
HAL Id: inria-00095608
https://hal.inria.fr/inria-00095608

Submitted on 18 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Matching modulo superdeveloppements. Application to
second-order matching.

Germain Faure

To cite this version:
Germain Faure. Matching modulo superdeveloppements. Application to second-order matching.. 13th
International Conference on Logic for Programming Artificial Intelligence and Reasoning - LPAR 2006,
Nov 2006, Phnom Penh/Cambodge. �inria-00095608�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50431343?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00095608
https://hal.archives-ouvertes.fr


Matching modulo superdevelopments

Application to second-order matching

Germain Faure

Université Henri Poincaré & LORIA
BP 239, F-54506 Vandoeuvre-lès-Nancy France

faure@loria.fr

Abstract. To perform higher-order matching, we need to decide the
βη-equivalence on λ-terms. The first way to do it is to use simply typed
λ-calculus and this is the usual framework where higher-order match-
ing is performed. Another approach consists in deciding a restricted
equivalence based on finite superdevelopments. We consider higher-order
matching modulo this equivalence over untyped λ-terms for which we
propose a terminating, sound and complete matching algorithm.

This is in particular of interest since all second-order β-matches are
matches modulo superdevelopments. We further propose a restriction
to second-order matching that gives exactly all second-order matches.

Introduction

Higher-order matching and unification are two operations fundamental in
various fields such as higher-order logic programming [Mil90] and logical
frameworks [Pfe01], computational linguistics [DSP91], program transforma-
tion [HL78,Shi94,Vis05], higher-order rewriting [vOvR93,MN98,NP98], proof
theory etc.

Higher-order matching is usually defined as the following problem: given a
set of equations si = ti between typed λ-terms where the ti do not contain free
variables, is there a substitution σ such that for all i siσ is equal to ti modulo
the usual β(η) relation.

In [dMS01] O. De Moor and G. Sittampalam introduced a new approach
to higher-order matching for automatic program transformation in an untyped
setting. Matching equations are solved modulo a one-step reduction for an ap-
propriate parallel β-reduction notion that does not coincide with the standard
one of Tait and Martin-Löf. As the authors suggest in the paper, this operation,
that always terminates even in an untyped context, represents in a certain sense
an approximation of the β-normalization process.

The standard approximation of β-normal forms is given by complete de-
velopments [Bar84]. But the parallel β-normal forms used in [dMS01] provide a
more precise approximation than the complete developments. Actually, the latter
parallel β-reduction was introduced first by P. Aczel in [Acz78] and the corre-
sponding approximation was introduced by F. van Raamsdonk [vR93] under the



name of superdevelopments. They are an extended notion of finite developments
that were introduced to prove the confluence of a general class of reduction sys-
tems containing λ-calculus and term rewrite systems. A superdevelopment is a
reduction sequence that may reduce the redexes of the term, its residuals and
some created redexes but not those created by the substitution of a variable in
functional position by a λ-abstraction. The approximation given by superdevel-
opments coincides with β-normal forms when considering second-order terms.

In this paper, we consider matching equations built over untyped λ-terms and
solve them modulo superdevelopments. The matching problems are of interest
particularly because the set of matches modulo superdevelopments contains, but
is not restricted to, second-order β-matches.

The one-step reduction modulo which one considers matching equations
in [dMS01] “may be a little difficult to understand” as the authors of the
original paper said. In this paper, we shed light on this reduction by giving
a clear relationship with superdevelopments (and quoting the original definition
of P. Aczel). The original algorithm is presented using transformation rules as
suggested in [GS89]. This method provides an abstract and elegant way to give
a clear separation between the operational and logical issues.

The main goal of this paper is convince that superdevelopments constitute a
right tool for tackling the matching problems. We also claim that the background
theory of superdevelopments provides nice intuitions and simplifications of the
different proofs (w.r.t. [dMS01,Sit01]) especially w.r.t. the application to second-
order matching.

In fact, the general approach of solving equations modulo a restricted notion
of reduction can be useful to deal with higher-order matching in calculi for which
a simple type system that ensures termination is difficult to find. This is for
example the case of simply typed ρ-calculus [CLW03] which is not terminating.
Higher-order matching in the ρ-calculus or in pure pattern calculus [JK06] are
useful in the transformation of pattern-matching programs or in proof theory
that handles rich proof-terms in the generalized deduction modulo [Wac06].

Road-map The paper is organized as follows. The first section introduces the
syntax and the superdevelopments. The second section is devoted to the presen-
tation of matching modulo superdevelopments and its link with usual higher-
order matching (second-order matching, third-order matching and matching of
patterns à la Miller). Section 3 presents and studies1 an algorithm to perform
matching modulo superdevelopements in the λ-calculus. Section 4 explicitly an-
alyzes the optional role of the η rule in the matching process. Throughout the
paper, many examples are taken.

