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Summary. The aim of this paper is to show the existence and present a numerical
analysis of weak solutions for a quasi-linear elliptic problem with Dirichlet boundary
conditions in a domain Ω and data belonging to L1(Ω). A numerical algorithm to
compute a numerical approximation of the weak solution is described and analyzed.
Numerical examples are presented and commented.

1 Introduction

The principal objective of this work is to give a result of existence and present
a numerical analysis of weak solutions for the following quasi-linear elliptic
problem:

{

−∆u(x) +G(x,∇u(x)) = F (x, u(x)) + f(x) in Ω ,
u(x) = 0 on ∂Ω

(1)

whereG,F are Caratheodory non negative functions. The function f ∈ L1(Ω)
is given finite non negative. The domain Ω ⊂ R

N is open and bounded. Such
problems arise from biological, chemical and physical systems.

The two essential ingredients to the analysis of this problem are the con-
vexity of s→ G(x, s) and that G(x, s) is sub-quadratic w.r.t. s namely:

G(x, s) ≤ C(k(x) + ‖s‖2), where k(x) ∈ L1(Ω) and C > 0 . (2)

Then the problem (1) has a solution in W 1,q
0 (Ω) where 1 ≤ q < N/(N − 1),

N ≥ 2, provided that (1) has a super-solution in W 1,1
0 (Ω).

In previous work [4] the authors show the existence of a weak solution in
the one-dimensional case and with arbitrary growth of the non linearity and
data measure.
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We study a numerical method to compute the solution of the problem
(1). In the first step we compute a super solution using a domain decompo-
sition method. In the second step we compute a sequence of solutions of an
intermediate problem obtained by using the Yosida approximation of G. This
sequence converges to the weak solution of the problem (1).

2 Statement of the Main Result

Throughout this paper we suppose

f ∈ L1(Ω), f ≥ 0 . (3)

The functions G : Ω×R
N → [0,+∞[ and F : Ω×R → [0,+∞[ are such that:

G,F are measurable, r → G(x, r) and u→ F (x, u) are continuous. (4)

G is convex in r and F is nondecreasing in u , (5)

G(x, 0) = min
{

G(x, r), r ∈ R
N

}

= 0 , and F (x, 0) = 0 , (6)

G(x, r) ≤ C(|r|2 +K(x)) , (7)

F (x, u) ∈ L1(Ω) for every u ∈ R (8)

with a constant C > 0 and K ∈ L1(Ω).
We introduce now the notion of weak solutions of problem (1).

Definition 1. A function u is said to be a weak solution of the problem (1),
if

{

u ∈ W 1,1
0 (Ω), G(x,∇u) and F (x, u) ∈ L1(Ω),

−∆u+G(x,∇u) = F (x, u) + f in D′(Ω).
(9)

We will be interested in proving the existence of weak positive solutions
of problem (1).

Theorem 1. Under hypotheses (3)—(7), and assuming that there exists w
such that

{

w ∈W 1,1
0 (Ω), F (x,w) ∈ L1(Ω),

−∆w = F (x,w) + f in D′(Ω),
(10)

the problem (1) has a positive weak solution.
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3 Proof of Theorem 1

3.1 Approximation Scheme

We consider the sequence defined by u0 = w and for n ≥ 0, un+1 is the
solution of the problem

{−∆un+1 +Gn+1(x,∇un+1) = F (x, un) + f in D′(Ω),

un+1 ∈W 1,1
0 (Ω), Gn+1(x,∇un+1) ∈ L1(Ω),

(11)

where Gn(x, r) denotes the Yosida approximation of G(x, r). The function
Gn(x, r) is convex in r, increases pointwise to G(x, r) as n tends to ∞ and
satisfies

Gn ≤ Gn+1 ≤ G, ‖Gn,r(x, r)‖∞ ≤ n, (12)

where Gn,r denotes a section of subdifferential of Gn with respect to r.
The classical works ([3], [6], [9]) combined with an induction argument can

be applied to prove that (11) has a solution such that

0 ≤ un+1 ≤ un ≤ w. (13)

3.2 Estimates and Convergence

Let {un}n be a sequence defined as above. By integrating (11) in Ω and using
(13) we obtain

∫

Ω

Gn+1(x,∇un+1)dx ≤
∫

Ω

F (x,w)dx+

∫

Ω

f(x)dx. (14)

Therefore ‖∆un+1‖L1(Ω) is bounded. Then there exists a subsequence still
denoted by un for simplicity, such that un converges strongly to some u in
W 1,q

0 (Ω), 1 ≤ q < N/(N − 1), and (un,∇un) converges to (u,∇u) almost
everywhere in Ω (see [8]).

Let us prove that u is in fact a solution of problem (1). According to the
definition 2.1, we only have to show that

−∆u+G(x,∇u) = F (x, u) + f in D′(Ω). (15)

We know that F (x, un) −→ F (x, u) strongly in L1(Ω) and, for almost every
x in Ω, there holds Gn+1(x,∇un+1(x)) −→ G(x,∇u(x)).

