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Introduction

The Intersection Type Discipline as presented in [10] (a more enhanced system was presen-
ted in [9]; for an overview of the various existing systems, see [2]), is an extension of Curry’s
system [12], that consists mainly of allowing for term variables (and terms) to have more
than one type. Intersection types are constructed by adding, next to the type constructor
‘→’ of Curry’s system, the type constructor ‘∩’ and the type-constant ‘ω’.

One way to explain the use of ‘∩’ is by stating that, in a certain contextM , the term-
variablex can play different, even non-unifyable, roles; this, in general, is a more liberal
approach than just requiring only one type forx, and gives a greater expressiveness in terms
of typeability. When more than one type has been assumed forx, then, by abstractingx
overM , a termλx.M is obtained that accepts operands that have to satisfy more than just
one requirement: a possible operand has to be typeable by each of the types used forx to
typeM . The type-constant ‘ω’ is theuniversal type, i.e. all terms can be assigned the type
ω; this, in general, introduces non-normalisable, but typeable terms.

This slight generalisation causes a great change in complexity; in fact, now type assign-
ment is closed forβ-equality:

M =β N ⇒ (B ⊢ M :σ ⇐⇒ B ⊢ N :σ).

and (head / strong) normalisation can be characterized by assignable types:

M has a head normal form⇐⇒ B ⊢ M :σ & σ 6= ω

M has a normal form ⇐⇒ B ⊢ M :σ & ω does not occur inB,σ

M is strongly normalisable⇐⇒ B ⊢ M :σ, whereω is not used at all.

(see, for example, [9, 1, 2]). These properties immediatelyshow that type assignment (even
in the system that does not containω, see [1]) is undecidable.

As in [22, 8], the set of terms can be extended by adding the term-constant⊥. Adding
also the reduction rules⊥N →β⊥ ⊥, andλx.⊥ →β⊥ ⊥ to the notion of reduction gives
rise to the notion ofapproximate normal formsthat are in essense finite rooted segments of
Böhm-trees. It is well known that interpreting a term by the set of approximants that can be
associated to it, gives a model for the Lambda Calculus. Fromthe Approximation Theorem,
i.e. the observation that there exists a very precise relation between types assignable to a
termM and those assignable to its approximants,A(M), formulated as

B ⊢ M :σ ⇐⇒ ∃A ∈ A(M) [B ⊢ A :σ]

(see [20, 1, 2]), it is immediately clear that the set of intersection types assignable to a term
can be used to define a model for the Lambda Calculus (see [9, 1,2]).
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4 van Bakel

Of the above mentioned results, all but the first will be proved again in this paper; in fact,
we will show that these can all be obtained from one more fundamental result.

In previous papers, the Approximation Theorem and Strong Normalisation Theorem were
proved independently (see, respectively, [2] and [1]), though both using the same technique
of Computability Predicates [21, 16]. This technique has been widely used to study nor-
malisation properties or similar results, as for example in[11, 14, 19, 1, 2, 4, 5, 7, 6]. In
this paper, we will show that both are special cases of a more fundamental result, using a
variant of the technique developed in [7], that has also found its application in other fields
[6]. This more fundamental result consists of defining a notion of reduction on derivations
in ‘⊢’ that generalizes cut-elimination, and the proof of the theorem that this kind of reduc-
tion is strongly normalisable. It might seem surprising, but this result does not come easy
at all. The reason for this is that, unlike for ordinary systems of type assignment, for the
intersection system there is a significant difference between derivation reduction and ordin-
ary reduction (see the beginning of Section2.1); unlike normal typed- or type assignment
system, in ‘⊢’ not every term-redex occurs with types in a derivation. Moreover, especially
the use of a relation ‘≤’ on types, together with a derivation rule(≤), greatly disturbs the
smoothness of proofs (see again Section2.1).

From this strong normalisation result for derivation reduction, the Approximation The-
orem and Strong Normalisation Theorem follow easily. The first of these implies the Head-
Normalisation Theorem and (indirectly) the NormalisationTheorem, as was already demon-
strated in [2].

The kind of intersection type assignment considered in thispaper is that of [2], i.e. the
essential intersection type assignment system, a restricted version of the BCD-system of
[9], that is equally powerful in terms of typeability and expressiveness. The major feature of
this restricted system is, compared to the BCD-system, a restricted version of the derivation
rules and the use of strict types (first introduced in [1]).