1 Preliminaries

In this section, we first recall some basic definitions and set some notations
related to the λ-calculus. Then we define in two different ways superdevelopments

1 The proofs not given in the paper will be available in a journal paper.



as a restriction of the β-reduction. We refer the reader to [Bar84] or [Dow01] for
the fundamental definitions and results on the λ-calculus.

1.1 Typed λ-calculus and β-reduction

Given a set of base types T0, we define the set of types T inductively as the
smallest set containing T0 and such that if α, β ∈ T then (α → β) ∈ T. The
order of a type α denoted o(α) is equal to 1, if α ∈ T0. The order of a type
α→ β is equal to max(o(α) + 1, o(β)).

Definition 1 (Typed λ-terms) Let K be a set of constants, having a unique
type. For each type α ∈ T, we assume given two countably infinite and disjoint
sets of that type, denoted Xα and Vα. Let X = ∪α∈TXα be the set of variables
and let V = ∪α∈TVα be the set of matching variables. The set Tt of typed λ-terms
is inductively defined as the smallest set containing all variables, all matching
variables and all constants, and closed under the following rules:
— If A,B ∈ Tt with type resp. α→ β and α then (AB) ∈ Tt with type β.
— If A ∈ Tt with type β, and x ∈ Xα then λx .A ∈ Tt with type α→ β.

There are two different sets of “variables”: the variables belonging to X on
which we abstract and the matching variables belonging to V sometimes called
unknowns. We justify the use of the two sets in Section 3.

The symbols A,B,C, . . . range over the set Tt of terms, the symbols x, y, z, . . .
range over the set X of variables (X ⊆ Tt), the symbols a, b, c, . . . , f, g, h range
over a set K of term constants (K ⊆ Tt). The symbols X,Y, . . . range over the
set V of matching variables. Finally, the symbol ε ranges over the set of atoms,
which consists of variables, matching variables and constants. All symbols can
be indexed. Positions in λ-terms are denoted by p1, ..., pn . We denote by � the
canonical order on positions. The subterm of A at position p1 is denoted by A|p1

.

The order of a constant or a matching variable is defined as the order of its
type. The order of a redex (λx .A) B is defined as the order of the abstraction
λx .A. We consider the usual notion of free and bound variables that concerns
the variables (matching variables cannot be bound). A term is said to be closed
if it contains no matching variables and no free variables. We denote by FV(A)
the set of the free variables of A.

The substitution of variables is defined as usual and avoids variable capture
using α-conversion when needed. The substitution of the variable x by A in B
is denoted by B{A/x}.

As in any calculus involving binders, we work modulo the α-conversion of
Church, and modulo the hygiene-convention of Barendregt [Bar84], i.e., free and
bound variables have different names.

We denote a β-reduction step by →β , by 7→7→β its reflexive and transitive
closure and by =β its reflexive, symmetric and transitive closure. A λ-term is
said to be β-normal or simply normal if it is in normal form for →β .



1.2 Untyped labelled λ-calculus and βl-reduction

When no ambiguity is possible, we use the same notation for both typed and
untyped (labelled) terms. Labels are simply elements of ◆.

Definition 1 (Labelled λ-terms). Let K be a set of constants. Let X and V
be two countably infinite and disjoint sets respectively for variables and matching
variables. The set Tl of labelled λ-terms is defined as the smallest set containing
all variables, matching variables, constants and closed under the following rules:
— If A ∈ Tl and p ∈ ◆, then λpx.A ∈ Tl.
— If M,N ∈ Tl and p ∈ ◆, then (MN)p ∈ Tl.

We define βl-reduction on the set of labelled λ-terms as follows:

((λpx.A)B)p →βl
A{B/x}

In order to define superdevelopements we will restrict attention to terms that
are labelled such that the label of an application cannot be equal to the label of
a λ-abstraction that is not in its scope.

Definition 2 (Well-labelled and initially labelled terms). A labelled term
A ∈ Tl is said to be well-labelled if for all positions such that A|p1

= (B0B1)
p and

A|p2
= λpx.C then p1 � p2. It is is initially labelled if moreover for all positions

such that A|p1
= λpx.C and A|p2

= λpx
′.C ′ then p1 = p2.

In the following, we will suppose that all labelled terms are well-labelled. We
can remark that the set of well-labelled terms is closed by βl-reduction.

1.3 Untyped λ-calculus and superdevelopments

The untyped λ-calculus is defined as the labelled λ-calculus by simply erasing
all labels (both in terms and reduction). The set of untyped λ-terms is denoted
by T . We introduce a generalization of (finite) developments [Bar84] called su-
perdevelopments. This notion, initially introduced in [vR93], is related to the
three ways to create redexes in the λ-calculus [Lév78]:

1. ((λx . λy .A)B) C →β (λy .A{B/x}) C
2. ((λx . x) (λy .A))B →β (λy .A)B
3. (λx .A)(λy .B) →β A{λy .B/x}

if there is a position p1 such that A|p1
= xA0

For the first two ways of creating a β-redex, one can say that the creation
is “upwards”, whereas in the last case it can be said to be “downwards”. By
restricting to well-labelled terms we exactly restrict to upwards creations.

