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Summary The aim of this work is to introduce an adaptive strat-
egy to monitor the rate of convergence of a Newton-like method in
numerical shape optimization.

Such superlinear iterative algorithm are often computationally in-
tensive and the rate of convergence depends on how accurate the
numerical solution of the state equation is.

The model concerns a cost function depending on the unknown
domain Ω, and the solution of an integral equation.

Key words Shape Optimization, Newton-like algorithm, a poste-
riori error, adaptability

1 Introduction

Shape optimization problems are characterized by a cost function
and a partial differential equation (P.D.E.), the state equation, both
depending on the geometrical domain.

Typically we want to compute a shape Ω∗ such that

Ω∗ = argmin{F (Ω,ϕΩ) : Ω ∈ O} (1)

The set of admissible domains O is characterized by geometrical and
regularity constraints. For analytical calculus we consider domains of
class C2.

The scalar potential ϕΩ is the solution in a Sobolev space H of an
elliptic problem:

a(ϕΩ , ψ) = (f, ψ) ∀ψ ∈ H (2)
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The function F (Ω,ϕΩ) : O ×H → IR is the cost function.

Numerical solution of this problem involves numerical representa-
tion of the domain, optimization methods and numerical solution of
partial differential equations.

In the discretized finite dimensional shape optimization problem
we consider an open and bounded domain Ω(u) ⊂ IRm with boundary
∂Ω(u) parametrized by a function u ∈ Uad, usually a piecewise linear
discretization of the Ω(u) boundary.

We are interested in solving the following problem, find u∗ ∈ Uad

such that:

j(u∗) ≤ j(u) ∀u ∈ Uad (3)

where j(u) = F (Ω(u), ϕΩ(u)) and ϕΩ(u) is the solution of the state
equation (2) in the domain parametrized by u.

Clearly the solution of the discrete problem must be a good ap-
proximation of the continuous problem solution, that means a domain
discretization adapted to the topological characteristic of the contin-
uous solution and changing during the optimization procedure.

To obtain a superlinear rate of convergence of the shape optimiza-
tion procedure we introduce Newton-like methods. As it is well known
the rate of convergence depends on how accurate is the numerical so-
lution of the state equation, see [2], [3] and [4]. More precisely let us
denote en the error at iteration n in the optimization procedure, then
in an appropriate norm we obtain:

||en+1|| ≤ C1(||en||
2 +∆n||en|| + En) (4)

The terms En and ∆n are related to errors in approximation of the
cost function j shape gradient and shape Hessian.

If ϕh is the numerical solution of the state problem (2) the term En

is related to the error ||ϕΩ(u) −ϕh||L2 . Thanks to a local a posteriori
estimation of ||ϕΩ(u) − ϕh||L2 an adaptive algorithm to obtain mesh
refinements of ∂Ω(u) is derived in order to have superlinear rate of
convergence of the shape optimization Newton-like method.

The model problem concerns a cost function depending on the
perimeter of Ω(u) and the solution of the exterior Dirichlet problem.
The equilibrium shape is shown to be the stationary state of the
total energy under the constraint that the area (the volume in 3-d)
is prescribed.

Numerical results of the adaptive technique applied to the model
problem are analyzed.
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2 Numerical shape optimization

Let the boundary domain Ω(u) ⊂ IR2 with a boundary ∂Ω(u) parame
-trized by a function u ∈ Uad.

The set of admissible solutions Uad is in general a subset of a
function space U , in our case the piecewise linear representation of
the boundary of Ω. The set U is characterized by its topological type
and a constraint. In our case, the area of the domain Ω(u) is given.

The formulation of the numerical shape optimization problem con-
sidered in this paper is the following: find u∗ ∈ Uad such that it
minimise the cost function j(u) = F (Ω(u), ϕΩ(u)).

The scalar potential ϕΩ(u) is the solution in a Sobolev space H of
a elliptic P.D.E. problem in the domain Ω(u);

a(ϕΩ(u), ψ) = l(ψ) ∀ ψ ∈ H (5)

To introduce a Newton-like method we need to consider shape deriva-
tives, that means the derivative of the cost function w.r.t. Ω.

2.1 Shape derivatives

To introduce shape optimization techniques we consider shape deriva-
tives. For different approaches of first derivation techniques with re-
spect to the shape, see [14], [15], [5] , [1].