In [3] a similar result was shown for thestrict intersection type assignment system. This
differs from the one considered here in that the≤ relation on types used there is not contra-
variant over arrow types, but only allows for the selection of one of the types in an intersec-
tion. The contribution of this paper is to generalise that result to theessentialintersection
type assignment system, a notion of type assignment that is also closed forν-reduction.

One of the first tentatives to tackle the main problem dealt with in this paper was to
follow a very natural idea that originates from the observation formulated above: because
of the presence of the type constantω that can be assigned to any term, it is possible to
type terms that contain non-normalizing subterms, so non-normalisable subterms are (at
least partially) covered withω. This lead to the assumption that, when defining a notion
of ⊥-type assignment, a variant of the essential system that consists basically of assigning
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The Heart of Intersection Type Assignment 5

ω to the term-constant⊥ only, all typeable terms are strongly normalisable. This, perhaps
surprisingly, turned out to be wrong, as will be illustratedin Section5.

The outline of this paper is as follows. In Section1, we will recall the definition of
the essential type assignment system of [2], together with some of its main properties. In
Section2.1, a notion of reduction on derivations in ‘⊢’ is defined, for which we will show
a strong normalisation result in Section2.2. In section5 we will present the⊥-system, a
variant of the essential system that consists basically of assigningω to the term-constant⊥
only. We will then show that, although in this system no redexcan be covered byω, this
restriction itself is not enough to ensure strong-normalisability of typeable terms. However,
in Section5, we will show that for the relevant intersection type assignment system [2],
the restriction guarantees strong normalisation, and we will discuss the proof for the strong
normalisation of derivation reduction in the strict systemof [1]. We will finish this paper in
Section3.3by extending the result of Section2.2 to the characterisations of normalisation.

The result of this paper show that theredoesexist a relation betweenω and redexes; in
fact, in this paper we show that all the normalisation properties boil down to the same result:
in a typeable term, all non-terminating subterms occur in (or are created by reduction in)
positions that are typed withω.

There exists a number of related results in the literature. For example, in [18] a strong norm-
alisation result was proved for derivation reduction in thesetting of the notion of intersection
type assignment known asD, as defined in [17]. This system is in fact the BCD-system [9]
without the type-constantω, and that strong normalisation result itself is a special case of
the results of this paper presented in Section5.

Notations

In this paper, the symbolϕ will be a type-variable; Greek symbols likeα, β, µ, ρ, σ, andτ
will range over types. ‘→’ will be assumed to associate to the right, and ‘∩’ binds stronger
than ‘→’. M,N are used for lambda terms,x, y, z for term-variables,M [N/x] for the usual
operation of substitution in terms, andA for terms inλ⊥-normal form.B is used for bases,
andB\x for the basis obtained fromB by erasing the statement that hasx as subject. All
symbols can appear indexed.

1 Intersection type assignment

In this section, the essential type assignment system of [2]is presented, a restricted version
of the system presented in [9], together with some of its properties. The major feature of
this restricted system is, compared to the BCD-system, a restricted version of the derivation

RR n° 00096419



6 van Bakel

rules and the use of strict types. It also forms a slight extension of the strict type assignment
system that was presented in [1]; the main difference is thatthe strict system is not closed
for η-reduction, whereas the essential system is.

Definition 1.1 i) Ts, the set ofstrict types, andT , the set ofstrict intersection types, are
defined through mutual induction by:

Ts ::= ϕ | (T → Ts)

T ::= (Ts∩ · · · ∩ Ts)

ii ) A statementis an expression of the formM :σ. M is thesubjectandσ thepredicate
of M :σ.

iii ) A basisis a set of statements with only distinct variables as subjects.
iv) For basesB1, . . . , Bn, the basis∩{B1, . . . , Bn} is defined by:x:σ1∩· · ·∩σm ∈ ∩{B1,

. . . , Bn} if and only if {x:σ1, . . . , x:σm} is the (non-empty) set of all statements about
x that occur inB1 ∪ · · · ∪Bn.

Notice thatTs is a proper subset ofT . OftenB,x:σ will be written for∩{B, {x:σ}}, when
x does not occur inB, and will omit the brackets ‘{’ and ‘}’.

We defineω as the empty intersection: ifn = 0, thenσ1∩· · ·∩σn ≡ ω, soω does not
occur in an intersection subtype. The motivation for this lies in the semantics of types (see
[9]), where⌈⌈σ⌋⌋ is the set of terms that can be assigned the typeσ. Then, for allσi (i ∈ n),

⌈⌈σ1∩ · · · ∩σn⌋⌋ ⊆ ⌈⌈σ1∩ · · · ∩σn−1⌋⌋ ⊆ . . . ⊆ ⌈⌈σ1∩σ2⌋⌋ ⊆ ⌈⌈σ1⌋⌋.

