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Abstract

We answer a question raised by P. Brass on the number of maximally repeated sub-
patterns in a set of n points in Rd. We show that this number, which was conjectured
to be polynomial, is in fact Θ(2n/2) in the worst case, regardless of the dimension d.
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1 Introduction

Let S be a set of n points in Rd. A sub-pattern, i.e. a subset, of S is repeated if
it can be translated to another subset of S. A sub-pattern P ⊆ S is maximally

repeated if for any subset Q such that P ( Q ⊆ S there exists a translation
that maps P to a subset of S without mapping Q to a subset of S. In other
words, a pattern is maximally repeated if it cannot be extended without losing
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S

Fig. 1. A pattern S and all its maximally repeated sub-patterns.

at least one of its occurrences. Fig. 1 shows a pattern S ⊆ R2 and all its
maximally repeated sub-patterns.

Maximally repeated sub-patterns (MRSP for short) originated from the field
of pattern matching to solve the following problem: given two point sets X

and Y , can Y be translated to a subset of X? P. Brass [1, Theorem3] gave an
algorithm that answers such queries in time O(|Y | log |X|) whose preprocessing
time depends on the number of distinct MRSP of X, where two MRSP are
distinct if they are not equal up to a translation. A natural question is thus
to give a theoretical bound on this number of MRSP in order to provide an
upper bound on the time requirement of that algorithm. This number was
conjectured [1] [2, p.267] to be O(nd) where d is the dimension in which the
point set is embedded.

In this note we prove that the number of MRSP of a set of n points in Rd

is actually Θ(2n/2) in the worst case and thus finding sub-patterns via this
approach leads to exponential worst-case running time. More precisely, we
show the following theorem:

Theorem 1 A set of n points has at most 16 · 2⌈n/2⌉ distinct MRSP and for

arbitrary large n there exist sets S of n points with 2⌊n/2⌋−1 distinct MRSP.

Our proof is based on combinatorial rather than geometrical properties of the
point set, which explains that the bound is independent of the dimension d in
which the points are considered.

2 The Proof of Theorem 1

Let us first introduce some terminology. Given a set of points P ⊆ Rd and a
translation t ∈ Rd, P + t := {x + t | x ∈ P} is the set of translated points of
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Fig. 2. A set Sk of 2k points with at least 2k−1 distinct MRSP.

P by t. A subset P ⊆ S is a repeated sub-pattern if there exists a translation
t 6= 0 such that P + t ⊆ S. P is a maximally repeated sub-pattern (MRSP) if,
in addition, for any subset Q such that P ( Q ⊆ S there exists a translation
t such that P + t ⊆ S and Q + t 6⊆ S. Two MRSP are distinct if they are not
equal up to a translation.

In the sequel, we present a set of n points in R having at least 2⌊n/2⌋−1 distinct
MRSP (Section 2.1) and then prove that any set of n points in Rd can have
at most 16 · 2⌈n/2⌉ distinct MRSP (Section 2.2).

2.1 Lower bound

We build our example on a 1-dimensional grid which can, of course, be con-
sidered as embedded in Rd for any d > 1. Let k be an integer, Gk denote the
set of integers {1, . . . , k} and Sk be Gk ∪ (Gk + (k + 1)), that is two copies of
Gk separated by a gap of one point at k + 1 (see Figure 2).

Let P be a subset of the first copy of Gk, Q ⊆ Sk be a proper super-set of P

and p∗ ∈ Q \ P . If p∗ > k + 2 then P + (k + 1) ⊆ Sk and Q + (k + 1) 6⊆ Sk. If
p∗ 6 k then P +(k+1−p∗) ⊆ Sk and Q+(k+1−p∗) 6⊆ Sk. This proves that P

is a MRSP. Two subsets of Gk containing 1 cannot be equal up to a non-trivial
translation. Thus, all subsets of Gk containing 1 are distinct MRSP and Sk

admits at least 2k−1 MRSP. This proves the first statement of Theorem 1.

2.2 Upper bound

Recall that (x1, . . . , xd) <L (y1, . . . , yd) in the lexicographic order on vectors
of Rd if x1 < y1 or for some r = 1, . . . , d − 1:

x1 = y1, · · · , xr = yr and xr+1 < yr+1.

Let S = {a1, . . . , an} ⊆ Rd be a set of n points and T ⊆ Rd the set of

translations defined by T := S − S = {x − y | (x, y) ∈ S2}.
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Let A denote the set of MRSP P such that no translation t <L 0 satisfies
P + t ⊆ S. The set A contains exactly one representative of each equivalence
class of MRSP under translation, namely the one with the smallest point. To
bound |A|, we first partition this set in the following families:

Aij = {P ∈ A | {ai, aj} ⊆ P ⊆ {ai, . . . , aj}}.

Informally, Aij is the set of MRSP spanning the range {ai, . . . , aj}. Since
A11 = {a1} and Aii is empty for i ≥ 2, we have

|A| = 1 +
∑

16i<j6n

|Aij|. (1)

There is an injection between the MRSP of Aij and the subsets of {ai+1, . . . , aj−1}.
Hence,

|Aij| 6 2j−i−1 (2)

which will be enough to bound the number of MRSP spanning a “small” range.
To bound the number of MRSP spanning a “wide” range, we describe them
by the set of translations they allow. Let φ denote the function:

φ :











2S → 2T

P 7→ {t ∈ T | P + t ⊆ S}

If two elements of A, P1 and P2, have the same image by φ then:

φ(P1 ∪ P2) = φ(P1) = φ(P2).

By definition of MRSP, this implies that P1 ∪ P2 = P1 = P2. Thus, φ is an
injection from A to the subsets of T . For 1 6 i < j 6 n, let

Tij = {t ∈ T | t ≥L 0 and {ai, aj} + t ⊆ S}

be the set of all non-negative translations compatible with ai and aj. MRSP in
Aij only allow translations in Tij, so φ is an injection from Aij to the subsets
of Tij and it follows that |Aij| 6 2|Tij |. Any t ∈ Tij \ {0} can be identified by
the element ay = aj + t. Thus, the size of Tij is bounded by the number of
such indexes y, which is at most n − j. Finally, we obtain that

|Aij| 6 2n−j. (3)

Combining Equations (2), (3) and (1) we obtain:

|A| 6 1 +
∑

16i<j6n

2min(n−j,j−i−1).
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Splitting the sum at j = ⌈n+i
2
⌉ + 1, we have

|A| 6 1 + 2
n

∑

i=1

⌈n+i

2
⌉+1

∑

j=i+1

2j−i−1
6 1 + 2

n
∑

i=1

2⌈
n−i

2
⌉+1

6 1 + 8

⌈n
2
⌉

∑

ℓ=1

2ℓ

and finally |A| 6 16 · 2⌈n/2⌉, which proves the second statement of Theorem 1.
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