Let V be a regular vector field (for instance C1(IR2, IR2) with com-
pact support in an open neighborhood of Ω). We consider domain
deformations defined by the mapping:

Tt(V ) : x → x + t V (x) (6)

and we set Ωt = Tt (V ) (Ω). We verify that ∂Ωt = Tt (V ) (∂Ω) for t
small enough (since Dx Tt(x) = I + tDV (x) and thanks to the local
inversion theorem).

Next we denote ϕΩt the solution of the elliptic problem ( 2) when
we replace Ω by Ωt. Then the shape derivative of ϕΩ is given by:

ϕ′
Ω(V ) (x) = lim

t→0

ϕΩt (x) − ϕΩ (x)

t
(7)

This derivative exist if Ω has a Lipchitz boundary.
In the same way we are going to consider the Eulerian shape

derivative F ′(Ω,ϕΩ)(V ) :

F ′(Ω,ϕΩ)(V ) = lim
t→0

F (Ωt, ϕΩt) − F (Ω,ϕΩ)

t
(8)
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See [5] , definition 2.19, page 54 for a definition of the Eulerian shape
derivative. See also [1] and [10] for an analysis of the second order
shape derivative.

2.2 The Newton Lagrange method

To describe the Newton method studied in this paper, we introduce
the Lagrangian, see [7], [8], [9], [11] and [12]:

L(Ω,Λ) = F (Ω,ϕΩ) + Λ
(
m(Ω) −m0

)
(9)

where Λ ∈ IR and Ω ∈ O, the set of admissible domains. A critical
point of the energy F with the assumption that m(Ω)−m0 = 0 is the
first argument of the couple (Ω∗, Λ∗) solution of the following first
order KKT necessary conditions:

D(Ω,Λ) =

(
L′(Ω,Λ)

m(Ω) −m0

)
= 0. (10)

The Newton method to compute an approximation of (Ω∗, Λ∗)
consists of computing a sequence of solutions (Ωk, Λk) of a linear
form of (10). This leads to the following algorithm:





Ω◦, Λ◦ given
(Ωk+1, Λk+1) = (Ωk, Λk) + (δΩk, δΛk)
where (δΩk, δΛk) ∈ O × IR satisfies
D(Ωk, Λk) +H(Ωk, Λk)(δΩk, δΛk) = 0 in L(O, IR) × IR

(11)

where H(Ωk, Λk) is given by:

H(Ωk, Λk) =

(
L′′(Ωk, Λk) m′(Ωk)
m′(Ωk) 0

)

(12)

The computations are carried out for the corresponding discrete for-
mulation of problem (11). The domains Ω under consideration are
characterised by the boundary ∂Ω = Γ . In practice we consider
domains with piecewise linear boundaries.

After discretization we have the following non-linear equation:

D(Ω(u)) = 0 with D : Uh ∈ IRN → IRN (13)

Then the numerical optimization method construct a sequence {uk}k

such that:

H(Ω(uk), Λk) δu
k = −D(Ω(uk)) (14)

uk+1 = uk + δuk (15)
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where H(Ω(uk), Λk) is a discrete version of the Hessian H(Ωk, Λk).
At this step of the procedure the fidelity of the corresponding ap-

proximative output is no assured. Approximation errors in
H(Ω(uk), Λk) and D(Ω(uk)) computation are cumulated with round-
ing errors and numerical errors in the resolution of the linear system
(14).

2.3 Error analysis

Let u∗ the solution of the non linear problem (10) , uk the k-th
theoretical iterate of the discrete optimisation algorithm and ek =
uk − u∗ the theoretical numerical error.

Let ũ
k

be the uk iterate actually computed, including accumulated

rounding errors, see [23]. Let ẽk = ũ
k
− uk the computation error.

Let D̃k (uk) = D(Ω(uk)) +E(uk) the computed approximation of

D(Ω(uk)) and E(uk) the error. Let D̃k (ũ
k
) be the actually computed

approximation of D (Ω(ũ
k
)), including cumulated rounding errors.

