley-Wiener theory for the
Dunkl transform. Also, we show that the (t-independent) energy functional of uk is,
for large |t|, partitioned into equal potential and kinetic parts.

1. Introduction

In a series of lectures at Yale University, J. Hadamard formulated two different mean-
ings of Huygens’ principle which are nowadays known as Hadamard’s major and minor
premises [19]. A typical statement of the major premise is “every point on a wave front
acts as a source of a new wave front, propagating radially outward”. This statement is
mainly the original principle proposed by Christian Huygens in the 17th century [28],
and it holds for a general class of wave propagations. In contrast to the major premise,
the minor premise is a remarkable phenomena, that is valid only for very special equa-
tions, and never happens in even dimensional spaces. Mathematically, a second order
hyperbolic equation satisfies Huygens’ principle in the narrow sense (“minor premise”),
if the solution of the corresponding Cauchy problem at some point x depends not on all
the Cauchy data, but only on its part on the intersection of the characteristic conoid
with vertex x with the Cauchy surface. This means that the fundamental solution of
the corresponding Cauchy problem vanishes outside and inside the characteristic conoid,
and thus must be located on it. Indeed, because we are living in a three-dimensional
word we can hear each other clearly; one has a pure propagation without residual waves.
This is not the case in the two dimensional space: when a pebble falls in water at a
certain point x, the initial ripple on a circle around x will be followed by subsequent
ripples. Thus a given point y will be hit by residual waves.

The problem of classifying all second order hyperbolic differential operators which
obey Huygens’ principle in the narrow sense, is known as the Hadamard problem. This
problem has received a good deal of attention and the literature is extensive [41, 31, 10,
18, 32, 42, 36, 33, 22, 1, 3, 11, 6]. (Of course, this list of references is not complete.)
Nevertheless, this problem is still far from being fully solved. In the present paper,
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2 SALEM BEN SAÏD AND BENT ØRSTED

we shall treat a natural differential-difference operator of a similar hyperbolic nature,
namely one with the same leading symbol, but with additional reflection terms.

Henceforth, we will use the terminology “weak Huygens’ principle” for Hadamard’s
major premises, and “strict Huygens’ principle” for Hadamard’s minor premises.

The propagation of waves in RN is governed by the wave equation

(L) ∆xu(x, t) = ∂ttu(x, t), for (x, t) ∈ RN × R.

Here ∆x denotes the usual Laplacian operator in the x-variable, and the subscript t
indicates differentiation in the t-variable. It is a well known fact that (L) satisfies the
weak Huygens principle for all N ≥ 1, while the strict Huygens principle holds in all odd
dimensions starting from 3 and never holds in even dimensions [10]. In this paper, we
will investigate the validity of the weak and the strict Huygens principle for (L) when
the Laplacian ∆ is replaced by the Dunkl-Laplacian operator associated with Coxeter
groups [12]. The main tools are the representation theory of the group SL(2,R), and
the Paley-Wiener theory for the Dunkl transform (or the generalized Fourier transform)
[30, 45].

To be more specific, let G be a finite reflection group on RN with root system R,
and choose a positive subsystem R+ in R. Let k : R → R+, α 7→ kα, be a multiplicity
function. The Dunkl-Laplacian operator is given by

∆kf(x) = ∆f(x) + 2
∑

α∈R+

kα

{
〈∇f(x), α〉
〈α, x〉

− f(x)− f(rαx)
〈α, x〉2

}
,

where ∆ and ∇ are the usual Laplacian and gradient operators, 〈·, ·〉 is the standard
Euclidean scalar product in RN , and rα is the reflection in the hyperplane orthogonal
to the root α.

Consider the following Cauchy problem

(D) ∆kuk(x, t) = ∂ttuk(x, t), uk(x, 0) = f(x), ∂tuk(x, 0) = g(x),

where uk(x, t) is a function of (x, t) ∈ RN × R, and the Cauchy data f and g are two
Schwartz functions on RN . The main results of this paper are:

Claim 1. (Weak Huygens’ principle) Assume that k ≥ 0 and N ≥ 1. For a given x ∈ RN ,
the solution uk(x, t) depends only on the values of τx(k)f(y) and τx(k)g(y) for ‖y‖ ≤ |t|.
Here τx(k) is a generalized translation operator. We emphasize that τx(k) is not defined
on the space itself, but for functions living on it.

Claim 2. (Strict Huygens’ principle) Assume that k ≥ 0 and N ≥ 1. For a given x ∈ RN ,
the solution uk(x, t) depends only on the values of τx(k)f(y) and τx(k)g(y) (and their
derivatives) for ‖y‖ = |t| if and only if

N − 3
2

+
∑

α∈R+

kα ∈ N.

Here N = {0, 1, 2, . . .}.

These claims correspond to Theorem 3.3 and Theorem 3.15, respectively. In the
classical case k ≡ 0, these two claims can be found, for instance, in [10, 32].
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In particular, if x = 0, then in Claim 1 (resp. Claim 2) the solution uk(0, t) will
depend only on the values of f(y) and g(y) for ‖y‖ ≤ |t| (resp. ‖y‖ = |t|).

In [1], and for integer-valued k, Berest and Veselov gave a necessary and sufficient
condition for which the wave operator ∆G

k − ∂tt satisfies the strict Huygens principle.
Here ∆G

k denotes the G-invariant part of the Dunkl-Laplacian operator ∆k. Notice that
Claim 2 above is an extension of Berest-Veselov’s result under a weaker condition.

Now let C∞
R (RN ) be the space of smooth functions with compact support contained

in the closed ball of radius R > 0 about the origin. If we assume that the Cauchy data
f and g belong to C∞

R (RN ), Claim 2 reads:

Claim 3. Assume that k ≥ 0 and N ≥ 1. For all possible Cauchy data f, g ∈ C∞
R (RN ),

the support of the solution uk(x, t) is contained in the conical shell

{(x, t) ∈ RN × R | |t| −R ≤ ‖x‖ ≤ |t|+R}

if and only if (N − 3)/2 +
∑

α∈R+ kα ∈ N.

The claim above corresponds to Theorem 3.17 below. In the classical case k ≡ 0, this
claim was proved, for instance, in [23].

Here is the outline of our approach. We start by proving that there exist two tempered
distributions P (1)

k,t and P (2)
k,t on RN , such that the solution uk to the Cauchy problem (D)

is uniquely given by

(1.1) uk(x, t) = (P (1)
k,t ∗k f)(x) + (P (2)

k,t ∗k g)(x).

Here ∗k is a Dunkl-type convolution. Based on a Paley-Wiener theorem [45], we show
that P (`)

k,t , for ` = 1, 2, is supported inside the light cone C := {(y, t) | ‖y‖ = |t|} , i.e. in
the set {(y, t) | ‖y‖ ≤ |t|} . To prove the strict Huygens principle, we use the represen-
tation theory of the group SL(2,R). In the classical case, this approach goes back to R.
Howe [24]. We show that P (1)

k,t and P (2)
k,t are supported on the light cone C if and only if

P
(`)
k,t , for ` = 1, 2, generates a finite-dimensional sl(2,R)-module of dimension

dk,` =
N + 3

2
− `+

∑
α∈R+

kα.

We can also give a different proof for Claim 3 using other techniques based only on
de Jeu’s Paley-Wiener theorem for the Dunkl transform [30]. See the end of Section 3
for a sketch of this approach; note that the details of this argument can be found in the
last section, which deals with the principle of energy equipartition of a solution to (D).

On the other hand, for f ∈ C∞(RN ), denote by Mf the spherical mean operator, as
first introduced in [34]

Mf (x, r) = d−1
k

∫
SN−1

τx(k)f(ry)υk(y)dω(y), x ∈ RN , r ≥ 0.

Here dk is a normalization constant, and υk is the G-invariant weight function given by
υk(x) =

∏
α∈R+ |〈α, x〉|2kα , for x ∈ RN . A key result in Rösler’s paper [38], is that the

spherical mean operator is positivity-preserving. Keeping in mind (1.1), and using the
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spherical mean operator for the Cauchy data (f, g), we prove that

uk(x, t) = dk

√
π

Γ(γk +N/2)

∫ |t|

0
r2γk+N−1 d

dt

(
S−γk−N−3

2
(t2 − r2)

)
Mf (x, r)dr

+sign(t)dk

√
π

Γ(γk +N/2)

∫ |t|

0
r2γk+N−1S−γk−N−3

2
(t2 − r2)Mg(x, r)dr.(1.2)

Here γk :=
∑

α∈R+ kα, and Sλ(x) := xλ−1
+ /Γ(λ) is the Riemann-Liouville distribution.

In the light of this integral representation of uk, and Rösler results on the spherical mean
operator, the claims 1 and 2 are, respectively, equivalent to:

Claim 4. (Weak Huygens’ principle) Assume that k ≥ 0 and N ≥ 1. For a given x ∈ RN ,
the solution uk(x, t) depends only on the values of f(y) and g(y) for ‖x‖ − |t| ≤ ‖y‖ ≤
‖x‖+ |t|.

Claim 5. (Strict Huygens’ principle) Assume that k ≥ 0 and N ≥ 1. For a given x ∈ RN ,
the solution uk(x, t) depends only on the values of f(y) and g(y) (and their derivatives)
for ‖y‖ ≥

∣∣‖x‖ − |t|
∣∣ if and only if (N − 3)/2 +

∑
α∈R+ kα ∈ N.

The two claims 4 and 5 correspond to Corollary 3.20 and Theorem 3.21, respectively.
Implicitly, the integral representation (1.2) of the solution uk yields another proof of

the weak and the strict Huygens principle.
In the last section we prove the conservation of the total energy, and the energy

equipartition theorem for the solution uk under suitable conditions on N and γk. In
this part we choose to work with smooth Cauchy data (f, g) supported in the closed
ball of radius R > 0 about the origin. The advantage of this choice is to investigate, via
Paley-Wiener theory for the Dunkl transform, the behavior of the difference between the
kinetic and potential energy of the solution uk to (D). Indeed, if we denote by Kk[uk](t)
the kinetic energy, and by Pk[uk](t) the potential energy, then the following claim holds:

Claim 6. For k ≥ 0 and N ≥ 1, assume that (N − 1)/2 + γk ∈ N. Let uk be the solution
to the Cauchy problem (D), where the Cauchy data (f, g) are supported in the closed
ball of radius R > 0 about the origin.

(i) For fixed s > 0, there exists a constant c depending on N , k and (f, g) but not on
s, such that

|Kk[uk](t)−Pk[uk](t)| ≤ ce−2s(|t|−R),

for all t ∈ R.
(ii) The principle of energy equipartition holds for all |t| > R.

The statements (i) and (ii) correspond to Theorem 4.3 and Theorem 4.4, respectively.
However, if the Cauchy data (f, g) belong to the Schwartz space, then the principle

of energy equipartition reads

lim
|t|→∞

Kk[uk](t) = lim
|t|→∞

Pk[uk](t) =
The total (t-independent) energy of uk

2
,

for all k ∈ K + and N ≥ 1.
In the classical case k ≡ 0, the energy equipartition theorem can be found, for instance,

in [32, 4].
This paper is organized as follows: In Section 2 we give an abbreviated background

on the Dunkl theory. Section 3 is devoted to prove the main results, that is Claim 1,
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Claim 2, Claim 3, Claim 4, and Claim 5. In Section 4 we turn our attention to the proof
of Claim 6, i.e. the energy conservation and equipartition theorems.

We thank the referee for the careful reading of the manuscript and for the expert
comments and suggestions.

2. Background

Throughout the paper, 〈·, ·〉 denotes the standard Euclidean scalar product in RN

as well as its bilinear extension to CN × CN . For x ∈ RN , let ‖x‖ = 〈x, x〉1/2. Denote
by S (RN ) the Schwartz space of rapidly decreasing functions equipped with the usual
Fréchet space topology.