Then there exists a non-negative measure µ (see [7]) such that

−∆un+Gn+1(∇un+1)−F (un) − f −→−∆u+G(∇u)−F (u)−f+µ in D′(Ω),

as n goes to ∞.
On the other hand

−∆un+1 +Gn+1(x,∇un+1) = F (x, un) + f−→F (x, u) + f in L1(Ω). (16)
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Consequently

−∆u+G(x,∇u) ≤ F (x, u) + f in D′(Ω). (17)

Therefore to conclude the proof of theorem 1, we must establish the opposite
inequality. To this end we introduce the following test function

ψ exp(−Cun+1)H(
un+1

k
), (18)

where H ∈ C1(R), 0 ≤ H(s) ≤ 1, H(s) = 0 if |s| ≥ 1 and H(s) = 1 if |s| ≤
1
2 , C is given by relation (7) and ψ ≤ 0, ψ ∈ H1

0 (Ω) ∩ L∞(Ω). We multiply
the equation satisfied by un+1 in (11) by this test function and we integrate
in Ω, to obtain

∫

Ω

(fn + F (x, un))ψ exp(−Cun+1)H(
un+1

k
) dx = I1 + I2 + I3,

where

I1 =
∫

Ω

∇un+1∇ψ exp(−Cun+1)H(un+1

k
) dx,

I2 = 1
k

∫

Ω

|∇un+1|2 ψ exp(−Cun+1)H
′(un+1

k
) dx,

I3 =
∫

Ω

(Gn+1(x,∇un+1) − C |∇un+1|2)ψ exp(−Cun+1)H(un+1

k
) dx.

(19)

By investigating separately each term, we get

lim
n→∞

I1 =

∫

Ω

∇u∇ψ exp(−Cu)H(
u

k
) dx

and lim
k→∞

I2 = 0 uniformly on n.

Now we investigate the remaining term I3. Since Gn+1 satisfies the inequality
(7), ψ ≤ 0, and by applying Fatou’s lemma, we obtain

lim
n→∞

I3 ≥
∫

Ω

(G(x,∇u) − C |∇u|2)ψ exp(−Cu)H(
u

k
)dx. (20)

Finally we have shown
∫

Ω

∇u∇ψ exp(−Cu)H(
u

k
)dx+

∫

Ω

ψ(G(x,∇u) − C |∇u|2) exp(−Cu)H(
u

k
)dx

+ω(
1

k
) ≤

∫

Ω

(F (x, u) + f)ψ exp(−Cu)H(
u

k
)dx,

where ω(ε) denotes a quantity that tends to 0 when ε tends to 0. Now we
choose ψ = −ϕ exp(Cu)H(u

k
), where ϕ ≥ 0, ϕ ∈ D(Ω) and we replace ψ by
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this value in the previous inequality to get after appropriate calculations and
using that the third term is equivalent to ω( 1

k
)

−
∫

Ω

∇u∇ϕH(
u

k
)2dx−

∫

Ω

ϕG(x,∇u)H(
u

k
)2dx+ ω(

1

k
)

≤ −
∫

Ω

(F (x, u) + f)ϕH(
u

k
)2dx.

We finally pass to the limit as k tends to infinity and we use the fact that
lim

k→∞

H(u
k
) = 1, to conclude for every ϕ ≥ 0, ϕ ∈ D(Ω) that

∫

Ω

∇u∇ϕdx +

∫

Ω

ϕG(x,∇u)dx ≥
∫

Ω

(F (x, u) + f)ϕdx.

This finishes the proof of the theorem 1.

4 Numerical Method

4.1 Introduction

In this section we present the numerical method to solve the equation (1) in
R

2. Formally the algorithm can be formulated in the following way:
1) Find w ∈ H1

0 (Ω) such that:

−∆w(x) ≥ F (x,w) + f in Ω. (21)

2) Given u0 = w we compute a sequence, {un}n, solution in H1
0 (Ω) of the

non linear equation:

−∆un+1(x) + Gn+1(x,∇un+1) = F (x, un) + f in Ω. (22)

Both problems (21) and (22) are non-linear, and if (21) has a solution, in
theorem 1 we have shown that (22) then also has a solution.

4.2 Numerical Algorithm

This subsection summarizes the algorithm introduced in the previous subsec-
tion.

1) First step: given w0 = 0, iteratively for k = 1 until convergence we
compute wk+1 = wk + δ where at each iteration δ is the solution of the
linear problem:
{

−∆δ(x) − ∂F (x,wk)
∂r

δ(x) = ∆wk(x) + F (x,wk) + f in Ω,
δ(x) = 0 on ∂Ω.