Let H̃k(u
k) = H(Ω(uk), Λk) + ∆(uk) the computed approxima-

tion of the hessien H(Ω(uk), Λk) and ∆(uk) the error. Let H̃k(ũ
k
) be

the computed approximation of H(Ω(ũ
k
), Λk), including cumulated

rounding errors.
A first analyse of the error evolution [4] [18] gives:

||ek+1||2 ≤ C1(||e
k||22 +∆k||e

k||2 + Ek) (16)

where Ek and ∆k are the euclidean norm of E (uk) and ∆(uk).
This estimate shows that the rate of convergence of the Newton-

like method are strongly related to the evolution of Ek and ∆k which
are related to the accuracy reached in the state equation numerical
solution.

In fact ũ
k

is the actually computed iterate at the k-th step. Then is
crucial to estimate a relation between || ek+1 ||2 and ||ẽk+1||2. Suppose

that H(Ω(ũ
k
), Λk) and H̃k(ũ

k
) are regular in a neighborhood of the

solution.
If we consider the rounding and numerical error accumulated dur-

ing the (k+1)th step, using the Wilkinson[23] techniques we obtain:

||ẽk+1||2 ≤ (ηk || e
k ||2 + (1 + ηk ) || ek+1 ||2 ) (17)

and

ηk = ||| H̃k (ũ
k
)−1H (Ω(ũ

k
), Λk) − I |||2 (18)
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+
|| H̃k (ũ

k
)−1 (D̃k(ũ

k
) − D(Ω(ũ

k
))) ||2

|| H̃k (ũ
k
)−1 (D(Ω(ũ

k
))) ||2

(19)

where ||| . |||2 is the matrix norm associated to the euclidean vector
norm.

Bounds of the two errors:

||D̃(ũ
k
) − D(ũ

k
) ||2 and ||| H̃k (ũ

k
) − H (Ω( ũ

k
), Λk) |||2 (20)

are related to how accurate is the numerical approximation ϕk of
ϕ

Ω(ũ
k
)
solution of the state equation (5) when Ω = Ω(uk). Then the

control of the error ∆k and Ek are directly related to the knowlege
of a posteriori bound of the error ||ϕk − ϕ

Ω(ũ
k
)
|| in a suitable norm.

This error bound is specific to each problem. We will give an example
in next section.

To monitor the convergence of the algorithm we introduce the
contraction factor [3]:

θk =
|| D̃ (ũ

k+1
) ||2

|| D̃ (ũ
k
) ||2

(21)

If the initial guess u0 is such that θ0 < 1 then, we consider that the
rate of convergence of Newton-like iteration is not sufficiently if:

θk+1 ≥ 2 θ2
k (22)

The adaptative procedure consist in a monitoring step and in a
mesh refinement step. If the inequality (22) is true then we compute
an a posteriori error of the numerical solution of the state equation
and we refine where is necessary.

3 Model Problem

The simplified model of the electro-magnetic shaping problem studied
here concerns the case of a vertical column of liquid metal falling
down into an electro-magnetic field induced by vertical conductors.
We assume the frequency of the imposed current is very high so that
the magnetic field does not penetrate into the metal. In other words
we neglect the skin effect. The electro-magnetic forces are reduced to
the magnetic pressure acting on the interface.

Under suitable assumptions, [16], [17], the equilibrium configura-
tions are given by a local critical point of the following total energy:

F (Ω, ϕΩ) = −
1

2µ0

∫

Ω
|∇ϕΩ |2 + σP (ω) (23)
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where ω = Ωc and ω is a bounded domain. P (ω) is the perimeter of
ω, i.e. the length of ∂ω when ∂ω is regular enough (for instance of
class C1)

P (ω) =

∫

∂ω
dγ, dγ = length measure on ∂ω. (24)

In (23), σ is the boundary tension of the liquid and ϕΩ is solution of:

−∆ϕΩ = µ0j0 in Ω
ϕΩ = 0 on ∂ω

ϕΩ(x) = O(1) as |x| → ∞
(25)

where j0 = (0, 0, j0) denotes the density current vector and µ0 is the
vacuum permeability.

The variational formulation of (23), (24) and (25) consists in con-
sidering the equilibrium domain ω as a stationary point for the total
energy (23), under the constraint that measure of ω is given by m0.

4 Numerical Method

4.1 Discretisation of the problem

We want to evaluate numerically an approximation of the optimal
domain Ω∗ so that the discrete shape first order necessary condition
vanishes for all admissible vector fields. To this end we build a se-
quence of domains ωk, more precisely, we take a sequence of domains
defined by their boundaries Γ k = ∂ωk that converge towards a crit-
ical point. By Γ k, we mean a piecewise linear closed Jordan curve,
that is, a union of finite element Γi, i = 1, ..., n. The nodes of the
curve Γ k are denoted by xi,k, i = 1, ..., n.