Let G be a finite reflection group on RN with root system R, and fix a positive
subsystem R+ of R. We will assume that 〈α, α〉 = 2 for all α ∈ R+.

For α ∈ RN \ {0}, let rα be the reflection in the hyperplane 〈α〉⊥ orthogonal to α

rα(x) := x− 〈α, x〉α, x ∈ RN .

Then G is the subgroup of the orthogonal group O(N) which is generated by the reflec-
tions {rα | α ∈ R}. A multiplicity function on R is a G-invariant function k : R → C.
Setting kα := k(α) for α ∈ R, we have khα = kα for all h ∈ G. The C-vector space of
multiplicity functions on R is denoted by K . If m := ]{G-orbits in R}, then K ∼= Cm.

For ξ ∈ CN and k ∈ K , in [12], Dunkl defined a family of first order differential-
difference operators Tξ(k) that play the role of the usual partial differentiation. Dunkl’s
operators are defined by

Tξ(k)f(x) := ∂ξf(x) +
∑

α∈R+

kα〈α, ξ〉
f(x)− f(rαx)

〈α, x〉
, f ∈ C 1(RN ).

Here ∂ξ denotes the directional derivative corresponding to ξ. The definition of Tξ(k) is in-
dependent of the choice of R+, and these operators mutually commute, i.e. Tξ(k)Tη(k) =
Tη(k)Tξ(k). Further, if f and g are in C 1(RN ), and at least one of them is G-invariant,
then

(2.1) Tξ(k)[fg] = gTξ(k)f + fTξ(k)g.

We refer to [12, 15] for more details on the theory of Dunkl’s operators.
The counterpart of the usual Laplacian is the Dunkl-Laplacian defined by

∆k :=
N∑

j=1

Tξj
(k)2,

where {ξ1, . . . , ξN} is an arbitrary orthonormal basis of (RN , 〈·, ·〉). For the j-th basis
vector ξj , we will use the abbreviation Tξj

(k) = Tj(k). By the normalization 〈α, α〉 = 2,
we can rewrite ∆k as

∆kf(x) = ∆f(x) + 2
∑

α∈R+

kα

{
〈∇f(x), α〉
〈α, x〉

− f(x)− f(rαx)
〈α, x〉2

}
,

where ∆ and ∇ are the usual Laplacian and gradient operators, respectively.
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Henceforth, K + denotes the set of multiplicity functions k = (kα)α∈R such that
kα ≥ 0 for all α ∈ R. For k ∈ K +, there exists a generalization of the usual exponential
kernel e〈·,·〉 by means of the Dunkl system of differential equations.

Theorem 2.1. For k ∈ K +, the following hold:
(i) (cf. [13, 35]) There exists a unique holomorphic function Ek on CN ×CN charac-

terized by

(2.2) Tξ(k)Ek(z, w) = 〈ξ, w〉Ek(z, w) for all ξ ∈ CN , Ek(0, w) = 1.

Further, the kernel Ek is symmetric in its arguments, and

Ek(λz,w) = Ek(z, λw), Ek(hz, hw) = Ek(z, w)

for z, w ∈ CN , λ ∈ C, and h ∈ G.
(ii) (cf. [29]) For x ∈ RN and w ∈ CN , we have

|Ek(x,w)| ≤
√
|G| e‖x‖ ‖Re(w)‖.

For complex-valued k, there is a detailed investigation of (2.2) by Opdam [35]. Theo-
rem 2.1(i) is a weak version of Opdam’s result. The constant

√
|G| in the statement (ii)

above can be improved to 1, as a consequence of the Rösler’s integral representation of
Bochner-type of Ek [37]. For integral multiplicity function, another proof for Theorem
2.1 can be found in [7], by means of a contraction procedure. The function Ek is the
so-called Dunkl kernel. When k ≡ 0, we have E0(z, w) = e〈z,w〉 for z, w ∈ CN .

Let υk be the weight function on RN defined by

υk(x) :=
∏

α∈R+

|〈α, x〉|2kα , x ∈ RN .

It is G-invariant and homogeneous of degree 2γk, with the index

γk :=
∑

α∈R+

kα.

Notice that by G-invariance of k, the definition of υk does not depend on the special
choice of R+.

Denote by dx the Lebesgue measure corresponding to 〈·, ·〉. The Dunkl transform on
the space L1(RN , υk(x)dx) of integrable functions on RN with respect to υk(x)dx, is
defined by

(2.3) Dkf(ξ) :=
∫

RN

f(x)Ek(x,−iξ)υk(x)dx, ξ ∈ RN .

We set ck to be the Mehta-type constant

(2.4) ck :=
∫

RN

e−‖x‖
2/2υk(x)dx.

Many properties of the Euclidean Fourier transform carry over to the Dunkl transform.

Theorem 2.2. (cf. [14, 29]) Let k ∈ K +. If Ek(f)(ξ) := Dk(f)(−ξ), then the following
hold:

(i) The transforms Dk and Ek are homeomorphisms of S (RN ) and Dk◦Ek = Ek◦Dk =
c2k1S .

(ii) (L1-inversion) If f ∈ L1(RN , υk(x)dx), with Dk(f) ∈ L1(RN , υk(x)dx), then
Dk(Ek(f)) = Ek(Dk(f)) = c2kf a.e.
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(iii) (Plancherel formula) If f ∈ L1(RN , υk(x)dx) ∩ L2(RN , υk(x)dx), then Dk(f) ∈
L2(RN , υk(x)dx) and ‖Dk(f)‖2 = ck‖f‖2. Furthermore, c−1

k Dk extends uniquely from
L1(RN , υk(x)dx) ∩ L2(RN , υk(x)dx) to a unitary operator on L2(RN , υk(x)dx).

In what follows we shall need a generalized translation operator. In [13], Dunkl proved
that for k ∈ K +, there exists a linear isomorphism Vk that intertwines the algebra
generated by the Dunkl operators with the algebra of partial differential operators. The
intertwining operator Vk is determined uniquely by

Tξ(k)Vk = Vk∂ξ for all ξ ∈ RN , VkPm(RN ) ⊂ Pm(RN ), Vk(1) = 1,

where Pm(RN ) denotes the space of homogeneous polynomials of degree m. In [45],
Trimèche extended Vk from the polynomials to the space of smooth functions, and then
used it to define a generalized translation operator on C∞(RN ) by

τx(k)f(y) := V x
k V

y
k (V −1

k f)(x− y), x, y ∈ RN .

Here the superscript denotes the relevant variable. When k ≡ 0, τx(0)f(y) = f(x − y).
(In [45], Trimèche writes x + y, instead of x − y as the argument of f. We mention
that the generalized translation operator appeared for the first time in [39, p. 535] for
Schwartz functions.) In particular, the operator τx(k) satisfies

τ0(k)f(y) = f(−y), ∆x
k

(
τx(k)f) = τx(k)

(
∆kf

)
, τx(k)f(y) = τ−y(k)f(−x).

The following lemma collects some of the elementary properties of the translation oper-
ator; we refer to [44, 45] for more details.

Lemma 2.3. (i) For every x ∈ RN , τx(k) is a continuous linear mapping from C∞(RN )
into C∞(RN ).

(ii) The function x 7→ τx(k)(f) is of class C∞ from RN to C∞(RN ).
(iii) For all z ∈ CN ,

(2.5) τx(k)
(
Ek(·, z)

)
(y) = Ek(x, z)Ek(−y, z).

(iv) For f ∈ S (RN ) and for fixed x ∈ RN , the function τx(k)f ∈ S (RN ). Further,

Dk(τx(k)f)(ξ) = Ek(x,−iξ)Dk(f)(ξ).

By means of the generalized translation operator τx(k), in [45], Trimèche defined the
Dunkl convolution ∗k by

(2.6) (f ∗k g)(x) :=
∫

RN

f(y)τx(k)g(y)υk(y)dy,

for f, g ∈ S (RN ). It can then be proved that

(2.7) Dk(f ∗k g)(ξ) = Dkf(ξ)Dkg(ξ) and f ∗k g = g ∗k f

(cf. [45, Theorem 7.2]). In Trimèche’s paper, (2.7) is shown only for compactly supported
test functions; in [38, Lemma 2.2], Rösler extended these properties to Schwartz function,
using a simple density argument. We refer to [45, 44, 5] for more details on the Dunkl
convolution.

Next we turn our attention to the Dunkl convolution of two distributions. Denote by
D(RN ) the space of smoothly compact supported functions on RN , and set D ′(RN ) to
be its dual.
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Let ϕx,y ∈ D(RN ×RN ), Sx ∈ D ′(RN ) and Ty ∈ D ′(RN ). The tensor product Sx⊗Ty

is a distribution defined on D(RN × RN ) by either one of the following equations

〈Sx ⊗ Ty, ϕx,y〉 := 〈Sx, 〈Ty, ϕx,y〉〉,

〈Sx ⊗ Ty, ϕx,y〉 := 〈Ty, 〈Sx, ϕx,y〉〉,
where 〈Ty, ϕx,y〉 is the function defined by x 7→ 〈Ty, ϕx,y〉, and 〈Sx, ϕx,y〉 is the function
defined by y 7→ 〈Sx, ϕx,y〉. These two functions are in D(RN ). Indeed, x 7→ 〈Ty, ϕx,y(x, ·)〉
is the composite mapping of

(2.8) x 7→ ϕx,y(x, ·)

and

(2.9) ϕx,y(x, ·) 7→ 〈Ty, ϕx,y(x, ·)〉.

The map (2.8) is C∞, while the map (2.9) is linear. Thus x 7→ 〈Ty, ϕx,y(x, ·)〉 is C∞.
Further, ϕx,y having compact support K in D(RN × RN ) implies that 〈Ty, ϕx,y〉 has
compact support in RN since 〈Ty, ϕx,y(x, ·)〉 vanishes, as ϕx,y(x, ·) does, when x does not
belong to the compact projection of K on RN . The equivalence of the two definitions
above follows from the fact that:

(i) If ϕx,y = ΦxΨy with Φx ∈ D(RN ) and Ψy ∈ D(RN ), then 〈Sx ⊗ Ty, ϕx,y〉 =
〈S,Φ〉〈T ,Ψ〉 and the two definitions coincide for pure tensors.

(ii) If ϕ belongs to the algebra tensor product D(RN ) ⊗ D(RN ), then ϕx,y can be
represented as finite sums

ϕx,y =
∑

j

Φ(j)
x Ψ(j)

y

where Φ(j)
x ∈ D(RN ) and Ψ(j)

y ∈ D(RN ). Thus, by means of (i), the two definitions
coincide on D(RN )⊗D(RN ).

(iii) Finally, let ϕ ∈ D(RN ×RN ). Using the well known fact that D(RN )⊗D(RN ) is
dense in D(RN×RN ) and in the light of (ii), the two definitions coincide on D(RN×RN ).

Convention. Let f ∈ L1(RN , υk(x)dx) and ϕ ∈ D(RN ). Set Tf to be the linear form on
D(RN ) defined by

〈Tf , ϕ〉 =
∫

RN

f(x)ϕ(x)υk(x)dx.

We may call Tf the distribution associated (or equivalent) to the function f, and we
may write Tf = f. (Hence the name “generalized functions” sometimes is given to
distributions.)

The convolution S ∗k T of two distributions on RN , if it is defined, is a distribution
on RN such that

〈S ∗k T , ψ〉 := 〈Sx ⊗ Ty, τx(k)ψ(−y)〉, for all ψ ∈ D(RN ).

Observe that, when defined, S ∗k T is commutative and the Dirac measure δ is the
unit element of this convolution. To see the latter fact notice that 〈δ ∗k T , ψ〉 =
〈δx ⊗ Ty, τx(k)ψ(−y)〉 = 〈Ty, 〈δx, τy(k)ψ(−x)〉〉 = 〈T , ψ〉. Further, if one assumes that
the support of S or T is compact, then the Dunkl convolution S ∗k T is well defined.
For instance, if T belongs to the space E ′(RN ) of distributions on RN with compact
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support, then the function x 7→ 〈Ty, τx(k)ψ(−y)〉 is an element in D(RN ) and the Dunkl
convolution can be written as

(2.10) 〈S ∗k T , ψ〉 = 〈Sx, 〈Ty, τx(k)ψ(−y)〉〉.