A superdevelopment is a β-rewrite sequence that may reduce both the redexes
that are residuals of redex occurrences in the initial term (like in developments)
and the redex occurrences that are created in the first or second way.

In the λ-calculus, superdevelopments are, as developments, finite.



Definition 3 (Superdevelopments). A β-rewrite sequence ς of the λ-calculus
is a β-superdevelopment if it exists a βl-rewrite sequence σ in the labelled
λ-calculus that starts with an initially labelled term and stops on a term in
βl-normal form and such that Υ (σ) = ς, where Υ is the canonical mapping from
labelled λ-terms to λ-terms and from βl-reduction to β-reduction that simply
erases labels.

For example, the β-rewrite sequence (λx . λy . xy)zz′ →β (λy . zy)z′ →β zz
′

is a superdevelopment since it corresponds to the βl-rewrite sequence
(((λ1x.λ2y.xy)z)

1)z′)2 →βl
((λ2y.zy)z

′)2 →βl
zz′ .

However, the rewrite sequence (λx . xx)(λx . xx) →β (λx . xx)(λx . xx) →β . . .
is not a superdevelopment.

Given a λ-term, we can “label” this term (and thus obtaining a labelled λ-
term) in order to βl-reduce redexes created in the first or in the second way but
not in the third way. This is exactly why we restrict ourselves to well-labelled
terms.

The corresponding βl-rewrite sequence associated to a superdevelopment is
no more given in the following (this a good exercise left to the reader). We now
give four examples of β-reductions that are superdeveloppements.

[Finite development] Residuals of
redexes present in the initial term can
be contracted:

(λx . f(x, x)) ((λy . y) a)
→β f((λy . y) a, (λy . y) a)
→β f(a, (λy . y) a)
→β f(a, a)

[Redex creation of type 1] In the
following superdevelopment, the new
redex obtained after one β-rewrite step
is reduced:

((λx . λy . f(x, y))a)b
→β (λy . f(a, y))b
→β f(a, b)

[Redex creation of type 2] As in
the previous example, a redex is cre-
ated and reduced during reduction, but
in a different way: ((λx . x)(λy . y))a

→β (λy . y)a
→β a

[Redex creation of type 3] There
is no superdevelopment from the term
(λx . xa)(λy . y) to the term a:

(λx . xa)(λy . y)
→β (λy . y)a

1.4 Another characterization of superdevelopments

As finite developments coincide with the classical parallel reduction of Tait
and Martin-Löf, finite superdevelopments coincide with Aczel’s parallel reduc-
tion [Acz78] called in the following strong parallel β-reduction. It is denoted
by =⇒βsd

and we say that a term A βsd-reduces to a term B if A =⇒βsd
B. It

is defined inductively in Figure 1.
The only difference with the parallel reduction of Tait and Martin-Löf is the

rule (Red− βs) that replaces the rule (Red− β) of the parallel reduction given by

λx .A1 =⇒β λx .A2 B1 =⇒β B2

(λx .A1)B1 =⇒β A2{B2/x}
(Red− β)



ε =⇒βsd
ε (Red − ε)

A1 =⇒βsd
A2

λx . A1 =⇒βsd
λx . A2

(Red − λ)

A1 =⇒βsd
A2 B1 =⇒βsd

B2

A1B1 =⇒βsd
A2B2

(Red − @)

A1 =⇒βsd
λx . A2 B1 =⇒βsd

B2

A1B1 =⇒βsd
A2{B2/x}

(Red − βs)

Fig. 1. Strong parallel β-reduction

The following result states that superdevelopments coincide with strong parallel
β-reduction. This characterization is the essence of the matching algorithm.

Theorem 2 There exists a superdevelopment from A to B iff A =⇒βsd
B.

2 Matching modulo superdevelopments

In this section, we first define matching modulo superdevelopments, also called
βsd-matching. We then relate it with second and third order matching.

2.1 Definition of βsd-matching

Definition 3 (Substitution) A matching substitution or simply a substi-
tution ϕ : V → T is a function from matching variables to terms.
If ϕ = {A1/X1, . . . , An/Xn} then the domain of ϕ is the set {Xi}

n
i=1

. We over-
load the notation used for substitutions of variables and we denote by B{A/X}
the substitution of A for the matching variable X in B. In this work, we only
consider closed and normal substitutions that are substitutions of closed normal
terms.

Since we consider classes of terms modulo α-conversion, when applying a sub-
stitution the appropriate representatives are always chosen in order to avoid
potential variable captures.

Definition 4 (Union) Two substitutions coincide if their images coincide on
the intersection of their domains. We then straightforwardly define the union of
two substitutions σ and ϕ that coincide and denote it by σ ∪ ϕ.