It is natural to extend this sequence with⌈⌈σ1⌋⌋ ⊆ ⌈⌈ ⌋⌋, and therefore to define that the
semantics of the empty intersection is the whole set ofλ-terms, which is exactly⌈⌈ω⌋⌋.

Notice that intersection type schemes (so alsoω) occur in strict types only as subtypes at
the left-hand side of an arrow type scheme. Unless stated otherwise, ifσ1∩· · ·∩σn is used
to denote a type, then allσi (i ∈ n) are assumed to be strict.

Definition 1.2 (RELATIONS ON TYPES) i) The relation≤ is defined as the least pre-order
(i.e. reflexive and transitive relation) onT such that:

∀n≥ 1,∀ i ∈ n [σ1∩· · ·∩σn ≤ σi]

∀n≥ 1,∀ i ∈ n [σ ≤ σi] ⇒ σ ≤ σ1∩· · ·∩σn

ρ ≤ σ & τ ≤ µ ⇒ σ→τ ≤ ρ→µ

INRIA



The Heart of Intersection Type Assignment 7

ii ) The equivalence relation∼ on types is defined by:σ ∼ τ ⇐⇒ σ ≤ τ ≤ σ, and we
will work with types modulo∼ .

iii ) We write B ≤B′ if and only if for everyx:σ′ ∈ B′ there is anx:σ ∈ B such that
σ ≤ σ′, andB ∼ B′ ⇐⇒ B ≤B′ ≤B.

Notice thatT may be considered modulo∼; then≤ becomes a partial order. In this paper,
however, in order to get a strong relation between the structure of types and derivations,
types will not be considered modulo∼ .

The following property is easy to show:

Property 1.3([2]) For all σ, τ ∈ T , σ ≤ τ if and only if there areσi (i ∈ n), τj (j ∈ m)
such thatσ = σ1∩· · ·∩σn, τ = τ1∩· · ·∩τm, and, for everyj ∈ m, there is ani ∈ n such
thatσi ≤ τj .

The (essential) intersection type assignment system is constructed from the set of strict
types and the following derivation rules. In this way a syntax directed system is obtained,
that satisfies the main properties of the BCD-system (see [2]; the presentation of the deriv-
ation rules in that paper differs from that one used here).

Definition 1.4 i) Intersection type assignmentandintersection derivationsare defined by
the following natural deduction system (where all types displayed are strict, exceptσ
in the derivation rules(→I), (→E), and(Ax)):

(Ax) : (σ ≤ τ)
B,x:σ ⊢ x :τ (∩I) :

B ⊢ M :σ1 · · · B ⊢ M :σn
(n ≥ 0)

B ⊢ M :σ1∩· · ·∩σn

(→I) :
B,x:σ ⊢ M :τ

B ⊢ λx.M :σ→τ
(→E) :

B ⊢ M :σ→τ B ⊢ N :σ

B ⊢ MN :τ

ii ) We writeB ⊢ M :σ if this statement is derivable using an intersection derivation, and
write D :: B ⊢ M :σ to specify that this result was obtained through the derivation D.

Notice thatB ⊢ M :ω, for all B andM , as a special case of rule(∩I).

We should emphasise the difference between this notion of type assignment and the strict
one that was defined in [3]; instead of the rule(Ax) given above, it contained the rule

(∩E) : (n≥ 1, i ∈ n)
B,x:σ1∩· · ·∩σn ⊢S x :σi

Notice, that this rule is a special case of rule(Ax) in that σ1∩· · ·∩σn ≤ σi, for all i ∈ n.
This is, in fact, the only difference betweenstrict and non-strict type assignment. As

RR n° 00096419



8 van Bakel

for the difference in derivable statements, in the essential system it is possible to derive
⊢
⊥

λx.x : (α→β)→(α∩γ)→β, which is not possible in ‘⊢S’.