Further, since 〈Sx, τy(k)ψ(−x)〉 ∈ C∞(RN ) and a distribution of compact support is
well defined on smooth functions which are not necessarily with compact support, one
may rewrite (2.10) as

〈S ∗k T , ψ〉 = 〈Ty, 〈Sx, τy(k)ψ(−x)〉〉.

Now, let S ∈ D ′(RN ) and ϕ ∈ D(RN ). We claim that S ∗k ϕ is a C∞ function on RN

such that

(2.11) (S ∗k ϕ)(x) = (ϕ ∗k S)(x) = 〈S, τx(k)ϕ〉.
One can see this as follows:

〈S ∗k ϕ,ψ〉 = 〈Sx ⊗ ϕ(y), τx(k)ψ(−y)〉
= 〈Sx, 〈ϕ(y), τx(k)ψ(−y)〉〉
= 〈Sx, 〈ψ(y), τy(k)ϕ(x)〉〉
= 〈Sx ⊗ ψ(y), τy(k)ϕ(x)〉
= 〈ψ(y), 〈Sx, τy(k)ϕ(x)〉〉.

Above we used the fact that
∫

RN ϕ(y)τx(k)ψ(−y)υk(y)dy =
∫

RN τy(k)ϕ(x)ψ(y)υk(y)dy
(see for instance [45]). Therefore

(2.12) S ∗k ϕ(x) = 〈S, τx(k)ϕ〉.
Now, Lemma 2.3(ii) finishes the proof. Clearly, S ∗k ϕ = ϕ ∗k S.

Comment. In view of the convention above, we see that (2.12) agrees with (2.6) in the
case where S is defined by a function.

Since the mapping ϕ 7→ Dk(ϕ) of S (RN ) onto S (RN ) is linear and continuous in the
topology of S (RN ), we can now define the Dunkl transform of a tempered distribution
T as the tempered distribution Dk(T ) defined through

〈Dk(T ), ϕ〉 = 〈T ,Dk(ϕ)〉, ϕ ∈ S (RN ).

Comment. Let f ∈ L1(RN , υk(x)dx) and Tf be the distribution associated (or equiv-
alent) to f . Obviously Dk(Tf ) = TDk(f), where Dk(f) is the Dunkl transform of f as
defined in (2.3). This can be seen by changing the order of integration in 〈Dk(Tf ), ϕ〉 =∫

RN f(x)Dk(ϕ)(x)υk(x)dx =
∫

RN f(x)
[ ∫

RN ϕ(y)Ek(y,−ix)υk(y)dy
]
υk(x)dx. Thus the

Dunkl transform of a tempered distribution is a generalization of the ordinary Dunkl
transform of functions.

Notice that, if T ∈ E ′(RN ), then, using the tensor product, its Dunkl transform can
be written as

〈Dk(T ), ϕ〉 = 〈〈Ty, Ek(−ix, y)〉, ϕ(x)〉.
That is

Dk(T )(ξ) = 〈Tx, Ek(−iξ, x)〉, ∀ T ∈ E ′(RN ).
The following elementary properties can be derived from the definition of the Dunkl

transform of tempered distributions:
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(i) Dk is a topological isomorphism of S ′(RN ) onto itself;
(ii) Dk(Tj(k)T )(ξ) = iξjDk(T )(ξ); and
(iii) Tj(k)(DkT ) = Dk(−ixjT ).

Comment. In the statement (ii) above, the distribution Tj(k)T is defined by

〈Tj(k)T , ϕ〉 := −〈T , Tj(k)ϕ〉, ∀ ϕ ∈ D(RN ).

This definition makes sense since if ϕ ∈ D(RN ), then Tj(k)ϕ ∈ D(RN ) and ϕ 7→
−〈T , Tj(k)ϕ〉 is linear and continuous on D(RN ). If T is equivalent to a C 1 function f,
then Tj(k)T is equivalent to Tj(k)f :

〈Tj(k)f, ϕ〉 =
∫

RN

[
Tj(k)f(x)

]
ϕ(x)υk(x)dx

= −
∫

RN

f(x)
[
Tj(k)ϕ(x)

]
υk(x)dx = −〈f, Tj(k)ϕ〉.

Next we turn our attention to the behavior of the convolution of two distributions
under the Dunkl transform. We claim that

(2.13) Dk(S ∗k T ) = Dk(S)Dk(T ), S, T ∈ E ′(RN ).

holds if one of the distributions is of compact support and the other one is a tempered
distribution. Indeed, if ϕ ∈ S (RN ), S ∈ E ′(RN ) and T ∈ S ′(RN ), then the following

〈Dk(S ∗k T ), ϕ〉 = 〈S ∗k T ,Dk(ϕ)〉 = 〈Sx ⊗ Ty, τx(k)
(
Dk(ϕ)

)
(−y)〉

= 〈Ty, 〈Sx, τx(k)
(
Dk(ϕ)

)
(−y)〉〉

is well defined. This fact can be seen as follows: Since

τx(k)f(y) =
∫

RN

Dk(f)(ξ)Ek(ix, ξ)Ek(−iy, ξ)υk(ξ)dξ,

then

τx(k)
(
Dk(ϕ))(−y) =

∫
RN

ϕ(ξ)Ek(−ix, ξ)Ek(−iy, ξ)υk(ξ)dξ = Dk(Ek(−iy, ·)ϕ)(x).

Hence

X (y) := 〈Sx, τx(k)
(
Dk(ϕ)

)
(−y)〉

= 〈Sx,Dk

(
E(−iy, ·)ϕ

)
(x)〉

= 〈Dk(S)(ξ), Ek(−iy, ξ)ϕ(ξ)〉.

On the other hand, since S ∈ E ′(RN ), Dk(S) is a C∞ slowly increasing function (cf. [45,
Theorem 5.2]), and

X (y) =
∫

RN

Dk(S)(ξ)Ek(−iy, ξ)ϕ(ξ)υk(ξ)dξ = Dk(Dk(S) · ϕ)(y).

Thus, X (y) is in S (RN ), and the mapping S (RN ) → S (RN ), defined by ϕ 7→ X is
continuous; also, if T is a tempered distribution, then

〈Dk(S ∗k T ), ϕ〉 = 〈T ,X〉
is well defined, depends continuously on ϕ, and

〈Dk(S ∗k T ), ϕ〉 = 〈T ,Dk(Dk(S) · ϕ)〉 = 〈Dk(T ),Dk(S) · ϕ〉 = 〈Dk(S)Dk(T ), ϕ〉.



THE WAVE EQUATION FOR DUNKL OPERATORS 11

That is

(2.14) Dk(S ∗k T ) = Dk(S)Dk(T ), for S ∈ E ′(RN ), T ∈ S ′(RN ).

Remark 2.4. (i) Alternatively, one may prove (2.14) using the fact that Dk = D0 ◦ tVk,
together with

(2.15) tVk(S ∗k T ) = tVk(S) ∗0
tVk(T ).

Here D0 denotes the Euclidean Fourier transform, tVk is the transpose of the intertwining
operator Vk, and ∗0 is the classical convolution. Now, (2.15) was given in [5, Proposition
2.10] only for S, T ∈ E ′(RN ); an approximation argument gives the result if one of the
distributions is a tempered distribution. We mention that later we will need (2.14) only
for S ∈ E ′(RN ) and T ∈ S (RN ).

(ii) Let S, T ∈ E ′(RN ). We claim that S ∗k T is a distribution with compact support.
Thus, its Dunkl transform is a continuous function such that

Dk(S ∗k T )(ξ) = 〈S ∗k T , Ek(−iξ, ·)〉 = 〈Sx ⊗ Ty, τx
(
Ek(−iξ, ·)

)
(−y)〉

= 〈Sx, Ek(−iξ, x)〉〈Ty, Ek(−iξ, y)〉 = Dk(S)(ξ)Dk(T )(ξ)

(recall (2.5)). To prove the claim above, we shall argue as follows: On one hand we
have the equation (2.15) above. On the other hand, by [45, Theorem 5.1] tVk is a
topological isomorphism from E ′(RN ) onto itself. Now using the well know fact that the
classical convolution of two distributions with compact supports is again a compactly
supported distribution, we can deduce that the right hand side of (2.15) belongs to
E ′(RN ). Applying again [45, Theorem 5.1], we conclude that S ∗k T ∈ E ′(RN ).

We close this section by recalling a Paley-Wiener theorem for the Dunkl transform.
For R > 0, denote by C∞

R (RN ) the space of smooth functions on RN with support
contained in the closed metric ball of radius R about the origin. Denote by HR(CN ) the
space of entire functions f on CN with the property that for each integer M > 0, there
exists a constant αM such that

|f(z)| ≤ αM (1 + ‖z‖)−MeR‖Im(z)‖.

Further, let E ′
R(RN ) be the space of distributions on RN with support contained in the

closed ball of radius R about the origin, and let HR(CN ) be the space of entire functions
on CN such that

|f(z)| ≤ C(1 + ‖z‖)MeR‖ Im(z)‖,

for some positive constants C and M.

Theorem 2.5. (Paley-Wiener Theorem) Let G be a finite reflection group and suppose
that k ∈ K +.

(i) (cf. [30]) The Dunkl transform Dk is a linear isomorphism between C∞
R (RN ) and

HR(CN ), for all R > 0.
(ii) (cf. [45]) The Dunkl transform Dk is a linear isomorphism between E ′

R(RN ) and
HR(CN ), for all R > 0.

Finally, let us point out the following fact regarding the Dunkl convolution. Equation
(2.14) shows that the Dunkl transform of S ∗k T , with S ∈ E ′(RN ) and T ∈ S ′(RN ),
equals the product Dk(S)Dk(T ). Since S ∈ E ′(RN ), by the (easy half of the) Paley-
Wiener Theorem (ii), Dk(S) belongs to the space of smooth slowly increasing functions.
Hence, for T ∈ S ′(RN ), Dk(S)Dk(T ) ∈ S ′(RN ). This shows that if S ∈ E ′(RN ) and
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T ∈ S ′(RN ), then S ∗k T ∈ S ′(RN ). Similarly, one can prove that S ∗k T ∈ S (RN ) if
S ∈ E ′(RN ) and T ∈ S (RN ).

3. The wave equation for Dunkl operators

Except in a few places, most of the results below hold for complex-valued multiplicity
functions k such that Re(k) ≥ 0. However, for the reader’s convenience, we will restrict
ourselves to multiplicity functions k ∈ K +.

For k in K +, consider the following Cauchy problem for the wave equation associated
with the Dunkl-Laplacian operator

(3.1)
∆kuk(x, t) = ∂ttuk(x, t), (x, t) ∈ RN × R,

uk(x, 0) = f(x), ∂tuk(x, 0) = g(x).

Here the functions f and g belong to S (RN ). The subscript t indicates differentiation
in the t-variable. Next, we will prove the following statements:

(S1) Let k ∈ K + and N ≥ 1. For a given x ∈ RN , the solution uk(x, t) depends only
on the values of τx(k)f(y) and τx(k)g(y) for ‖y‖ ≤ |t|.

(S2) Let k ∈ K + and N ≥ 1. For a given x ∈ RN , the solution uk(x, t) depends only
on the values of τx(k)f(y) and τx(k)g(y) (and their derivatives) for ‖y‖ = |t| if and only
if (N − 3)/2 + γk ∈ N.

Another way of stating (S1) is that uk is expressed as a sum of ∗k-convolutions of
f and g with distributions that vanish outside the ball of radius |t| about the origin.
Similarly, (S2) is equivalent to the fact that the distributions we convolve f and g with,
also vanish inside the ball of radius |t|. In analogy with the classical case, i.e. when
k ≡ 0, we shall say that (3.1) satisfies the weak Huygens principle if uk satisfies (S1),
and (3.1) satisfies the strict Huygens principle if uk satisfies (S2).