Definition 5 (Matching equation–System) A βsd-matching equation or
simply a matching equation is a pair of terms denoted A 6βsd

B such that
B is normal and does not contain matching variables. A matching system is a
multiset of matching equations.



For example, XY 6βsd
λx . x and (λx . x)X 6βsd

a are βsd-matching equa-
tions whereas XY 6βsd

(λx . x)a is not.
Every solution of a matching equation is supposed to be a closed substitution.

We say that a matching variable belongs to a system ❙ and we note X ∈ ❙ if X
occurs in one equation of ❙.

Definition 6 (βsd-match) A substitution ϕ on matching variables is a βsd-
match or simply a match for the matching equation A 6βsd

B if and only if
Aϕ =⇒βsd

B. A substitution is a match of a system if it matches each equation.
The set of all matches of a system ❙ is denoted ▼(❙).

For example, {λxy . y/X} and {λy . y/X, λx . x/Y } are βsd-matches for the equa-
tion XY 6βsd

λx . x. The substitution {λz . z(λx . x)/X, λy . y/Y } is not a βsd-
match because (λz . z(λx . x))(λy . y) does not βsd-reduce to λx . x. (although it
β-reduces).

The application of a substitution to a matching equation B 6βsd
C is the

equation Bϕ 6βsd
C. The application of a substitution ϕ to a system, denoted

❙ϕ consists in the application of the substitution ϕ to each matching equation
of ❙.

Definition 7 (Solved form) A matching equation X 6βsd
A is in solved form

if A contain no free variables. The corresponding substitution is defined by
[A\X]. A system is in solved form if all its equations are in solved form and

if the left-hand sides are pairwise disjoint. The corresponding susbtitutution of
such a system is the union of the corresponding substitutions of each equation
(of the system). It is denoted by σ❙.

Definition 8 (Complete match set) Let ❙ be a matching system. A com-
plete match set of ❙ is a set of substitutions ▼ such that:

1. Soundness For all ϕ ∈ ▼, ϕ is a βsd-match of ❙.
2. Completeness For all ϕ such that ϕ is a βsd-match of ❙ there exists ψ ∈ ▼

such that ψ ≤ ϕ, i.e., there exists a substitution ξ such that ϕ = ξ ◦ψ where
◦ denotes substitution composition.

The following lemma gives the relevance of solved forms:

Lemma 9 If ❙ is a system in solved form then {σ❙} is a complete match set
of ❙.

2.2 Comparison with usual higher-order matching

Comparison with second-order matching First, we relate βsd-matching
with second-order matching (i.e., typed higher-order β-matching where all
matching variables are second-order and where constants are third-order). We
show that all solutions of a given second-order system are βsd-matches. In this
section, all terms are supposed to be typable, i.e., belong to Tt.



We simply recall the definition of β-matching and we refer to [GS89] for a
more complete and self-contained presentation.

Definition 10 (β-matching equation and β-match) A β-matching equa-
tion is a pair of β-normal typed λ-terms of the same type denoted A 6β B
such that B does not contain matching variables. A substitution ϕ, that pre-
serves types, is a β-match for the matching equation A 6β B if and only if
Aϕ=βB. We generalize the definition to matching systems as in Def. 6.

If we erase the types, then all β-matching equations are βsd-matching equa-
tions. We will switch from the former to the latter without explicit mentions.

The following results were already proved in [dMS01]. Nevertheless, the for-
malization using superdevelopments (and not only strong β-parallel reduction)
introduced in this paper gives quite simple and clear proofs.

First, a technical result on the creation of redexes.

Lemma 11 For all terms A1, . . . , An such that there exists a superdevelopment
A1 →β . . .→β An and An contains a redex of third order order (or more), then
A1 contains also a redex of third order (or more).

Proof. We prove the result by induction on n. We look at the induction case. By
induction hypothesis, we know that A2 contains a redex of a least third order
that we call in the following R = (λx .C)D. First, if R is a residual of a redex
of A1 then the result is obvious. Secondly, if not, and if R is created during the
reduction from A1 to A2 in the first way mentioned before then A1 must contain
a subterm of the form (((λz . λx .C ′) E)D with C = C ′{E/z}. Then the order
of the redex (λz . λx .C ′)E is greater or equal to the of order R. This concludes
the case. Finally, if not, and if R is created during the reduction from A1 to A2

in the second way mentioned before then A1 must contain a subterm of the form
(λy . y) (λx .C)D. The order of the redex (λy . y) (λx .C) is strictly greater than
the one of R. This concludes the case. ⊓⊔

Proposition 12 Consider a second-order β-matching equation. If a substitution
ϕ is a β-match then it is a βsd-match.