Some of the properties of this system, proved in [2], are:

Property 1.5 i) If B ⊢ M :σ, andB′ ≤B,σ ≤ τ , thenB′ ⊢ M :τ , so the following rule is
admissible in ‘⊢’:

(≤) :
B ⊢ M :σ

(B′ ≤B,σ ≤ τ)
B′ ⊢ M :τ

In fact, if this rule is added to the system, the rule(Ax) can be replaced by:

(Ax) : B,x:σ ⊢ x :σ

ii ) If M →η N , thenB ⊢ M :σ if and only ifB ⊢ N :σ, so the following rule is admiss-
ible in ‘⊢’:

(η) :
B ⊢ M :σ

(M →η N)
B ⊢ N :σ

iii ) If M =β N , thenB ⊢ M :σ if and only ifB ⊢ N :σ, so the following rule is admiss-
ible in ‘⊢’:

(=β) :
B ⊢ M :σ

(M =β N)
B ⊢ N :σ

We will use the following short-hand notation for derivations.

Definition 1.6 i) D = 〈Ax〉 :: B ⊢ x :σ if D consists of nothing but an application of rule
(Ax).

ii ) D = 〈D1, . . . ,Dn,∩I〉, if and only if D :: B ⊢ M :σ1∩· · ·∩σn for someσi (i ∈ n),
and there are derivationsDi :: B ⊢ M :σi such thatD is obtained fromD1, . . . ,Dn by
applying rule(∩I).

iii ) D = 〈D1,→I〉, if and only if there areM1, α, β such thatD :: B ⊢ λx.M1 :α→β,
and there is a derivationD1 :: B,x:α ⊢ M1 :β, such thatD is obtained fromD1 by
applying rule(→I).

iv) D = 〈D1,D2,→E〉, if and only if there areP,Q, andτ such thatD :: B ⊢ PQ :σ and
there are derivationsD1 :: B ⊢ P :τ→σ andD2 :: B ⊢ Q :τ , such thatD is obtained
from D1 andD2 by applying rule(→E).

INRIA



The Heart of Intersection Type Assignment 9

We will identify derivations that have the same structure inthat they have the same rules
applied in the same order (so are derivations involving the same term); the types derived
need not be the same.

We now extend the relation≤ to derivations in⊢; this notion is pivotal in the proof of
strong normalisation of derivation reduction.

Definition 1.7 i) 〈Ax〉 :: B ⊢ x :σ ≤ 〈Ax〉 :: B′ ⊢ x :σ′ for all B′ ≤B, andσ ≤ σ′.
ii ) 〈D1, . . . ,Dn,∩I〉 :: B ⊢ M :σ1∩· · ·∩σn ≤ 〈D′

1
, . . . ,D′

m,∩I〉 :: B′ ⊢ M :σ′

1
∩· · ·∩σ′

m,
if and only if for everyj ∈ m there exists ai ∈ n such thatDi ≤ D′

j .

iii ) 〈D1 :: B,x:α ⊢ M :β,→I〉 :: B ⊢ λx.M :α→β ≤

〈D′
1

:: B′, x:α ⊢ M :β′,→I〉 :: B′ ⊢ λx.M ′ :α′→β′

if and only ifD1 ≤ D′

1
.

iv) Let D = 〈D1 :: B ⊢ P :τ→σ,D2 :: B ⊢ Q :τ,→E〉 :: B ⊢ PQ :σ. Then, for every
ρ ≤ τ, µ≥ σ, D′

1
≤ D1, D′

2
≥D2 such thatD′

1
:: B′ ⊢ P :ρ→µ andD′

2
:: B′ ⊢ Q :ρ,

D ≤ 〈D′

1 :: B′ ⊢ P :ρ→µ,D′

2 :: B′ ⊢ Q :ρ,→E〉 :: B′ ⊢ PQ :µ.

Notice that ≤ is contra-variant in(→E).

The following is easy to show, and establishes the relation between≤ on types and≤
on derivations:

Lemma 1.8 i) If D :: B ⊢ M :σ andB′ ≤B, σ ≤ σ′, then there existsD′ ≥ D such that
D′ :: B′ ⊢ M ′ :σ′.

ii ) If D :: B ⊢ M :σ ≤ D′ :: B′ ⊢ M ′ :σ′, thenB′ ≤B, σ ≤ σ′.

Proof: i) We separate two cases:
(σ′ ∈ Ts) : By induction on the structure of derivations.

(Ax) : ThenD = 〈Ax〉 :: B,x:ρ ⊢ x :σ, with ρ≤ σ. SinceB′ ≤B,x:ρ, there
existsx:µ ∈ B′ such thatµ≤ ρ≤ σ ≤ σ′. TakeD′ = 〈Ax〉 :: B′ ⊢ x :σ′, then
D ≤ D′.