For the time being, we only assume k ∈ K + and N ≥ 1. For t ∈ R, denote by Pk,t

the 2× 2 matrix of tempered distributions on RN

(3.2) Pk,t =
[
P 11

k,t P 12
k,t

P 21
k,t P 22

k,t

]
:=

[
D−1

k [cos(t‖ · ‖)] D−1
k [sin(t‖ · ‖)/‖ · ‖]

D−1
k [−‖ · ‖ sin(t‖ · ‖)] D−1

k [cos(t‖ · ‖)]

]
.

In Theorem 3.2 below we shall prove that the P ij
k,t’s are compactly supported distribu-

tions, which justifies the following operations with convolutions in view of (2.14). Put

Uk(x, 0) :=
[
f(x)
g(x)

]
, where the Cauchy data (f, g) ∈ S (RN )×S (RN ). Thus, we may

define the vector column Uk(x, t) by

Uk(x, t) := {Pk,t ∗k Uk(·, 0)} (x)(3.3)

=
{[

P 11
k,t P 12

k,t

P 21
k,t P 22

k,t

]
∗k

[
f
g

]}
(x).

By applying the Dunkl transform Dk to (3.3), in the x-variable, we get

(3.4) Dk(Uk(·, t))(ξ) = etADk(Uk(·, 0))(ξ),

where

(3.5) A :=
[

0 1
−‖ξ‖2 0

]
.
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That is Dk(Uk(·, t))(ξ) is a solution to the following ordinary differential equation

(3.6) ∂tDk(Uk(·, t))(ξ) = ADk(Uk(·, t))(ξ) =
[

0 1
−‖ξ‖2 0

]
Dk(Uk(·, t))(ξ).

Using the fact that −‖ξ‖2Dk(f)(ξ) = Dk(∆kf)(ξ), and the injectivity of the Dunkl
transform, we deduce that

(3.7) ∂tUk(x, t) =
[

0 1
∆k 0

]
Uk(x, t).

Thus, if we write Uk(x, t) =
[
uk(x, t)
vk(x, t)

]
, then uk(x, t) satisfies the following wave equa-

tion
∂ttuk(x, t) = ∆kuk(x, t).

Moreover, from (3.3) and in the light of the very last fact pointed out in the previous
section regarding ∗k, uk(·, t) ∈ S (RN ) for each t ∈ R.

Furthermore, uk(x, t) → f(x) as t → 0. Indeed, if δ denotes the Dirac functional,
then, as t→ 0, D−1

k (cos(t‖ · ‖)) → δ in S ′(RN ) and thus in D ′(RN ). On the other hand
D−1

k (sin(t‖ · ‖)/‖ · ‖) → 0 as t → 0. Using the continuity of the Dunkl convolution ∗k,
we deduce that

uk(x, t) → (δ ∗k f)(x) = f(x) as t→ 0.

Similarly, one can prove that (∂tuk)(x, t) → g(x) as t→ 0.
We mention that the solution uk constructed above is unique. This claim is a conse-

quence of the energy conservation theorem, which we will prove in the last section (see
Theorem 4.1 below). Indeed, if we denote by

Ek[uk](t) :=
1
2

∫
RN

(
|∂tuk(x, t)|2 +

N∑
j=1

|T x
j (k)uk(x, t)|2

)
υk(x)dx

the total energy of the solution uk(x, t) at time t, then Theorem 4.1 below shows that
Ek[uk](t) is independent of t, and

Ek[uk](t) =
c−2
k

2

∫
RN

(
‖ξ‖2|Dkf(ξ)|2 + |Dkg(ξ)|2

)
υk(ξ)dξ.

Thus, if we suppose that u(1)
k and u

(2)
k are two solutions of the wave equation with

the same initial data, then u
(1)
k − u

(2)
k is a solution of the wave equation with zero

initial data. Therefore, the energy for the solution u(1)
k − u

(2)
k is zero. This implies that

∂t

(
u

(1)
k − u

(2)
k

)
(x, t) = 0 for every t ∈ R. That is t 7→

(
u

(1)
k − u

(2)
k

)
(x, t) is a constant

function, so
(
u

(1)
k −u(2)

k

)
(x, t) =

(
u

(1)
k −u(2)

k

)
(x, 0) = 0. This proves that the solutions of

the wave equation are uniquely determined by the initial Cauchy data. In the classical
case k ≡ 0, the reader is referred to [32].

The following theorem collects all the above facts and discussions.

Theorem 3.1. The solution to the Cauchy problem (3.1) is given uniquely by

uk(x, t) = (P 11
k,t ∗k f)(x) + (P 12

k,t ∗k g)(x),
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where, for a fixed t, P 11
k,t and P 12

k,t are the tempered distributions on RN given by

P 11
k,t = D−1

k [cos(t‖ · ‖)] , P 12
k,t = D−1

k [sin(t‖ · ‖)/‖ · ‖] .

We shall call the distributions P ij
k,t the propagators of the deformed wave equation.

Before investigating the support of the solution uk and of the propagators, let us make
some observations regarding the estimate and the limit of uk(·, t) in L2(RN , υk(x)dx).
We restrict our attention to the L2-behaviors because these are the most physically in-
teresting quantities. First, for all t ∈ R, we have the following Strichartz-type inequality

(3.8) ‖uk(·, t)‖k ≤ ‖f‖k + ‖(−∆k)−1/2g‖k.

Here ‖ · ‖k denotes the norm in L2(RN , υk(x)dx). Secondly, as |t| → ∞, the function
t 7→ ‖uk(·, t)‖k has a finite limit depending on the initial data

(3.9) lim
|t|→∞

‖uk(·, t)‖2
k =

1
2
‖f‖2

k +
1
2
‖(−∆k)−1/2g‖2

k.

It follows that, if ‖uk(·, t)‖k → 0 as |t| → ∞, then

uk ≡ 0.

To prove (3.8) and (3.9), we express
∫

RN |uk(x, t)|2υk(x)dx in terms of Dk(uk(·, t))(ξ) by
means of the Plancherel formula. In view of

(3.10) Dk(uk(·, t))(ξ) = cos(t‖ξ‖)Dkf(ξ) +
sin(t‖ξ‖)
‖ξ‖

Dkg(ξ),

we obtain∫
RN

|uk(x, t)|2υk(x)dx =
c−2
k

2

∫
RN

{
|Dkf(ξ)|2 +

|Dkg(ξ)|2

‖ξ‖2

}
υk(ξ)dξ

+
c−2
k

2

∫
RN

|Dkf(ξ)|2 cos(2t‖ξ‖)υk(ξ)dξ

−
c−2
k

2

∫
RN

|Dkg(ξ)|2

‖ξ‖2
cos(2t‖ξ‖)υk(ξ)dξ

+
c−2
k

2

∫
RN

Dkf(ξ)Dkg(ξ) + Dkf(ξ)Dkg(ξ)
‖ξ‖

sin(2t‖ξ‖)υk(ξ)dξ.

Above we used the familiar trigonometric identities for double angles. Now the Strichartz
inequality is clear. Equation (3.9) follows by using the classical Riemann-Lebesgue
lemma for the Euclidean Fourier sine and cosine transforms.

Now we turn our attention to the statements (S1) and (S2), stated at the beginning
of this section. Recall that

uk(x, t) = 〈P 11
k,t(y), τx(k)f(y)〉+ 〈P 12

k,t(y), τx(k)g(y)〉.
The statement (S1) claims that uk(x, t) depends only on the values of τx(k)f(y) and
τx(k)g(y) for ‖y‖ ≤ |t|. In other words, P ij

k,t is supported in the set {y ∈ RN | ‖y‖ ≤ |t|}.
On the other hand, the statement (S2) claims that uk(x, t) depends only on the values of
τx(k)f(y) and τx(k)g(y) for ‖y‖ = |t| if and only if (N − 3)/2 + γk ∈ N. In other words,
P ij

k,t is supported on the set {y ∈ RN | ‖y‖ = |t|} if and only if (N − 3)/2 + γk ∈ N.
To prove (S1), our method uses the Paley-Wiener Theorem 2.5(ii) for the Dunkl

transform.
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The first key observation is that the functions cos(t‖x‖) and sin(t‖x‖)/‖x‖ can be
extended to entire functions on CN . Indeed, for z ∈ C, the functions cos z and sin z/z
are both even, and thus we may consider the functions cos(

√
z) and sin(

√
z)/

√
z which

are entire analytic functions of z (even though
√
z is not single-valued). Thus, the

analytic extensions of cos(t‖x‖) and sin(t‖x‖)/‖x‖, respectively, are

cos(t〈z, z〉1/2),
sin(t〈z, z〉1/2)
〈z, z〉1/2

.

In order to apply the Paley-Wiener theorem, we need to show that

(3.11)
∣∣ cos(t〈z, z〉1/2)

∣∣, ∣∣∣∣sin(t〈z, z〉1/2)
〈z, z〉1/2

∣∣∣∣ ≤ c e|t| ‖Im(z)‖,

for some constant c. We believe that the above two inequalities are proved somewhere
in the literature. However, in order to be self-contained, we shall give a proof: If we
write 〈z, z〉1/2 = u+ iv and use the fact that | cos(u+ iv)| and | sin(u+ iv)/(u+ iv)| are
both bounded by a constant c times e|v|, we obtain∣∣ cos(t〈z, z〉1/2)

∣∣, ∣∣∣∣sin(t〈z, z〉1/2)
〈z, z〉1/2

∣∣∣∣ ≤ c e|t| |v|.

Further, as 〈z, z〉 = (u + iv)2, we have u2 − v2 = ‖Re(z)‖2 − ‖Im(z)‖2 and uv =
〈Re(z), Im(z)〉. Thus, by Cauchy-Schwartz-Buniakowsly inequality, it follows that u2v2 ≤
‖Re(z)‖2‖Im(z)‖2, which is equivalent to v2(v2+‖Re(z)‖2−‖Im(z)‖2) ≤ ‖Re(z)‖2‖Im(z)‖2.
This amounts to(

v2 +
‖Re(z)‖2 − ‖Im(z)‖2

2

)2

≤
(
‖Re(z)‖2 + ‖Im(z)‖2

2

)2

,

which yields v2 ≤ ‖Im(z)‖2. Now, applying the Paley-Wiener Theorem 2.5(ii), we con-
clude that the distributions D−1

k [cos(t‖ · ‖)] and D−1
k [sin(t‖ · ‖)/‖ · ‖] are supported in

the set ‖x‖ ≤ |t|. We have proved:

Theorem 3.2. For all k ∈ K + and N ≥ 1, the propagators P 11
k,t and P 12

k,t are supported
in the set

{
y ∈ RN | ‖y‖ ≤ |t|

}
.

Thus, the following weak Huygens principle holds.

Theorem 3.3. (Weak Huygens’ Principle) Assume that k ∈ K + and N ≥ 1. For a
given point x ∈ RN , the solution uk(x, t) to the Cauchy problem (3.1) depends only on
the values of τx(k)f(y) and τx(k)g(y) for ‖y‖ ≤ |t|.

Notice that the above theorem holds in all dimensions N.
We shall now discuss the strict Huygens principle which will hold only under a condi-

tion involving N and the multiplicity function k. Our approach uses the representation
theory of the group SL(2,R), following [26].

We start by investigating certain symmetries and invariance of the deformed wave
equation, which are reflected in symmetries and invariance of the propagators. To see

this, we define the 2× 2 matrix Pk =
[
P 11

k P 12
k

P 21
k P 22

k

]
of entrywise distributions on RN+1,

where
P ij

k (ψ1 ⊗ ψ2) :=
∫

R
P ij

k,t(ψ1)ψ2(t)dt, i, j = 1, 2,
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for ψ1 ∈ S (RN ) and ψ2 ∈ S (R). Here we used the fact that S (RN+1) ' S (RN )⊗̂S (R)
is the unique topological tensor product of S (RN ) and S (R) as nuclear spaces. From
the constructive proof of theorem 3.1, it follows that

∆kP
ij
k = ∂ttP

ij
k , i, j = 1, 2.