Proof. The proof is by contradiction. Let ϕ be a β-match of the β-matching
equation A 6β B that is not a βsd-match. Then we have Aϕ=βB, that A does
not contain any β-redex, that ϕ does not contain any term of order greater
than 2. Finally, Aϕ 6=⇒βsd

B and Aϕ=βB. Thus there exist (Ai)i such that
Aϕ →β A1 →β · · · →βsd

An is a superdevelopments and An contains a β-redex
(λx .C)D which is not reduced by superdevelopments. This means that this
redex is a residual of a redex created when reducing Ai0 . Since the redex is not
reduced by superdevelopments then this creation is of type 3 and thus induces a
redex of order at least 3. Lemma 11 implies that Aϕ contains a redex of order at
least three. Since both A and ϕ range in the set of β-normal forms, then there
exists a position p1 and a term E such that A|p1

= XE where X is mapped by
ϕ to a λ-abstraction of at least third order. This contradicts the hypothesis on
the order of the initial matching problem. ⊓⊔



This proposition for second-order β-equations can be easily generalised to
second-order β-systems.

Creations of redexes in the third way induce intrinsically redexes of at least
third order. This intuitively explains why second-order matches modulo β are
βsd-matches. The reader familiar with the second-order matching algorithm of
G. Huet and B. Lang may notice that during this matching process, we can
restrict β-normalization to βsd-normalization.

Comparison with third-order matching As soon as we consider third-order
matching problems, the set of minimal solutions may be infinite. Since matching
modulo superdevelopments generates finitely many minimal solutions, we remark
that matching modulo superdevelopments cannot be complete w.r.t. third-order
matching.

Example 13 The substitution {λx . λf . fx/X} is a β-match for the match-
ing equation λz . (X z (λy . y)) 6 λz . z whereas it is not a βsd-match. In fact,
λz . ((λx . λf . fx) z (λy . y)) βsd-reduces to λz . (λy . y)z but not to λz . z.

The last example is classical and taken from [Dow01]. The third-order matching
equation has an infinite number of (minimal) solutions of type ι → (ι → ι) → ι
that are given by the Church numbers λx . λf . (f . . . (f x) . . .).

Comparison with patterns à la Miller In the case of matching of patterns
à la Miller [Mil91,Qia96], the restriction of the β-reduction given by superdevel-
opments is powerful enough:

Proposition 14 Let ϕ be a match of an equation P 6β A where P is a pattern
à la Miller. Then there exists a superdevelopment Pϕ 7→7→β A.

3 An algorithm for matching modulo superdevelopments

In this section, we first present an algorithm for matching modulo superdevelop-
ments. We illustrate it on several examples and finally state its main properties.

3.1 Presentation of the algorithm

We propose in Figure 2 an algorithmic description of matching modulo superde-
velopments using transformation rules [GS89]:
— A system is transformed by successively applying the rules until we get to
a normal form (it always exists since the rules terminate) that gives a solution
(the algorithm is sound).
— By exploring all possible reductions (the rule are non-deterministic in the
sense that at each step there are possibly several rules that can applied) and
collecting all solved forms we get a complete match set (since the algorithm is
sound and complete).



(x 6βsd
x), ❙ →εv ❙

(a 6βsd
a), ❙ →εc ❙

(X 6βsd
A), ❙ →εX

X 6βsd
A, ❙{A/X}

if FV(A) = ∅ and X ∈ ❙

(λx . A 6βsd
λx . B), ❙ →λλ

(A 6βsd
B), ❙

(A1B1 6βsd
A2B2), ❙ →@@

(A1 6βsd
A2), (B1 6βsd

B2), ❙

(A1B1 6βsd
C), ❙ →@π

(A1 6βsd
λx . C), ❙

where x fresh

(A1B1 6βsd
C), ❙ →@β

(A1 6βsd
λx . A2), (B1 6βsd

B2), ❙

where A2{B2/x} = C
and x fresh, x ∈ FV(A2)
and A2, B2 normal forms

Fig. 2. Matching algorithm for higher-order matching modulo superdevelopments

We write ❙ → ❙′ if there exists a transformation rule that can be applied to
transform ❙ into ❙′ and ❙ 7→7→❙′ if there exist n ≥ 0 systems ❙1, . . . ,❙n such that
❙ → ❙1 → . . .❙n → ❙′. The matching algorithm follows the definition of strong
β-parallel reduction:

The ε rules: deal with atoms. The rules (εc) and (εv) are trivial rules dealing
with variables and constants. The rule (εX) substitutes a matching variable by its
corresponding value. Remark first that we do not substitute by terms containing
free variables and then that we do not normalize when applying a substitution
(otherwise the rule (εX) would not be sound ; see the long version for further
details). In the rule (εX), we compel that the substituted term contains no free
variables. This is not a stricly needed condition but if the condition is not verified
there is no interest to apply the rule since the system will never lead to a solved
form (precisely because of the condition is not verified).