At each iteration of the minimizing algoritm the boundary Γ k+1

is obtained by a local perturbation of Γ k.
To each vertex xi,k of Γ k is associated a direction Ẑi,k ∈ IR2.

The vector Ẑi,k is a unitary vector of the same direction than the
bisector of the normal vectors to Γi−1 and Γi. We construct a con-
tinuous piecewise linear vector field Zi,k from Γ k → IR2 such that
Zi,k(xj,k) = δi,jẐ

i,k.
The support of Zi,k is equal to the union of the finite element

where xi,k is a node. At each iteration we compute the following
vector field:

Zk+1(x) =
n∑

i=1

uk+1
i Zi,k(x) (26)
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and the updated boundary Γ k+1 is then given by:

Γ k+1 = {X = x+
n∑

i=1

uk+1
i Zi,k(x);uk+1

i ∈ IR, x ∈ Γ k} (27)

where ūk+1 = (uk+1
1 , · · · .uk+1

n )t ∈ IRn are the unknowns which de-
termine the evolution of the curve Γ k. Then in practice the continu-
ous minimization problem is reduced to a n-dimensional optimization
problem depending on the solution of the state problem. This method
of evolution of the boundary has the important advantage that there
is only one degree of freedom at each node.

4.2 The exterior Dirichlet problem

At each iteration we have to solve the following exterior problem

−∆v(x) = 0 in Ωk

v(x) = −r(x) on ∂ωk = Γ k

|v(x)| = O(1) as |x| → ∞
(28)

Following [6] an integral single layer representation of the solution of
(28) is given by:

v(x) =
−1

2π

∫

Γ k
q(y)ln|x− y|dγ + c (29)

with q(y) ∈ H−1/2(Γ k) and:
∫

Γ k
q(y)dγ = 0 (30)

The constant c = lim|x|→∞ |v(x)|. Then

∂v

∂νx
(x) =

−1

2π

∫

Γ k
q(y)

∂ln|x− y|

∂νx
dγ +

1

2
q(x) if x ∈ Γ (31)

Here the unknown is the density q(y) and we compute it using the
boundary condition in a weak formulation. We seek q(y) ∈ H−1/2(Γ k)
solution of the following problem:

−1

2π

∫

Γ k
g(x)

∫

Γ k
q(y)ln|x− y|dγdγ + c

∫

Γ k
g(x)dγ =

−

∫

Γ k
r(x)g(x)dγ

(32)

and ∫

Γ k
q(x)dγ = 0 (33)
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for all g ∈ H−1/2(Γ k).
In numerical calculations we consider a piecewise constant approxi-
mation qh(x) of q(x)

qh(x) =
n∑

i=1

qiei(x) (34)

where ei(x) = 1 if x ∈ Γi = [xi,k, xi+1,k] and zero elsewhere.
Then we obtain a linear system:

Aq = b (35)

where

ai,j =
−1

2π

∫

Γi

∫

Γj

ln|x− y|dγdγ i, j = 1, ..., n (36)

ai,j =

∫

Γj

dγ j = 1, ..., n and i = n+ 1 (37)

(q)j = qj j = 1, ..., n and qn+1 = c (38)

Remark 1. The linear system (35) is symmetric and non sparse, then
we use a LDLt decomposition of A. The numerical approximation of
the normal derivative in (31) is computed by Gauss quadrature.

Remark 2. The approximation of the normal derivative
∂v

∂νe
at xl ∈ Γl

is given by:

∂vh

∂νe
(xl) =

−1

2π

n∑

i=1,i6=l

qi

n∑

m=1

qm
∂ln|xl − xi(sm)|

∂νe
+

1

2
ql (39)

Thus the computation of
∂vh

∂νl
(xl) needs O(n) floating point oper-

ations.
Remark 3. If q is the solution of the system (32), (33) and q is solution
of (35) with piecewise constant approximation we have the following
error bounds, see [13]:

||q − qh||H−1/2(Γ ) ≤ C1h||q||H1(Γ ) (40)

and

||
∂v

∂ν
−
∂vh

∂ν
||

H−1/2(Γ )
≤ C2h||q||H1(Γ ) (41)
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4.3 Adaptive method for the mesh refinement

In this subsection we introduce an a posteriori error estimate and
an adaptive mesh-refinement procedure. Pioneer work of [19], [20],
[21] and [22] gives a posteriori error estimate for finite element and
boundary element methods.