For h ∈ G, ψ ∈ S (RN+1), and for each t ∈ R, denote by πx the unitary action of G
on ψ(·, t) given by

πx(h)ψ(x, t) := ψ(h−1 · x, t).
By duality, we have the action π∗x of G on tempered distributions by the rule

π∗x(h)(T )(ψ) = T (πx(h)−1ψ),

for ψ ∈ S (RN+1) and T ∈ S ′(RN+1). Further, let τ be the operation of time-reflection
τ(x, t) = (x,−t), and denote by

πt(τ)ψ(x, t) := ψ(x,−t).

Similarly as for π∗x, we obtain the action π∗t on distributions.
Begin with a solution uk(x, t) to the Cauchy problem (3.1) with Cauchy data (f, g).

Then πx(h)uk(x, t) solves the wave equation with initial data (πx(h)f, πx(h)g). The ana-
logue of (3.3) reads

πx(h)Uk(x, t) = {Pk,t ∗k πx(h)Uk(·, 0)} (x).

This amounts to

Uk(x, t) = π∗x(h) {Pk,t ∗k πx(h)Uk(·, 0)} (x) = {π∗x(h)Pk,t ∗k Uk(·, 0)} (x),

which implies
π∗x(h)P ij

k,t = P ij
k,t, i, j = 1, 2.

The G-invariance of P ij
k,t can also be observed directly from (3.2). Plugging this into the

definition of P ij
k , we conclude that

π∗x(h)P ij
k = P ij

k , i, j = 1, 2.

For the operation of time-reflection, clearly πt(τ)uk(x, t) = uk(x,−t) solves the Cauchy
problem (3.1) with Cauchy data (f,−g). Thus, the analogue of (3.3) reads[

uk(x,−t)
−(∂tuk)(x,−t)

]
= Pk,t ∗k

[
f
−g

]
,

which we may rewrite as

(3.12)
[

1 0
0 −1

]
Uk(x,−t) = Pk,t ∗k

[
1 0
0 −1

]
Uk(x, 0).

On the other hand, from (3.3), it follows that Uk(x,−t) = Pk,−t ∗k Uk(x, 0). Comparing
this with equation (3.12), we obtain

P ij
k,−t = (−1)i−jP ij

k,t for i, j = 1, 2,

which implies
π∗t (τ)P

ij
k = (−1)i−jP ij

k for i, j = 1, 2.
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Remark 3.4. From the time-reflection action on the propagators, it is clear that time is
reversible, except for a minus sign that may appear when the second Cauchy datum g
or its Dunkl transform are involved. So the past is determined by the present as well as
the future.

Next, we will investigate the symmetries of the propagators under a dilation operator.
This will inform us on the degree of the homogeneity of the distributions P ij

k , with
i, j = 1, 2.

For λ > 0 and ψ ∈ S (RN+1), denote by

Sx
λψ(x, t) := ψ(λx, t), St

λψ(x, t) := ψ(x, λt),

where the superscript denotes the relevant variable. Set Sλ := Sx
λ ◦ St

λ. By duality, the
operators Sx

λ , S
t
λ, and Sλ act on distributions in the standard way.

We begin by looking to the symmetry properties of P ij
k,t under the dilation Sλ. Observe

that if uk(x, t) is a solution to (3.1) with initial data (f(x), g(x)), then Sλuk(x, t) solves
the wave equation with initial data (Sx

λf(x), λSx
λg(x)). Thus

(3.13) SλUk(x, t) = Pk,t ∗k

[
Sx

λf
λSx

λg

]
.

On the other hand

SλUk(x, t) =
[

Sλuk(x, t)
∂t{Sλuk(x, t)}

]
=

[
uk(λx, λt)

λ{∂tuk}(λx, λt)

]
=

[
uk

λ∂tuk

]
(λx, λt)

=
[

1 0
0 λ

] [
uk

∂tuk

]
(λx, λt)

=
[

1 0
0 λ

]{
Pk,λt ∗k

[
f
g

]}
(λx)

=
[

1 0
0 λ

]
Sx

λ

{
Pk,λt ∗k

[
f
g

]}
(x).

Using the fact that if fλ(x) := λγk+N/2f(λx), then Dk(fλ)(ξ) = λ−γk−N/2Dk(f)(λξ), one
can check that Sx

λ preserves the convolution ∗k. Therefore

SλUk(x, t) =
[

1 0
0 λ

]{
Sx

λPk,λt ∗k

[
Sx

λf
Sx

λg

]}
(x)

=
[

1 0
0 λ

]{
Sx

λPk,λt ∗k

[
1 0
0 λ−1

] [
Sx

λf
λSx

λg

]}
(x).(3.14)

Comparing (3.13) with (3.14) gives Sx
λP

ij
k,λt = λj−iP ij

k,t, for i, j = 1, 2. Now one can

obtain the symmetry properties of P ij
k as follows: For ψ1 ∈ S (RN ) and ψ2 ∈ S (R), we
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have

Sλ(P ij
k )(ψ1 ⊗ ψ2) = P ij

k (Sx
λ−1(ψ1)⊗ St

λ−1(ψ2))

=
∫

R
P ij

k,t(S
x
λ−1(ψ1))St

λ−1(ψ2)(t)dt

= λ

∫
R
P ij

k,λt(S
x
λ−1(ψ1))ψ2(t)dt

= λ

∫
R
Sx

λ(P ij
k,λt(ψ1))ψ2(t)dt

= λ1+j−i

∫
R
P ij

k,t(ψ1)ψ2(t)dt

= λ1+j−iP ij
k (ψ1 ⊗ ψ2).

We summarize the above computations.

Proposition 3.5. Let k ∈ K + and N ≥ 1.
(i) The distribution P ij

k satisfies the deformed wave equation, i.e.

(3.15) ∆kP
ij
k = ∂ttP

ij
k , i, j = 1, 2.

(ii) If h ∈ G and τ denotes the operation of time-reflection, then

π∗x(h)P ij
k = P ij

k , π∗t (τ)P
ij
k = (−1)i−jP ij

k , i, j = 1, 2.

(iii) For λ > 0
SλP

ij
k = λ1+j−iP ij

k , i, j = 1, 2.

Next, we will prove similar statements for what we shall call the Dunkl-Fourier trans-
form of P ij

k . For ψ ∈ S (RN+1), denote by

DkFψ(x, t) :=
∫

RN+1

ψ(x′, t′)Ek(x′,−ix)eitt
′
υk(x′)dx′dt′.

For a distribution T of compact support, we write

DkF (T ) = D̃kF (T )(x, t)υk(x)dxdt,

where
D̃kF (T )(x, t) = T (Ek(x′,−ix)eitt

′
).

Since Ek(h ·x, x′) = Ek(x, h−1 ·x′), for h ∈ G, and υk is G-invariant, then in the light
of Proposition 3.5(ii), it follows that

π∗x(h)DkF (P ij
k ) = DkF (P ij

k ), for all h ∈ G,
and

π∗t (τ)DkF (P ij
k ) = (−1)i−jDkF (P ij

k ).

A crucial observation regarding DkF (P ij
k ) is that

(3.16) (‖x‖2 − t2)DkF (P ij
k ) = 0, i, j = 1, 2.

This follows by taking the Dunkl-Fourier transform of (3.15) together with the fact
that DkF (∆kψ)(x, t) = −‖x‖2DkF (ψ)(x, t) and DkF (∂ttψ)(x, t) = −t2DkF (ψ)(x, t).
Equation (3.16) says the distribution DkF (P ij

k ) is supported on the light cone C ={
(x, t) ∈ RN+1 | ‖x‖ − t2 = 0

}
, for i, j = 1, 2.
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Consider now the symmetry property of DkF (P ij
k ). In view of Proposition 3.5(iii) and

the fact that Ek(λx, x′) = Ek(x, λx′), we have

Sλ

[
DkF (P ij

k )
]

= Sλ

[
D̃kF (P ij

k )(x, t)υk(x)dxdt
]

= Sλ

[
D̃kF (P ij

k )
]
(x, t)Sλ [υk(x)dxdt]

= λ2γk+N+1D̃kF (P ij
k )(λx, λt)υk(x)dxdt

= λ2γk+N+1P ij
k (Ek(λx,−ix′)eiλtt′)υk(x)dxdt

= λ2γk+N+1P ij
k (Ek(x,−iλx′)eitλt′)υk(x)dxdt

= λ2γk+N+1P ij
k (Sλ

[
Ek(x,−ix′)eitt

′
]
)υk(x)dxdt

= λ2γk+N+1DkF (Sλ−1P ij
k )

= λ2γk+N+i−jDkF (P ij
k ).

Similarly to Proposition 3.5, we get:

Proposition 3.6. Let k ∈ K + and N ≥ 1.
(i) The distribution DkF (P ij

k ) is supported on the light cone C , i.e.

(‖x‖2 − t2)DkF (P ij
k ) = 0, i, j = 1, 2.

(ii) If h ∈ G and τ denotes the operation of time-reflection, then

π∗x(h)DkF (P ij
k ) = DkF (P ij

k ), π∗t (τ)DkF (P ij
k ) = (−1)i−jDkF (P ij

k ), i, j = 1, 2.

(iii) For λ > 0

Sλ

[
DkF (P ij

k )
]

= λ2γk+N+i−jDkF (P ij
k ), i, j = 1, 2.

Next we shall describe the structure of a representation of the universal covering
group ˜SL(2,R) of SL(2,R) on S (RN+1). This structure, together with Proposition 3.5
and Proposition 3.6, allows to prove that the Cauchy problem (3.1) satisfies the strict
Huygens principle, under a condition involving N and k. We adapt the method of R.
Howe for the classical wave equation, i.e. when k ≡ 0 (cf. [24, 27]).

Choose x1, x2, . . . , xN as the usual system of coordinates on RN . Let

EN,1 :=
1
2
(‖x‖2 − t2), FN,1 := −1

2
(∆k − ∂tt), HN,1 :=

N + 1
2

+ γk +
N∑

j=1

xj∂j + t∂t.

Using [21, Theorem 3.3], the following commutation relations hold

(3.17) [EN,1,HN,1] = −2EN,1, [FN,1,HN,1] = 2FN,1, [EN,1,FN,1] = HN,1.

These are the commutation relations of a standard basis of the Lie algebra sl(2,R). Equa-
tion (3.17) gives rise to a representation Ωk of sl(2,R). On S (RN+1), the representation
Ωk can be described as

(3.18) Ωk(sl(2,R)C) = sl+2 ⊕ sl02 ⊕ sl−2 ,

where
sl+2 = Span{EN,1}, sl02 = Span{HN,1}, sl−2 = Span{FN,1}.



20 SALEM BEN SAÏD AND BENT ØRSTED

The decomposition (3.18) is an instance of the Cartan decomposition

sl(2,R)C = p+ ⊕ kC ⊕ p−,

where sl+2 ' Ωk(p+), sl02 ' Ωk(kC), and sl−2 ' Ωk(p−). Here k = u(1), the Lie algebra of
the compact group U(1). The integrated form of the Lie algebra representation Ωk is

an analogue of the metaplectic representation of the universal covering ˜SL(2,R) of the
group SL(2,R). If (N + 1)/2 + γk ∈ 1

2Z \ Z, we obtain a representation of the double
covering Mp(2,R) of SL(2,R), and if (N + 1)/2 + γk ∈ Z we obtain a representation of
SL(2,R).

Remark 3.7. Following [8], we may rewrite the Dunkl-Fourier transform as

DkF = ei
π
2
(γk+(N+1)/2)e−i π

2
(EN,1+FN,1).