The λ rule: deals with abstraction by mimicking the (Red− λ) rule (thanks to
the implicit α-renaming, we can suppose that the two bound variables are the
same). This rule illustrates the use of two different sets of “variables”: we can
“unbind”a variable safely without possible confusion with a matching variable
(recall that we only consider closed substitutions). Many algorithms use a single
set of variables. In this case, since matching variables are the free variables of
the left-hand side of the equation, we have to remember the variables that were
bound in the initial equation. The two choices are relevant.
A similar rule is used in the works on unification in the λ-calculus with explicit
substitutions and de Bruijn indices [DHK00].



The @ rules: deal with application. The (@@) rule is in one-to-one correspon-
dance with the rule (Red− @) and thus does not need further comments. The
rules (@π) and (@β) are both related to the rule (Red− βs). We try to express
the right-hand side C of the equation as the result of a β-reduction let us say
A2{B2/x}. Depending on the presence of x in A2, we obtain the rule (@π) or
(@β). If x does not belong to A2, then we obtain the rule (@π): the left-hand side
of the application is mapped to an abstraction that ignores its argument and
returns the right-hand side of the matching equation. Otherwise (if x belongs to
A2), we obtain the rule (@β) by mimicking the (Red− βs) for all terms such that
A2{B2/x} = C where x belongs to A2 and A2, B2 are normal. To find the terms
A2 and B2 we first remark that B2 must be a subterm of C (since x belongs
to A2). We can thus choose one of them. Then, choose a subset of the set of
positions on which B2 appears in C. Then A2 is obtained from C by putting
x at every position of the chosen set. Notice that there are finitely many pairs
(A2, B2) satisfying the conditions.

Notice that the matching algorithm does not introduce new matching vari-
ables (this is not the case in [HL78]). This is for example pertinent in [Ali05].

Example 15 We consider the matching equation XY 6βsd
ab. Since the left

and right-hand sides of the matching equation are applications, we can apply the
rules (@π), (@@) or (@β).

1. Rule (@π): XY 6βsd
ab→ X 6βsd

λx . ab.
2. Rule (@@): XY 6βsd

ab→ X 6βsd
a , Y 6βsd

b.
3. Rule (@β): to find A1 and A2 such that A1{A2/x} = ab first we choose A2

as one of the subterm of “ab”: a, b and ab. There is only one subset of the
set of positions on which A2 appears in ab (since each subterm of ab appears
once). Then we can apply the rule (@β) in different ways corresponding to
the three subterms of the right-hand side of the equation:
(a) XY 6βsd

ab→ X 6βsd
λx . xb , Y 6βsd

a.
(b) XY 6βsd

ab→ X 6βsd
λx . ax , Y 6βsd

b.
(c) XY 6βsd

ab→ X 6βsd
λx . x , Y 6βsd

ab.

Example 16 We consider the equation X(Y X) 6βsd
a. We can apply either

the rule (@π) or (@β).

1. Rule (@π): X(Y X) 6βsd
a→ X 6βsd

λx . a.
2. Rule (@β): X(Y X) 6βsd

a→ X 6βsd
λx . x, Y X 6βsd

a.
To simplify Y X 6βsd

a we can apply either the rule (@π) or the rule (@β).
(a) Rule (@π): X 6βsd

λx . x, Y X 6βsd
a→ X 6βsd

λx . x, Y 6βsd
λx . a.

(b) Rule (@β)
X 6βsd

λx . x, Y X 6βsd
a→ X 6βsd

λx . x, Y 6βsd
λx . x,X 6βsd

a
→ X 6βsd

λx . x, Y 6βsd
λx . x,

λx . x 6βsd
a.

In the last case, the system is not in solved form (although no transformation
rules can be applied) and thus it gives no solutions. The initial matching equation
has only two solutions.



3.2 Properties

Proposition 17 (Termination) The set of transformation rules of Figure 2
is terminating.

Proposition 18 (Correctness) For all systems ❙ and ❙′ such that ❙ 7→7→❙′ and
❙′ is in solved form, we have σ❙′ ∈ ▼(❙).

Proposition 19 (Completeness) For any system ❙, if ϕ ∈ ▼(❙) then there
exists a sequence of transformations starting from ❙ and ending on a system ❙n

such that ❙n is in solved form and σ❙n
≤ ϕ.

Proof. By induction on the appropriate extension of the =⇒βsd
on multisets.

Theorem 20 (Finite complete match set) Let A 6βsd
B be a matching

equation and ▼ = {σ❙ | A 6βsd
B 7→7→❙ and ❙ is in solved form }. Then the set

▼ is a complete match set for the equation A 6βsd
B. It is always finite.

We can remark that there are some second-order β-match equations that
have no solutions but that the corresponding βsd-equation has a solution2:

Example 21 Let g(XY,XZ) 6β g(fa, fb) be a β-match equation with types
a : ι2, b : ι2, f : ι2 → ι1, g : ι1 → ι1 → ι1, X : ι3 → ι1, Y : ι3 and Z : ι3.