Let h be the maximum of the local mesh size hi of the finite ele-
ment Γi, discretization of Γ . If q belongs to Hτ then for the Galerkin
scheme(32) we have the a priori error estimate:

||q − qh||
H−

1

2 (Γ )
≤ Chl+ 1

2 ||q||Hl(Γ ) (42)

with l = min{τ, ν + 1}, ν = 0, 1.

The residual Rh is given by :

Rh(x) = r(x) −
1

2π

∫

Γ
qh(x) ln |x − y | dγ + c

= r(x) −
1

2π

n∑

i=1

∫

Γi

qh(x) ln |x − y | dγ + c
(43)

then we have the following a posteriori error estimate:

||q − qh||
H−

1

2 (Γ )
≤ C(

n∑

i=1

hi||
∂Rh

∂s
||2L2(Γi)

)
1

2 (44)

where ∂
∂s is the differentiation with respect to the arc length.

An adaptive method for mesh refinement of Γ is derived from a
local interpretation of (44),see [20] and [22]. Given a uniform mesh
after a few iterations, we compute the residual Rh and we refine the
i-th path of the mesh if

hi > θ(hi+1 + hi−1), 0.5 < θ < 1 (45)

or if

hi||
∂Rh

∂s
||2L2(Γi)

≥ 0.5 max
k=1,n

hk||
∂Rh

∂s
||2L2(Γk) (46)

The norm are computed by numerical integration of the analytical
computed derivative of the residual using a Gaussian quadrature.
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4.4 The discrete Newton-like method

The Lagrangian of problem (23), (24) has the following form:

L(ω,Λ) = −
1

2µ0

∫

Ω
|∇ϕΩ |

2dx+ σ

∫

∂ω
dγ + Λ(

∫

ω
dx−m0). (47)

Let V and W be two regular vector field (for instance C1(IR2, IR2)
with compact support in an open neighborhood ofΩ). Then we obtain
the following first order necessary condition:

1

2µ0

∫

∂ω
|∇ϕ|2 (V · n) dγ + σ

∫

∂ω
C (V · n)dγ + Λ

∫

∂ω
(V · n)dγ = 0

(48)

∫

ω
dx−m0 = 0 (49)

The second order derivatives of the Lagrangian lead to the follow-
ing Hessian:

H =

(
AV,W SV

SW 0

)
(50)

where:

AV,W =

∫

∂ω

1

2µ0

∂ϕΩ

∂n
(V · ∇2ϕΩ ·W + V · ∇ϕ′

Ω(W ) +W · ∇ϕ′
Ω(V ))

+

∫

∂ω
((
∂V

∂s
· n)(

∂W

∂s
· n) + Λ(V ·

∂W⊥

∂s
))dγ

(51)

SV =

∫

∂ω
V · n dγ. (52)

and

SW =

∫

∂ω
W · n dγ. (53)

In practice we consider an approximation (not a discretization,
because we need the solution of two exterior Dirichlet problems) of
the Newton algorithm (11). To this aim we consider a local pertur-
bation given by the vectol field Zk+1(x) =

∑n
i=1 u

k+1
i Zi,k(x) defined

in section 4.1. Then the V and W discrete version are the vector field
Zi,k and Zj,k defined in section 4.1.

The discrete version of the Hessian H if given by:

H(Ω(uk), Λk) =

(
Aij(u

k
1 , ...., u

k
n, Λ

k) Si(u
k
1 , ...., u

k
n)

Sj(u
k
1 , ...., u

k
n) 0

)
(54)
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where:

Aij(u
k
1 , ...., u

k
n, Λ

k) =∫

∂ω

1

2µo

∂ϕh

∂n
(Zi,k · ∇2ϕh · Zj,k + Zi,k · ∇ϕ′

h(Zj,k) + Zj,k · ∇ϕ′
h(Zi,k))

+

∫

Γ k
(
∂Zi,k

∂s
· n)(

∂Zj,k

∂s
· n)dγ

+Λk
∫

Γ k
(Zi,k ·

∂Zj,k⊥

∂s
)dγ

(55)
for i, j = 1, ...n, and

Si(u
k
1 , ...., u

k
n) =

∫

Γ k
(Zi,k · n)dγ, where i = 1, ...n (56)