(∩I) : ThenD = 〈D1, . . . ,Dn,∩I〉 :: B ⊢ M :σ1∩· · ·∩σn, withDi :: B ⊢ M :σi,
for i ∈ n; notice thatD ≤ Di. Then, by Property1.3, there existsj ∈ n such
thatσj ≤ σ′, and, by induction, there existsD′

j :: B′ ⊢ M :σ′, with Dj ≤ D′

j .
TakeD′ = D′

j, thenD ≤ D′.
(→I) : Then D = 〈D1 :: B,x:α ⊢ M ′ :β,→I〉 :: B ⊢ λx.M ′ :α→β, so σ =

α→β. Sinceσ′ ∈ Ts, σ′ = ρ→µ such thatρ≤ α andβ ≤ µ. ThenB′, x:ρ≤
B,x:α, and by induction, there existsD′

1
≥ D1, such thatD′

1
:: B′, x:ρ ⊢ M ′ :µ.

TakeD′ = 〈D′

1
:: B′, x:ρ ⊢ M ′ :µ,→I〉 :: B′ ⊢ λx.M ′ :ρ→µ, thenD ≤ D′.

RR n° 00096419



10 van Bakel

(→E) : ThenD = 〈D1 :: B ⊢ M1 :γ→σ,D2 :: B ⊢ M2 :γ,→E〉 :: B ⊢ M1M2 :σ.
Sinceγ→σ ≤ γ→σ′, by induction, there existsD′

1
:: B′ ⊢ M ′

1
:γ→σ′ such

thatD′
1

≥ D1; notice thatD2 ≤ D2. TakeD′ = 〈D′
1
,D2,→E〉 :: B′ ⊢ M1M2 :σ′,

thenD ≤ D′.
(σ′ = σ′

1
∩· · ·∩σ′

n) : By Property1.3, for i ∈ n, σ ≤ σ′

i ∈ Ts; by part (i), there exists
D′

i ≥ Di such thatD′

i :: B′ ⊢ M :σ′

i. TakeD′ = 〈D′

i, . . . ,D
′
n,∩I〉 :: B′ ⊢ M :σ′,

thenD ≤ D′.
ii ) Easy, from Definition1.7.

2 Strong normalisation of derivation reduction

In this section, we will define a notion of reduction on derivations and show this notion to
be strongly normalisable.

2.1 Derivation reduction

In this section, we will define a notion of reduction on derivations D :: B ⊢ M :σ. This
will follow ordinary reduction, by contracting typed redexes that occur inD, i.e. redexes for
subterms ofM of the shape(λx.P )Q, for which the following is a subderivation ofD:

〈〈D1 :: B,x:σ ⊢ P :τ,→I〉 :: B1 ⊢ λx.P :σ→τ ,D2 :: B ⊢ Q :σ,→E〉 :: B ⊢ (λx.P )Q :τ.

We will prove in Section2.2 that this notion of reduction is terminating, i.e. stronglynorm-
alisable.

The effect of this reduction will be that the derivation for the redex(λx.P )Q will be
replaced by a derivation for the contractum; this can be regarded as a generalisation of
cut-elimination, but has, because the system at hand uses intersection types together with
the relation ‘≤’, to be defined with care. Take for example the following derivation for
B ⊢ (λx.x)N :σ.

x:σ ⊢ x :σ

⊢ λx.x :σ∩τ→σ

D1

B ⊢ N :σ

D2

B ⊢ N :τ

B ⊢ N :σ∩τ

B ⊢ (λx.x)N :σ

This derivation will reduce toD1 :: B1 ⊢ N :σ; it is exactly the fact that the derivation
D2 (and the derivation redexes that occur inside it) does not return in the contractum, that

INRIA



The Heart of Intersection Type Assignment 11

makes this kind of reduction strongly normalizing. So, whencontracting a derivation for
the redex

〈〈D1 :: B, x:σ ⊢ P : τ,→I〉 :: B1 ⊢ λx.P :σ→τ ,D2 :: B ⊢ Q :σ,→E〉 :: B ⊢ (λx.P )Q : τ,

i.e.

(σ ≤ ρ)
x:σ ⊢ x :ρ

D1

B,x:σ ⊢ P :τ

B ⊢ λx.P :σ→τ

D2

B ⊢ Q :σ

B ⊢ (λx.P )Q :τ

it is in general not the case that the derivationD2 will just be inserted in the positions ofD1

where a type for the variablex is derived, since that would give an illegal derivation. The
(≤)-step ‘to be applied at the end ofD2’ has to be pushed upwards; this is possible because
of Property1.5 (i). This, in general, changes the structure of the derivation.