We consider the solutions of the βsd-equations XY 6βsd
fa and XZ 6βsd

fb

XY 6βsd
fa XZ 6βsd

fb

X 6βsd
f, Y 6βsd

a X 6βsd
f, Z 6βsd

b
X 6βsd

λx . fa X 6βsd
λx . fb

X 6βsd
λx . fx, Y 6βsd

a X 6βsd
λx . fx, Z 6βsd

b
X 6βsd

λx . xa, Y 6βsd
f X 6βsd

λx . xb, Z 6βsd
f

X 6βsd
λx . x, Y 6βsd

fa X 6βsd
λx . x, Z 6βsd

fb

The only two well-typed solutions (that is, solutions such that the term associ-
ated to a matching variable has the same type than this matching variable) are
respectively X 6βsd

λx . fa and X 6βsd
λx . fb. Of course, they do not lead to a

substitution for g(XY,XZ) 6βsd
g(fa, fb). Thus, we have found a second-order

β-match equation that has no solution3 even if the βsd-equation has.

We now work in the framework of the typed λ-calculus to solve second-order
matching equations. As in any higher-order matching algorithm for typed λ-
calculi, we only consider well-typed equations that are pairs of typed terms of
the same type. In particular, transformation rules are applied only if the resulting
systems is well typed (that is, each equation is well-typed). In this context, we
have the following result.

2 Thus we cannot deduce from the NP-completeness of the second-order matching,
the NP-completeness of the matching modulo superdeveloppements

3 Since there is no well-typed substitutions modulo superdevelopments, there are no
second-order substitution for g(XY, XZ) 6β g(fa, fb) (applying prop. 12).



Theorem 22 (Second-order matching algorithm) The rules given in
Fig. 2 applied in the context of the typed λ-calculus gives a sound and complete
matching algorithm for second-order matching.

4 Matching modulo superdevelopments and η

The gap between higher-order matching modulo β and higher-order matching
modulo βη is mainly explained by the fundamental use of η-long normal forms
when matching is performed modulo βη. In the context of higher-order matching
modulo superdevelopments, the use of η-equivalence does not strongly influence
our algorithm, as explained below.

A βsdη-matching equation is a pair (A,B) of terms such that B is βη-normal
and contains no matching variable. It is denoted by A 6

η
βsd

B. A substitution
ϕ is a βsdη-match if there exists a term C such that Aϕ =⇒βsd

C →∗
η B. The

algorithm described in Section 3 has to be adapted w.r.t. two aspects:
First, η-expansion is performed on demand by adding a rule to the matching

algorithm:

(λx .A 6
η
βsd

B), ❙ →λ (A 6
η
βsd

Bx),❙

if B is not a λ-abstraction and x is fresh

In one step, this rule first replaces the right hand side B by λy . (By) and then
performs λ-abstraction elimination as in the rule (λλ).

Secondly, we must add a side condition in the rule (@β) so that λx .A2 and
A1 are in βη-normal form (and not only in β-normal form).

The algorithm enjoys the same properties (termination, soundness and com-
pleteness) as before. Moreover, if we apply this algorithm to an equation whose
first term is a pattern à la Miller then we obtain a complete match set consisting
exactly of the more general match.

Example 23 If we consider the match-equation of Ex. 15 we can remark that
solving the equation modulo βsdη we get only 4 solutions. In fact, the rule (@β)
applies now only twice. The following two solutions found in Ex. 15 are η-
equivalent: X 6βsd

a , Y 6βsd
b and X 6βsd

λx . ax , Y 6βsd
b .

Example 24 Consider the equation (λx .X(Y x), a). It has no βsd-solution
whereas it has two βsdη-matches given by {a/X, λz . z/Y } and {λz . z/X, a/Y }.
λx .X(Y x) 6

η
βsd

a → X(Y x) 6
η
βsd

ax

→ X 6
η
βsd

a, Y x 6
η
βsd

x

→ X 6
η
βsd

a, Y 6
η
βsd

λz . z

λx .X(Y x) 6
η
βsd

a → X(Y x) 6
η
βsd

ax

→ X 6
η
βsd

λz . z, Y x 6
η
βsd

ax

→ X 6
η
βsd

λz . z, Y 6
η
βsd

a



Conclusion

We proposed a new approach to study higher-order matching following [dMS01]:
instead of working in the typed λ-calculus modulo full β-reduction we propose
to work in the untyped λ-calculus modulo a restriction of β-equivalence, namely
superdevelopments. The essence of the restriction induces that all second-order
β-matches are matches modulo superdevelopments. The algorithms are described
in a mathematically elegant way that allow us to write intuitive proofs (termi-
nation, soundness and completeness). Since we consider untyped frameworks
the use of the η-equivalence does not influence the behavior and design of our
algorithms.

An implementation of the algorithm of matching modulo superdevelopments
was done in the TOM language [MRV03].