That is, up to a scalar factor, DkF is an element of the integrated form of the repre-
sentation Ωk, given by the formulas above.

Recall that (S2) is equivalent to the fact that the propagators P 11
k and P 12

k are sup-
ported on the light cone C = {(x, t) ∈ RN × R | ‖x‖2 − t2 = 0}. Next we will present
our argument for the P ij

k ’s with i, j = 1, 2. Since C is the locus of zeros of ‖x‖2 − t2,

then P ij
k is supported on C if and only if

(3.19) Em
N,1 · P

ij
k = 0

for some positive integer m, or

(3.20) Fm
N,1 ·DkF (P ij

k ) = 0

for some positive integer m (P ij
k and DkF (P ij

k ) are distributions of finite order. See, for
instance, [43]). In the light of Proposition 3.5(i) (or Proposition 3.6(i)) together with
homogeneity of P ij

k (or DkF (P ij
k )), i.e. it is a weight vector for HN,1, the equation

(3.19) (or (3.20)) amounts to saying the distribution P ij
k (or DkF (P ij

k )) generates a
finite-dimensional Ω∗

k(sl(2,R))-module. Thus, the qualitative part of the strict Huygens
principle holds.

Theorem 3.8. The strict Huygens principle holds if and only if P ij
k (or DkF (P ij

k ))
is supported on the light cone C , if and only if P ij

k (or DkF (P ij
k )) generates a finite-

dimensional Ω∗
k(sl(2,R))-module. In this case, P ij

k and DkF (P ij
k ) belong to the same

module.

Claim 3.9. The strict Huygens principle cannot hold when

N + 1
2

+ γk 6∈ Z.

To prove the claim, we need the following branching decomposition of S (RN ) under

the action of G × ˜SL(2,R). Those readers who are familiar with the theory of Howe
reductive dual pairs [24, 25] will find that our formulation can be thought of as an
analogue of Howe’s theory.
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Recall that x1, . . . , xN denotes the usual system of coordinates on RN . Set

Hk :=
N

2
+ γk +

N∑
j=1

xj∂j ,

E :=
Hk −∆k/4− ‖x‖2

2
, F :=

Hk + ∆k/4 + ‖x‖2

2
, H := −∆k

4
+ ‖x‖2.

Using again [21, Theorem 3.3], we can derive the following sl(2,R)-commutation relations

(3.21) [E,H] = −2E, [F,H] = 2F, [E,F ] = H.

What makes {E,F,H} important is the fact that H is the infinitesimal generator of
the maximal compact subgroup SO(2,R) of SL(2,R). Observe that E∗ = −F and
H∗ = H in L2(RN , υk(x)dx). This is a consequence of the fact that ∆k is symmetric,
while H ∗

k = −Hk as the below verification shows (you may require kα ≥ 1, and after the
formula is established, the restriction can be dropped, i.e. back to kα ≥ 0, by analytic
continuation)

∫
RN

Hkf(x)g(x)υk(x)dx = −
∫

RN

f(x)
{ N∑

j=1

xj∂jg(x)
}
υk(x)dx

+
(
γk −

N

2

) ∫
RN

f(x)g(x)υk(x)dx

−
∫

RN

f(x)g(x)
{ N∑

j=1

xj∂jυk(x)
}
dx,

where
∑N

j=1 xj∂jυk(x) = 2γkυk(x), since υk is homogeneous of degree 2γk. Equation
(3.21), together with the observation above, gives rise to an infinitesimally unitary rep-
resentation ωk of sl(2,R). Similarly as for Ωk, we may describe this representation as

ωk(p+) = Span{E}, ωk(kC) = Span{H}, ωk(p−) = Span{F}.

Here k = so(2), the Lie algebra of the compact group SO(2,R).
For h ∈ G, denote by π(h) the action of G on S (RN )

π(h)f(x) = f(h−1x).

The actions of G and sl(2,R) on S (RN ) commute.
To investigate the structure of the representation ωk, note that for a polynomial

p ∈ P(RN )

eν‖x‖
2
p(−Tξ(k))e−ν‖x‖2 = p(2ν〈ξ, ·〉 − Tξ(k)), for ν ∈ R.

This follows from the product rule (2.1). In particular, if p(x) =
∑N

j=1 x
2
j , we obtain

eν‖x‖
2
∆ke

−ν‖x‖2 = 4‖x‖2 + ∆k − 4νHk, for ν ∈ R.
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Thus, we may rewrite the sl(2)-triple {E,F,H} as

E = −1
8
e‖x‖

2
∆ke

−‖x‖2 ,(3.22)

F =
1
8
e−‖x‖

2
∆ke

‖x‖2 ,(3.23)

H = e−‖x‖
2
(
− ∆k

4
+ Hk

)
e‖x‖

2
.(3.24)

Next we shall investigate the lowest weight modules for the sl(2)-triple {E,F,H}.
According to (3.23), the kernel of F consists of functions of the form e−‖x‖

2
h(x) where h

is harmonic, i.e. ∆kh = 0. Now by (3.24), we get H(e−‖x‖
2
h(x)) = e−‖x‖

2
Hkh(x). Thus,

e−‖x‖
2
h(x) is an eigenvector for H if and only if h is a homogeneous polynomial. In

conclusion, h is a harmonic homogeneous polynomial. Further, if h has degree m, then

H
(
e−‖x‖

2
h(x)

)
= (m+

N

2
+ γk)e−‖x‖

2
h(x).

Henceforth, for m ∈ N, we set Hm(k) to be the space of harmonic homogeneous poly-
nomials on RN of degree m.

On the other hand, the vectors vs := Es
(
e−‖x‖

2
hm(x)

)
, with s ∈ N, are eigenvectors for

H with eigenvalues N/2+γk +m+2s. Further, the vectors vs form an orthonormal basis
for the space of the representation. Denote by WN/2+γk+m the sl(2,R)-representation
with lowest weight N/2 + γk +m. Moreover, for ψ ∈ S (R+) and hm ∈ Hm(k), one can
check that

Hk

(
hm(x)ψ(‖x‖2)

)
=

{
(m+N/2 + γk)ψ(‖x‖2) + 2‖x‖2ψ′(‖x‖2)

}
hm(x),

∆k

(
hm(x)ψ(‖x‖2)

)
= 4

{
‖x‖2ψ′′(‖x‖2) + (m+N/2 + γk)ψ′(‖x‖2)

}
hm(x).

Thus, for every s ∈ N, Es leaves the set I hm := {ψ(‖ · ‖2)hm | ψ ∈ S (R+)} invariant.
In particular, the vectors vs belong to the space e−‖x‖

2
P(RN ), which is dense in S (RN ).

We summarize the consequences of the above computations.

Theorem 3.10. Assume that k ∈ K + and N ≥ 1. Let k = so(2), as before.

(i) The direct sum
∑⊕

m∈Z+
Hm(k) · I (RN ), where I (RN ) denotes the space of

O(N)-invariant Schwartz functions on RN , is dense in S (RN ).
(ii) As a G× sl(2,R)-module, the G× k-finite vectors in the Schwartz space admit the

following multiplicity-free decomposition

S (RN )G×k =
⊕

m∈Z+

H̃m(k)⊗Wm+N
2

+γk
,

where Wm+N
2

+γk
is the sl(2,R)-representation of lowest weight m+ N

2 +γk, and H̃m(k) :=

e−‖x‖
2
Hm(k). The summands are mutually orthogonal with respect to the inner product

on L2(RN , υk(x)dx). The representation Wm+N
2

+γk
integrates to an irreducible unitary

representation of the universal covering ˜SL(2,R).

Remark 3.11. The decomposition in (ii) could just as well be formulated for L2(RN , υk(x)dx)
as for the Schwartz space.

The following is then immediate.
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Corollary 3.12. Under the action of sl(2,R), the k-finite vectors in the Schwartz space
S (RN ) decompose as

S (RN )k =
⊕

m∈Z+

dim(H̃m(k))Wm+N
2

+γk
,

where dim(H̃m(k)) =
(
m+N − 1
N − 1

)
−

(
m+N − 3
N − 1

)
. If N > 1, dim(H̃m(k)) is

always nonzero, but if N = 1, it is zero for m ≥ 2.

Clearly now the Claim 3.9 holds, since the spectrum of ωk(k) (or its dual) acting on
S (RN+1) (or S ′(RN+1)) is (N + 1)/2 + γk + Z+, whilst the spectrum of ωk(k) (or its
dual) in finite dimensional modules is contained in Z. Thus, the following is proved.

Theorem 3.13. The strict Huygens principle cannot hold when

N + 1
2

+ γk 6∈ Z.

The above theorem leaves the likelihood that the modified wave equation may satisfies
Huygens’ principle when (N + 1)/2 + γk ∈ Z.

Using Proposition 3.5(iii) and Proposition 3.6(iii), we have
{ N∑

`=1

x`∂` + t∂t

}
P ij

k = (1 + j − i)P ij
k ,{ N∑

`=1

x`∂` + t∂t

}
DkF (P ij

k ) = (2γk +N + i− j)DkF (P ij
k ),

i, j = 1, 2,

and therefore
HN,1P

ij
k = −

(
N + 1

2
+ γk + i− j − 1

)
P ij

k ,

HN,1DkF (P ij
k ) =

(
N + 1

2
+ γk + i− j − 1

)
DkF (P ij

k ),
i, j = 1, 2.

Thus, if we assume (N − 1)/2+γk + i− j ∈ N, with i, j = 1, 2, and keeping in mind that

FN,1 · P ij
k = 0 and EN,1 ·DkF (P ij

k ) = 0,

we can conclude that each distribution P ij
k , with i, j = 1, 2, generates a finite-dimensional

Ω∗
k(sl(2,R)) on S ′(RN+1) of highest weight (N − 1)/2 + γk + i− j. It is worthwhile to

recall that for a finite-dimensional representation V of SL(2,R), the operator F(dim V−1)
N,1

converts a highest weight vector to a lowest weight, up to a constant [20, 46]. We now
summarize all the above computations and discussions.

Proposition 3.14. Under the assumption

(3.25)
N − 1

2
+ γk + i− j ∈ N,

the tempered distribution P ij
k generates an sl(2,R)-module of dimension

di,j(k) =
N − 1

2
+ γk + i− j + 1, i, j = 1, 2,
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with highest weight vector DkF (P ij
k ) of highest weight

(
N−1

2 + γk + i− j
)
. Further, for

each i and j, there exists a constant αi,j such that

P ij
k = αi,jF

di,j(k)−1
N,1 ·DkF (P ij

k ),

which is equivalent to

DkF (P ij
k ) = (−1)(N−1)/2+γkαi,jE

di,j(k)−1
N,1 · P ij

k .

By taking into account the condition (3.25) for both P 11
k and P 12

k , we obtain:

Theorem 3.15. (Strict Huygens’ Principle) Assume that k ∈ K + and N ≥ 1. For a
given x ∈ RN , the solution uk(x, t) to the Cauchy problem (3.1) depends only on the
values of τx(k)f(y) and τx(k)g(y) (and their derivatives) for ‖y‖ = |t| if and only if

N − 3
2

+ γk ∈ N.

Remark 3.16. By now one can see that the representation theory of the Lie algebra
sl(2,R) can be used as a crucial (and surprising) tool to investigate problems in har-
monic analysis. The paper [9] contains two other applications of the representation ωk

to analysis. The first application deals with a Bochner-type formula for the Dunkl trans-
form. The second application releases the connection between the Fourier analysis on an
arbitrary flat symmetric space p and the Dunkl theory on a maximal abelian subspace a

of p. In particular, we show how the Bessel function F (k, x, y) := 1
|W |

∑
w∈W Ek(wx, y)

is connected to the restriction of the spherical functions on p to a. Here W denotes the
Weyl group associated with a. This latter fact was proved earlier by de Jeu [30], using
a different approach. The basis for all of these applications is that the Dunkl transform
belongs to the integrated form of our metaplectic-type representation.