(23)

To solve at each iteration the linear problem (23) we consider the domain
decomposition method which will be introduced as follows:
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a) We compute c∞ =
∥

∥

∥

∂F (wk)
∂r

∥

∥

∥

∞

. Determine an overlapping subdomain

decomposition Ωi, i = 1, . . . ,m such that Ω = ∪m
i=1Ωi and satisfies:

max{mes(Ωi), i = 1, . . . ,m} < min(
c0π

2

c∞
,

π

2
√
c∞

). (24)

We denote bym the number of subdomainsΩi and ∂Ωi is the boundary
of Ωi.

b) Iteratively:
for l = 1,..until convergence and for i = 1, . . . ,m we solve the following
subdomain problems:











−∆δl
i(x) − ∂F (x,wk)

∂r
δl
i(x) = ∆wk(x) + F (x,wk) + f in Ωi,

δl
i(x) = δl−1

j (x), on ∂Ωi ∩Ωj ,

δl
i(x) = 0, on ∂Ω ∩ ∂Ωi.

(25)

On each subdomain Ωi we consider a finite element approximation method
with Ni elements. At the end of the l-th loop we have computed an ap-
proximate discrete solution of the linear indefinite problem (23).

2) At this step for u0 = w, iteratively for n = 1, until convergence we solve
the following non-linear problem

{

−∆un(x) + Gn(x,∇un) = F (x, un−1) + f in Ω,
un(x) = 0 on ∂Ω.

(26)

At each n-th step the problem (26) is solved by using a Newton method.
The discrete approximation of the solution of (1) is obtained at the end of
the n-th loop.

4.3 Convergence of the Domain Decomposition Method

To simplify, without lost of generality, we assume that we can consider a
two-domain decomposition Ω = Ω1

⋃

Ω2 such that:

max{mes(Ωi), i = 1, 2} < min(
c0π

2

c∞
,

π

2
√
c∞

). (27)

Now to prove the convergence of the Schwarz overlapping domain decom-
position algorithm applied to problem (23), we consider two problems:

{

−∆v1 (x) + c(x) v1 (x) = h(x) in Ω1,
v1(x) = 0 on ∂Ω ∩ ∂Ω1; v1(x) = v2(x) on ∂Ω1 ∩Ω2

(28)

and
{

−∆v2(x) + c(x) v2(x) = h(x) in Ω2,
v2(x) = v1(x) on ∂Ω2 ∩Ω1; v2(x) = 0 on ∂Ω ∩Ω2.

(29)
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Let v be

v =

{

v1 in Ω1,
v2 in Ω2,

(30)

v1 = v2 in Ω1 ∩Ω2.
With the restriction (27) we can suppose the existence of a solution of (28)

in W 1,q
0 (Ω1) and a solution of (29) in W 1,q

0 (Ω2).
Then, if v0 is an initialization function defined in Ω and vanishing in ∂Ω,

we define for k ≥ 0 two sequences vk
i , i = 1, 2 solving the following problems:

{

−∆vk+1
1 (x) + c(x) vk+1

1 (x) = h(x) in Ω1,

vk+1
1 (x) = 0 on ∂Ω ∩ ∂Ω1; v

k+1
1 (x) = vk

2 (x) on ∂Ω1 ∩Ω2
(31)

and
{

−∆vk+1
2 (x) + c(x) vk+1

2 (x) = h(x) in Ω2,

vk+1
2 (x) = vk

1 (x) on ∂Ω2 ∩Ω1; v
k+1
2 (x) = 0 on ∂Ω ∩Ω2.

(32)

Theorem 2. Assume Ω1 and Ω2 with the restriction (27). Then the sequence
vk converges to v in W 1,q

0 (Ω1) and W 1,q
0 (Ω2).

Proof. We give here an idea of the proof.
Let dk = vk

1 − v in Ω1 and ek = vk
2 − v in Ω2 then dk ∈ L∞(Ω1) and

ek ∈ L∞(Ω2).
Thanks to the maximum principle we prove the following inequalities:

||dk+2||∞ ≤ γ ||dk||∞ and ||ek+2||∞ ≤ γ ||ek||∞ (33)

where γ < 1.
But to be able to apply the maximum principle it will be necessary that

the subdomains Ω1 and Ω2 verify the restriction (27).

4.4 Numerical Results

The algorithm introduced in the previous section has been implemented nu-
merically for the model problem (1) where:
G(x, r) = |r|p = (r21 + r22)

p
2 and r = (r1, r2) ∈ R

2 for 1 < p <∞.
F (x, s) = η sq where s ∈ R

+ and 1 < q <∞.

f(x) = xα
1 + xβ

2 where x = (x1, x2) ∈ Ω and −1 < α, β <∞.
The number of subdomains is not fixed, it changes at each iteration ac-

cording to the criterion (27). In figure 1 we can see the solution shape when
the algorithm converges with m = 36 subdomains.

To study the convergence history of the numerical simulation plotted in
figure 1 we consider two steps. In the first step, where we compute a super-
solution, we observe the evolution of the number of subdomains: it goes from
m = 4 subdomains to m = 36 subdomains in seven iterations according to
criterion (27). Simulation stops after 34 iterations when the residual is less
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Fig. 1. η = 45, p = q = 3, α = β = 2, m = 36

than 10−6. In the second step, starting with the super-solution computed in
the previous step we perform nine iterations of the Yosida approximation
described in section 3 and the simulation stops when the correction computed
is in uniform norm less than 10−6.
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