Higher-order formalisms and especially higher-order rewriting generally
choose the typed λ-calculus modulo β (or βη) as a meta-language. In the case
of CRS [KvOvR93], the meta-language is the untyped λ-calculus with develop-
ments. The next step is thus to study higher-order rewriting with the untyped
λ-calculus modulo superdevelopments as a meta-language (in other words to
consider higher-order rewriting with the untyped λ-calculus with superdevelop-
ments as a substitution calculus in the sense of [Oos94]).

As far as it concerns the transformations of pattern-matching programs, the
work of [dMS01] motivates by several examples higher-order matching in pattern-
calculi such as the ρ-calculus [CLW03] or pure pattern calculi [JK06]. Since a
simple type system that ensures termination is difficult to find in this context,
this paper should give useful guidelines.

Acknowledgments: We would like to thank E. Bonelli for some comments
that motivated this work. It benefited of the discussions we had with H. Cirstea,
C. Kirchner and G. Nadathur. Finally, we sincerely thank the referees for their
deep remarks on the paper.

References

[Acz78] P. Aczel. A general church rosser theorem. Technical report, University of
Mancherster, July 1978.

[Ali05] C. Alias. Program Optimization by Template Recognition and Replacement.
PhD thesis, University of Versailles, Versailles, France, December 2005.

[Bar84] H. Barendregt. The Lambda-Calculus, its syntax and semantics. Elsevier
Science Publishers B. V. (North-Holland), 1984.

[CLW03] H. Cirstea, L. Liquori, and B. Wack. Rewriting calculus with fixpoints:
Untyped and first-order systems. volume 3085. Springer, 2003.

[DHK00] G. Dowek, T. Hardin, and C. Kirchner. Higher-order unification via explicit
substitutions. Information and Computation, 157(1/2):183–235, 2000.

[dMS01] O. de Moor and G. Sittampalam. Higher-order matching for program trans-
formation. Theoretical Computer Science, 269, 2001.

[Dow01] G. Dowek. Higher-order unification and matching. In Handbook of Auto-
mated Reasoning. Elsevier, 2001.



[DSP91] M. Dalrymple, S. M. Shieber, and F. Pereira. Ellipsis and higher-order
unification. Linguistics and Philosophy, 14:399–452, 1991.

[GS89] J. Gallier and W. Snyder. Higher-order unification revisited: Complete sets
of transformations. JSCOMP: Journal of Symbolic Computation, 8, 1989.

[HL78] G. Huet and B. Lang. Proving and applying program transformations
expressed with second-order patterns. Acta Informatica, 11, 1978.

[JK06] C. B. Jay and D. Kesner. Pure pattern calculus. In Proceedings of the
European Symposium on Programming (ESOP) LNCS 3924, 2006.

[KvOvR93] Klop, van Oostrom, and van Raamsdonk. Combinatory reduction systems:
Introduction and survey. TCS: Theoretical Computer Science, 121, 1993.

[Lév78] J.-J. Lévy. Reductions Correctes et Optimales dans le Lambda-Calcul.
Ph.D. thesis, Université de Paris, 1978.

[Mil90] D. Miller. Higher-order logic programming. In Int. Conf. on Logic Pro-
gramming, page 784, 1990.

[Mil91] D. Miller. A logic programming language wiith lambda-abstraction, func-
tion variables, and simple unification. Jour. of Log. and Comp., 1991.

[MN98] R. Mayr and T. Nipkow. Higher-order rewrite systems and their confluence.
Theoretical Computer Science, 192, 1998.

[MRV03] P.-E. Moreau, C. Ringeissen, and M. Vittek. A pattern matching compiler
for multiple target languages. In Compiler Construction, 2003.

[NP98] T. Nipkow and C. Prehofer. Higher-order rewriting and equational reason-
ing. In Automated Deduction: A Basis for Applications. Kluwer, 1998.

[Oos94] V. V. Oostrom. Confluence for abstract and higher-order rewriting. PhD
thesis, Vrije Universiteit, 1994.

[Pfe01] F. Pfenning. Logical frameworks. In Handbook of Automated Reasoning,
volume II, chapter 17, pages 1063–1147. Elsevier Science, 2001.

[Qia96] Z. Qian. Unification of higher-order patterns in linear time and space. J.
Log. Comput, 1996.

[Shi94] H. Shi. Extended matching with applications to program transformation.
PhD thesis, Universität Bremen, 1994.

[Sit01] G. Sittampalam. Higher-order Matching for Program Transformation. PhD
thesis, Magdalen College, 2001.

[Vis05] E. Visser. A survey of strategies in rule-based program transformation
systems. Journal of Symbolic Computation, 40(1), 2005.

[vOvR93] V. van Oostrom and F. van Raamsdonk. Comparing combinatory reduction
systems and higher-order rewrite systems. volume 816 of LNCS, 1993.

[vR93] F. van Raamsdonk. Confluence and superdevelopments. Rewriting Tech-
niques and Applications, 1993.

[Wac06] B. Wack. A Curry-Howard-De Bruijn Isomorphism Modulo. Under sub-
mission, 2006.