Now, let us consider the following Cauchy problem
(3.26)

∆kuk(x, t) = ∂ttuk(x, t), uk(x, 0) = f(x), ∂tuk(x, 0) = g(x), f, g ∈ C∞
R (RN ),

where C∞
R (RN ) stands for the set of smooth functions with support contained in the

closed ball of radius R > 0 about the origin. In these circumstances, Theorem 3.15
reads:

Theorem 3.17. Assume that k ∈ K + and N ≥ 1. For all possible initial data f, g ∈
C∞

R (RN ), the support of the solution uk(x, t) to the Cauchy problem (3.26) is contained
in the conical shell

(3.27) C =
{
(x, t) ∈ RN × R | |t| −R ≤ ‖x‖ ≤ |t|+R

}
if and only if

(N − 3)/2 + γk ∈ N.
The shell C is the union

(3.28)
⋃

‖y‖≤R

Cy

where Cy is the light cone

Cy =
{
(x, t) ∈ RN × R | ‖x− y‖ = |t|

}
.
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We start with the proof of the right hand side inequality in (3.27). Recall that
Dk(τy(k)f)(ξ) = Ek(y,−iξ)Dk(f)(ξ).Using the fact that |Ek(y,−iξ)| ≤

√
|G|e‖y‖ ‖ Im(ξ)‖,

and the Paley-Wiener Theorem 2.5(i) for the function f, we deduce that for each M ∈ N
there exists a constant αM such that the entire function ξ 7→ Dk(τy(k)f)(ξ) satisfies

|Dk(τy(k)f)(ξ)| ≤ αM (1 + ‖ξ‖)−Me‖Im(ξ)‖(R+‖y‖).

Thus, τy(k)f is supported in the closed ball of radius R+‖y‖ about the origin. Similarly
for τy(k)g. In view of Theorem 3.3, we conclude that for all k ∈ K + and N ≥ 1, the
support of the solution uk(x, t) to (3.26) is contained in the set { (x, t) | ‖x‖ ≤ R+ |t| } .
Next, we will prove the left hand side inequality in (3.27), which holds only if (N −
3)/2 + γk ∈ N. By Theorem 3.15, the solution uk(0, t) depends only the values of f(y)
and g(y) for ‖y‖ = |t|. That is

(3.29) uk(0, t) = 0 for |t| > R.

We write τ∨y (k)f(x) for τy(k)f(−x). If k ≡ 0, then τ∨y (0)f(x) = f(y+x). One can check
that τ∨y (k) commutes with ∆k−∂tt. Thus, if uk(x, t) is a solution to the Cauchy problem
(3.26) with the Cauchy data (f, g), then τ∨y (k)uk(x, t) solves (3.26) with initial data
(τ∨y (k)f, τ∨y (k)g). Since τ∨y (k)f and τ∨y (k)g have support contained in B(0, R+ ‖y‖),
(3.29) implies that τ∨y (k)uk(0, t) = 0 for |t| > R+ ‖y‖, i.e.

uk(y, t) = 0 for |t| > R+ ‖y‖.
Finally, the set (3.27) coincides with the union (3.28) since: if (x, t) ∈ Cy with ‖y‖ ≤ R,
then ‖x − y‖ = |t| so ‖x‖ ≤ ‖x − y‖ + ‖y‖ ≤ |t| + R and |t| = ‖x − y‖ ≤ ‖x‖ + R,
implies (3.27). Conversely, if (x, t) satisfies (3.27), then (x, t) ∈ Cy with y = x−|t| x

‖x‖ =
x
‖x‖(‖x‖ − |t|) which has norm less than or equal to R.

However, we can prove Theorem 3.17 by using a different approach involving only the
Paley-Wiener Theorem 2.5(i). We shall sketch this approach at the end of this section,
and its details will be illustrated in the next section to prove the principle of energy
equipartition.

Now, let us go back to the Cauchy problem (3.1) where the Cauchy data (f, g) ∈
S (RN ) × S (RN ). It is natural to think about some connection between solutions to
wave equations and spherical mean type operators. As in the classical case, we shall
express the solution uk to (3.1) in terms of what is commonly called the Dunkl-type
spherical mean operator.

In [34], the authors defined the Dunkl-type spherical mean operator f 7→ Mf on
C∞(RN ) by

Mf (x, r) :=
1
dk

∫
SN−1

τx(k)f(ry)υk(y)dω(y), x ∈ RN , r ≥ 0,

where dk :=
∫
SN−1 υk(x)dω(x). According to [38, Theorem 4.1], there exists a unique

compactly supported probability measure σk
x,r such that

Mf (x, r) =
∫

RN

f(ξ)dσk
x,r(ξ),

and
supp(σk

x,r) ⊆
⋃
h∈G

{ξ ∈ RN | ‖ξ − hx‖ ≤ r}.
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A sharper statement on the support of σk
x,r is given in [38, Corollary 5.2]

(3.30) supp(σk
x,r) ⊆ {ξ ∈ RN | ‖ξ‖ ≥

∣∣‖x‖ − r
∣∣}.

Before expressing the solution uk in terms of the spherical mean operator, let us recall
few known facts about the Riemann-Liouville distributions on the real line [17].

Let Λ = {λ ∈ C | Re(λ) > 0}. Consider the locally integrable function on R defined
for λ ∈ C by

xλ−1
+ :=

{
xλ−1 x > 0,
0 x ≤ 0.

For ψ ∈ D(R), the corresponding regular distribution

〈xλ−1
+ , ψ〉 =

∫ ∞

0
xλ−1ψ(x)dx

is a holomorphic D ′(R)-valued function with respect to the variable λ ∈ Λ. It admits an
analytic continuation into the domain Λ′ = {λ ∈ C | λ 6= 0, 1, 2, 3, . . .}, where

Resλ→m xλ−1
+ =

(−1)m

m!
δ(m)(x), for m = 0, 1, 2, 3, . . . .

To eliminate these poles, one can divide xλ−1
+ by Γ(λ). Therefore, we may define an

entire D ′(R)-valued function by

C 3 λ 7→ Sλ(x) :=
xλ−1

+

Γ(λ)
∈ D ′(R).

This distribution is nowadays known as the Riemann-Liouville distribution. In particular

S−m(x) = δ(m)(x), for all m = 0, 1, 2, 3, . . .(3.31)
d

dx
Sλ(x) = Sλ−1(x).

Next, we turn our attention to the relation between uk and the spherical mean oper-
ator. By Theorem 3.1, we know that

(3.32) uk(x, t) =
∫

RN

P 11
k,t(y)τx(k)f(y)υk(y)dy +

∫
RN

P 12
k,t(y)τx(k)g(y)υk(y)dy.

Since P ij
k,−t = (−1)i−jP ij

k,t, we shall present proofs valid for t > 0, and make the suitably
altered statements for t ∈ R without further proof.

By [40], if F (x) = F0(‖x‖) where F0 : R+ → C, then DkF (ξ) = Hγk+N/2−1F0(‖ξ‖),
where Hα denotes the Hankel transform defined by

HαF0(r) :=
1

2αΓ(α+ 1)

∫ ∞

0
F0(s)

Jα(rs)
(rs)α

s2α+1ds.
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Here Jα denotes the Bessel function of the first kind. Thus, in terms of the spherical
mean operator, we may rewrite (3.32) as

uk(x, t) =
∫ ∞

0
r2γk+N−1

∫
SN−1

P 11
k,t(ry

′)τx(k)f(ry′)υk(y′)dω(y′)dr

+
∫ ∞

0
r2γk+N−1

∫
SN−1

P 12
k,t(ry

′)τx(k)g(ry′)υk(y′)dω(y′)dr

= dk

∫ ∞

0
r2γk+N−1Hγk+N/2−1Ft(r)Mf (x, r)dr

+dk

∫ ∞

0
r2γk+N−1Hγk+N/2−1Gt(r)Mg(x, r)dr,

where Ft(s) = cos(ts) and Gt(s) = sin(ts)/s. On the other hand, we have

HαFt(r) =
1

2αΓ(α+ 1)rα

∫ ∞

0
cos(ts)Jα(rs)sα+1ds

=


2
√
π

Γ(α+ 1)
t
(t2 − r2)−α− 3

2

Γ(−α− 1
2)

if 0 < r < t

0 if 0 < t < r

(cf. [16, p. 32, formula (4)])

=
2
√
π

Γ(α+ 1)
tS−α− 1

2
(t2 − r2)

=
√
π

Γ(α+ 1)
d

dt

(
S−α+ 1

2
(t2 − r2)

)
.

Similarly for Gt, we have

HαGt(r) =


√
π

Γ(α+ 1)
(t2 − r2)−α− 1

2

Γ(−α+ 1
2)

if 0 < r < t

0 if 0 < t < r

(cf. [16, p. 36, formula (28)])

=
√
π

Γ(α+ 1)
S−α+ 1

2
(t2 − r2).

We summarize the above computations.

Theorem 3.18. For all (x, t) ∈ RN × R

uk(x, t) = dk

√
π

Γ(γk +N/2)

∫ |t|

0
r2γk+N−1 d

dt

(
S−γk−N−3

2
(t2 − r2)

)
Mf (x, r)dr

+sign(t)dk

√
π

Γ(γk +N/2)

∫ |t|

0
r2γk+N−1S−γk−N−3

2
(t2 − r2)Mg(x, r)dr.

Keeping in mind Rösler’s results on the support of the measure σk
x,r associated with

Mf and Mg, Theorem 3.3 implies the following:

Theorem 3.19. (Weak Huygens’ Principle) Let k ∈ K +, N ≥ 1, and let a point x ∈ RN

be given. The solution uk(x, t) to the Cauchy problem (3.1) depends only on the values
of f(y) and g(y) in the union⋃

h∈G

{
y ∈ RN | ‖y − hx‖ ≤ |t|

}
.
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A slightly weaker variant of the above theorem says:

Corollary 3.20. Assume that k ∈ K + and N ≥ 1. For a given x ∈ RN , the solution
uk(x, t) to the Cauchy problem (3.1) depends only on the values of f(y) and g(y) for
‖x‖ − |t| ≤ ‖y‖ ≤ ‖x‖+ |t|.

Similarly, by (3.30), Theorem 3.15 yields:

Theorem 3.21. (Strict Huygens’ Principle) Let k ∈ K + and N ≥ 1. The solution
uk(x, t) to the Cauchy problem (3.1) depends only on the values of f(y) and g(y) in the
set {

y ∈ RN | ‖y‖ ≥
∣∣‖x‖ − |t|

∣∣}
if and only if

N − 3
2

+ γk ∈ N.

Remark 3.22. (i) Note that, if the initial data (f, g) are supported inside a closed ball of
radius R about the origin, then, by means of Theorem 3.21, we recover Theorem 3.17.

(ii) Let G1 and G2 be two finite reflection groups on RN and RM , with root systems
R1 and R2, respectively. Set k1 and k2 to be the multiplicity functions on R1 and R2,
respectively. Consider the generalized wave equation

∆x
k1
uk1,k2(x, y) = ∆y

k2
uk1,k2(x, y) (x, y) ∈ RN × RM ,

where ∆k1 (resp. ∆k2) denotes the Dunkl-Laplacian operator associated with G1 (resp.
G2). Here the superscript indicates the relevant variable. If N−M

2 + γk1 − γk2 − 1 ∈ N,
then there exists a distribution T on RN ×RM with singular support, i.e. T is supported
on the set {(x, y) ∈ RN × RM |

∑N
i=1 x

2
i =

∑M
i=1 y

2
i }, so that (∆k1 −∆k2)T = δ.

We close this section by making the following comment. As we mentioned before, we
can prove Theorem 3.17 using another method involving only the Paley-Wiener Theorem
2.5(i). We sketch this approach and its details will be illustrated in the next section to
prove the principle of energy equipartition.