The vector uk+1 = (uk+1
1 , ...., uk+1

n )t is defined by the following sys-
tem of equations :
(
Aij(u

k
1 , ...., u

k
n, Λ

k) Si(u
k
1 , ...., u

k
n)

Sj(u
k
1 , ...., u

k
n) 0

)(
(uk+1

1 , . . . , uk+1
n )t

δΛ

)

= −

(
Di

m

)

(57)
where

Di =
1

2µ0

∫

Γ k
|∇ϕh|

2 (Zi,k · n) dγ+

+(
(xk

i − xk
i−1)

‖xk
i − xk

i−1‖
−

(xk
i+1 − xk

i )

‖xk
i+1 − xk

i ‖
) · Ẑi,k+

+Λk
∫

Γ k
(Zi,k · n) dγ

(58)

for i = 1, ...n and

m =

∫

ωk
dx−m0 (59)

Then the boundary Γ k+1 of Ω(uk+1) is given by:

Γ k+1 = (I + Zk+1)(Γ k) = {x : x = X + Zk+1(X) ; X ∈ Γ k
}

(60)

Remark 4. The computation of Aij(u
k
1 , ...., u

k
n, Λ

k), i, j = 1, ...n needs
ϕ′

h(Zi,k), i = 1, ..., n which are given by:

−∆ϕ′
h(Zi,k) = 0 in Ωk

ϕ′
h(Zi,k) = −Zi,k · ∇ϕh on ∂ωk = Γ k

|ϕ′
h(Zi,k)(x)| = O(1) as |x| → ∞

(61)

That means that we have to solve n exterior Dirichlet problems. In
fact if we use the same numerical technique as in problem (28), we
obtain a linear system with the same matrix. As the LDLt decom-
position of this matrix is done, solving problem (61) needs only n

more solutions of a triangular system.
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5 Numerical Results

The algorithm is applied to a test case. The boundary tension σ and
the area m0 of the liquid metal are given as well as the distribution
of the current j0 which is of the form:

j0 = (
m∑

p=1

αpδxp)I (62)

where I is a given intensity, (δxp)p=1...m are the Dirac masses at the
points (xp)p=1...m in the plane, (αp)p=1...m are normalized coefficients.
Computations are made with the normalized cost functional

F (Ω, ϕ̂) = −

∫

Ω
|∇ϕ̂|2 dx + σ̂P (Ω) (63)

and the Lagrangian:

L(Ω, Λ) = −

∫

Ω
|∇ϕ̂|2 dx + σ̂P (Ω) + Λ(m(ω) −m0) (64)

First we consider the case without mesh refinement. The first guess
is a uniform discretization of the circle with 128 nodes. The physical
parameter are m = 4, αp = ± 0.2 and m0 = π. In figure 1 we
observe the iteration rate of convergence: it becomes linear after a
few iterations.
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Figure 1: evolution of ||L′||2

In figure 2 we plot the last iterate. We observe that the unifor-
mity of the mesh is destroyed by the optimization process. Afther 8
iterations the ||L′||2 norm is less than 10−14.
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Figure 2: N = 128, area equal π and four masses

Now we consider the same case with mesh-refinement, at the end of
iterations we have also 128 nodes. The first shape iteration is a circle
discretized with 16 nodes. At the second iteration a mesh refinement
is necessary to preserve the superlinear rate of convergence.Until it-
eration 6 and after two new mesh refinements we observe in figure
3 that the rate of convergence is superlinear. At this step, with 128
nodes, the ||L′||2 norm is of order 10−18 and we stop the processus.
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Figure 3: evolution of ||L′||2
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Figure 4: Final N = 128, area equal π and four masses

In figure 4 is clear that the adaptive mesh refinement gives a better
distribution of nodes

The numerical results show that the rate of convergence monitor-
ing with adaptive methods improves the performance of Newton-like
methods in shape optimization. Adaptive mesh-refinement allows us
to obtain a more accurate cost function critical point at a low cost.
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16 Jean R. Roche

9. A. Novruzi Contribution en Optimisation de Formes et Applications. Thèse
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physique, Rapport Interne, Ecole Polytechnique, (1977).
14. S. Murat and J. Simon, Sur le contrôle par un domaine géométrique, Rapport
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