Using (3.4) and the inversion formula of the Dunkl transform, we may rewrite uk as

(3.33) uk(x, t) = c−2
k

∫ ∞

0

{
Φk(r, x) cos(tr) +

Ψk(r, x)
r

sin(tr)
}
dr,

where
Φk(r, x) = r2γk+N−1

∫
SN−1

Dkf(rξ′)Ek(ix, rξ′)υk(ξ′)dω(ξ′),

Ψk(r, x) = r2γk+N−1

∫
SN−1

Dkg(rξ′)Ek(ix, rξ′)υk(ξ′)dω(ξ′).

If (N − 1)/2 + γk ∈ N, then, for fixed x, the integral formulas for Φk(r, x) and Ψk(r, x)
continue analytically to even functions for r ∈ C. In these circumstances, (3.33) becomes

uk(x, t) =
c−2
k

2

∫
R

{
Φk(r, x) + sign(t)

Ψk(r, x)
ir

}
eir|t|dr.

Let r = a+ ib ∈ C. The holomorphic extensions Φk and Ψk satisfy

|Φk(r, x)| ≤ c0(k)|r|2γk+N−1e|b|‖x‖ sup
ξ′∈SN−1

|Dkf(rξ′)|,∣∣∣Ψk(r, x)
r

∣∣∣ ≤ c0(k)|r|2γk+N−2e|b|‖x‖ sup
ξ′∈SN−1

|Dkg(rξ′)|.
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If (N − 1)/2 + γk = 0, the last estimate gives a problem at r = 0. Thus we shall exclude
this case, and the condition (N − 1)/2 + γk ∈ N becomes (N − 3)/2 + γk ∈ N. Indeed,
the condition (N − 1)/2 + γk = 0 is equivalent to N = 1 and k ≡ 0, which corresponds
to the rank one classical wave equation, where the strict Huygens principle fails.

Applying the Paley-Wiener theorem to the Cauchy data (f, g), we conclude that, for
fixed s > 0, there exists a constant c depending only on N , k and the Cauchy data, such
that

|uk(x, t)| ≤ ce−s(|t|−‖x‖−R), for all (x, t) ∈ RN × R.

Now the left hand side inequality in (3.27) is rather clear.

4. Energy theorems

Energy is defined in physics as the ability to do work. “Kinetic energy” corresponds
to energy in the form of motion, and “potential energy” corresponds to energy in a
form stored for later use. These are defined below for our wave equation (we shall not
comment on any physical significance).

In this section, we show that, under a condition involving k and N, the difference
between the kinetic and potential energies of the solution to (3.1) decays like e−2|t|s,
for fixed s > 0. Thus, the energy equipartition theorem holds. The equipartition says
when |t| is large, the kinetic and potential energies are both equal to the half of the
(t-independent) total energy.

For the time being, we only assume k ∈ K + and N ≥ 1.
Let uk(x, t) be the solution to the Cauchy problem (3.1). Define the kinetic and

potential energies by

Kk[uk](t) :=
1
2

∫
RN

|∂tuk(x, t)|2υk(x)dx,

Pk[uk](t) :=
1
2

∫
RN

N∑
j=1

|T x
j (k)uk(x, t)|2υk(x)dx.

Here the superscript x denotes the relevant variable. The total energy of uk is by
definition Ek[uk](t) := Kk[uk](t) + Pk[uk](t).

Before investigate the difference between the kinetic and potential energies, we notice
that Ek[uk](t) is a conserved quantity, i.e. Ek[uk](t) is independent of t. To see this, we
express the total energy in terms of Dk(uk(·, t))(ξ). Since

Dk(T x
j (k)uk(·, t))(ξ) = −iξjDk(uk(·, t))(ξ),

by means of the Plancherel formula, we obtain

Ek[uk](t) =
c−2
k

2

∫
RN

{
|∂tDk(uk(·, t))(ξ)|2 + ‖ξ‖2|Dk(uk(·, t))(ξ)|2

}
υk(ξ)dξ.

On the other hand, since

Dk(uk(·, t))(ξ) = cos(t‖ξ‖)Dkf(ξ) +
sin(t‖ξ‖)
‖ξ‖

Dkg(ξ), for all t ∈ R,
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we compute

|Dk(uk(·, t))(ξ)|2 = cos2(t‖ξ‖)|Dkf(ξ)|2 +
sin2(t‖ξ‖)
‖ξ‖2

|Dkg(ξ)|2(4.1)

+2
cos(t‖ξ‖) sin(t‖ξ‖)

‖ξ‖
Re

(
Dkf(ξ)Dkg(ξ)

)
,

and

|∂tDk(uk(·, t))(ξ)|2 = cos2(t‖ξ‖)|Dkg(ξ)|2 + ‖ξ‖2sin2(t‖ξ‖)|Dkf(ξ)|2(4.2)

−2‖ξ‖cos(t‖ξ‖) sin(t‖ξ‖)Re
(
Dkf(ξ)Dkg(ξ)

)
.

Thus we have

Ek[uk](t) =
c−2
k

2

∫
RN

{
‖ξ‖2|Dkf(ξ)|2 + |Dkg(ξ)|2

}
υk(ξ)dξ

=
1
2

∫
RN

{ N∑
j=1

|T x
j (k)f(x)|2 + |g(x)|2

}
υk(x)dx.

Hence, we established the following theorem.

Theorem 4.1. (Conservation of energy) Let k ∈ K +, N ≥ 1 and assume that the
initial data f, g ∈ S (RN ). Then the total energy Ek[uk] is finite and independent of t.

Consider now the mater of the energy equipartition. Using (4.2) and repeating the
argument used above to prove the conservation of Ek[uk], we may rewrite the kinetic
energy as

Kk[uk](t) =
c−2
k

4
‖Dk(g)‖2

k +
c−2
k

4
‖〈·, ·〉1/2Dk(f)‖2

k

+
c−2
k

4

∫
RN

[
|Dkg(ξ)|2 − ‖ξ‖2|Dkf(ξ)|2

]
cos(2t‖ξ‖)υk(ξ)dξ

−
c−2
k

4

∫
RN

[
Dkf(ξ)Dkg(ξ) + Dkg(ξ)Dkf(ξ)

]
‖ξ‖ sin(2t‖ξ‖)υk(ξ)dξ,

using the familiar trigonometric identities for double angles. Here ‖·‖k denotes the norm
in L2(RN , υk(x)dx). Similarly, by (4.1) we obtain

Pk[uk](t) =
c−2
k

4
‖Dk(g)‖2

k +
c−2
k

4
‖〈·, ·〉1/2Dk(f)‖2

k

+
c−2
k

4

∫
RN

[
‖ξ‖2|Dkf(ξ)|2 − |Dkg(ξ)|2

]
cos(2t‖ξ‖)υk(ξ)dξ

+
c−2
k

4

∫
RN

[
Dkf(ξ)Dkg(ξ) + Dkg(ξ)Dkf(ξ)

]
‖ξ‖ sin(2t‖ξ‖)υk(ξ)dξ.

Now the difference between the kinetic and potential energies is given by

Kk[uk](t)−Pk[uk](t) =
c−2
k

2

∫
RN

[
|Dkg(ξ)|2 − ‖ξ‖2|Dkf(ξ)|2

]
cos(2t‖ξ‖)υk(ξ)dξ

−
c−2
k

2

∫
RN

[
Dkf(ξ)Dkg(ξ) + Dkg(ξ)Dkf(ξ)

]
‖ξ‖ sin(2t‖ξ‖)υk(ξ)dξ.(4.3)
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Using the spherical-polar coordinates ξ = rξ′, we have

Kk[uk](t)−Pk[uk](t) =
c−2
k

2

∫ ∞

0

{
Φk(r) cos(2tr)−Ψk(r)r sin(2tr)

}
dr,

where

Φk(r) = r2γk+N−1

∫
SN−1

{
|Dkg(rξ′)|2 − r2|Dkf(rξ′)|2

}
υk(ξ′)dω(ξ′)

Ψk(r) = r2γk+N−1

∫
SN−1

{
Dkf(rξ′)Dkg(rξ′) + Dkf(rξ′)Dkg(rξ′)

}
υk(ξ′)dω(ξ′).

Henceforth, we will choose to work with solutions to (3.1) where the Cauchy data
(f, g) belong to C∞(RN ) and supported in the closed ball of radius R > 0 about the
origin. Further, by Remark 3.4, we shall often presenting proofs valid for t > 0, and
formulate the suitably altered statement for all t ∈ R, without comment.

Since Ek(z, w) = Ek(z, w), it follows that ξ 7→ Dkf(−ξ) is the Dunkl transform
of f. Thus Dkf(ξ), similarly Dkg(ξ), belongs to the Paley-Wiener space HR(CN ). In
particular, they can be extended to entire analytic functions on CN . Since υk(ξ′)dω(ξ′)
is (−1)-invariant, the following lemma holds.

Lemma 4.2. If N−1
2 + γk ∈ N, the functions Φk and Ψk continue analytically to even

functions of r.

In the light of the above lemma, we may rewrite Kk[uk](t)−Pk[uk](t) as

(4.4)
c−2
k

4

∫
R
{Φk(r) + irΨk(r)} e2itrdr.

Further, using the Paley-Wiener Theorem 2.5(i), and since SN−1 is compact, we conclude
that for any M ∈ N there exist two constants αM and βM such that

(4.5)
|Φk(z)| ≤ c0(N, k)αM (1 + |z|)−Me2R|Im(z)|,

|zΨk(z)| ≤ c0(N, k)βM (1 + |z|)−Me2R|Im(z)|,

with z ∈ C.
Fix s > 0. To find a bound for Kk[uk](t) − Pk[uk](t), we shift the contour in the

integral (4.4) from R to R + is. This idea was inspired by [2, 3]. Thus

Kk[uk](t)−Pk[uk](t) =
c−2
k

4

∫
R
{Φk(r) + irΨk(r)} e2irtdr

= c−2
k

e−2ts

4

∫
R
{Φk(r + is) + i(r + is)Ψk(r + is)} e2irtdr.

In view of (4.5), there exists a constant χM (N, k) such that∣∣∣Kk[uk](t)−Pk[uk](t)
∣∣∣ ≤ χM (N, k)e−2tse2Rs

∫
R
(1 + |r|)−Mdr,

and the following holds:

Theorem 4.3. For k ∈ K + and N ≥ 1, assume that
N − 1

2
+ γk ∈ N.
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Let uk be the solution to the Cauchy problem (3.1), where the Cauchy data (f,g) are
supported in the closed ball of radius R > 0 about the origin. Fix s > 0. Then there
exists a constant C depending on N , k and (f, g) but not on s, such that∣∣∣Kk[uk](t)−Pk[uk](t)

∣∣∣ ≤ Ce−2s(|t|−R), for all t ∈ R.

The following is then immediate.

Theorem 4.4. (Energy Equipartition Theorem) Under the same assumptions as in the
previous theorem, we have

Kk[uk](t) = Pk[uk](t) =
Ek[uk](R)

2
for |t| ≥ R.

We close this section by making two comments. First, in the theorem above we did
not exclude the case N = 1 if k ≡ 0, since the classical wave equation on R× R has an
equipartitioned energy.

Second, it is possible to prove the energy equipartition theorem when the Cauchy data
(f, g) are two Schwartz functions on RN . Actually, under the same assumptions as in
Theorem 4.1, we have

lim
|t|→∞

Kk[uk](t) = lim
|t|→∞

Pk[uk](t) =
Ek[uk](0)

2
.

To see this one needs to show that the integrals in (4.3) tend to zero as |t| → ∞. This
follows by means of the classical Riemann-Lebesgue lemma for the Euclidean Fourier
sine and cosine transforms. In the classical case k ≡ 0, the two limit formulas above can
be found in [4].
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[2] T. Branson and G. Ólafsson, Equipartition of energy for waves in symmetric space, J. Funct. Anal.
97 (1991), 403–416
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[45] K. Trimèche, Paley-Wiener theorems for the Dunkl transform and Dunkl translation operators,
Integral Transform. Spec. Funct. 13 (2002), 17–38
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