Reduction on derivations is formally defined by first definingsubstitution on derivations:

Definition 2.1 (DERIVATION SUBSTITUTION) ForD :: B,x:σ ⊢ M :τ , andD0 :: B ⊢ N :σ,
the resultD′ of substitutingD0 in D, D [D0/x:σ] :: B ⊢ M [N/x] :τ is inductively defined
by:

i) D = 〈Ax〉 :: B,x:σ ⊢ x :τ , with σ ≤ τ . Let D′
0

be such thatD0 ≤ D′
0

:: B ⊢ N :τ ,
thenD [D0/x:σ] = D′

0
.

ii ) D = 〈D1, . . . ,Dn,∩I〉 :: B,x:σ ⊢ M :τ1∩· · ·∩τn, so fori ∈ n, Di :: B,x:σ ⊢ M :τi.
Let

D′

i = Di [D0/x:σ] :: B ⊢ M [N/x] :τi,

then

D′ = 〈D′

1, . . . ,D
′

n,∩I〉 :: B ⊢ M [N/x] :τ1∩· · ·∩τn = 〈D1, . . . ,Dn,∩I〉[D0/x:σ].

iii ) D = 〈D1 :: B,x:σ, y:α ⊢ M1 :β,→I〉 :: B,x:σ ⊢ λy.M1 :α→β. Let

D′

1 = D1 [D0/x:σ] :: B, y:α ⊢ M1[N/x] :β

Then

D′ = 〈D′

1,→I〉 :: B ⊢ (λy.M1)[N/x] :α→β = 〈D′

1,→I〉[D0/x:σ]

RR n° 00096419



12 van Bakel

iv) D = 〈D1 :: B,x:σ ⊢ P :ρ→τ,D2 :: B,x:σ ⊢ Q :ρ,→E〉 :: B,x:σ ⊢ PQ :τ . Let

D′
1

= D1 [D0/x:σ] :: B ⊢ P [N/x] :ρ→τ,

D′
2

= D2 [D0/x:σ] :: B ⊢ Q[N/x] :ρ,

then

D′ = 〈D′

1,D
′

2,→E〉 :: B ⊢ (PQ)[N/x] :τ = 〈D1,D2,→E〉[D0/x:σ]

Before coming to the definition of derivation-reduction, weneed to define the concept of
‘position of a subderivation in a derivation’.

Definition 2.2 LetD be a derivation, andD′ be a subderivation ofD. The positionp of D′

in D is defined by:
i) If D′ = D, thenp = ε.

ii ) If the position ofD′ in D1 is q, andD = 〈D1,→I〉, or D = 〈D1,D2,→E〉, then
p = 1q.

iii ) If the position ofD′ in D2 is q, andD = 〈D1,D2,→E〉, thenp = 2q.
iv) If the position ofD′ in Di (i ∈ n) is q, andD = 〈D1, . . . ,Dn,∩I〉, thenp = q.

We now can give a clear definition of reductions on derivations; notice that this reduction
corresponds to contracting a redex(λx.M)N in the term involved only if that redex appears
in the derivation in a sub-derivation with type different fromω.

Definition 2.3 We say that the derivationD :: B ⊢ M :σ reduces toD′ :: B ⊢ M ′ :σ at
positionp with redexR, if and only if:

i) σ ∈ Ts.
a) D = 〈〈D1,→I〉,D2,→E〉 :: B ⊢ (λx.M)N :σ

D1

B,x:τ ⊢ M :σ

B ⊢ λx.M :τ→σ

D2

B ⊢ N :τ

B ⊢ (λx.M)N :σ

ThenD reduces toD1 [D2/x:τ ] :: B ⊢ M [N/x] :σ at positionε with redex(λx.M)N .
b) If D1 reduces toD′

1
at positionp with redex R, then

1) D = 〈D1,→I〉 :: B ⊢ λx.M1 :α→β reduces toD′ = 〈D′
1
,→I〉 :: B ⊢ λx.M1 :α→β

at position1p with redex R.
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2) D = 〈D1,D2,→E〉 :: B ⊢ PQ :σ reduces toD′ = 〈D′
1
,D2,→E〉 :: P ′Q :σ at

position1p with redex R.
3) D = 〈D2,D1,→E〉 :: B ⊢ PQ :σ reduces toD′ = 〈D2,D

′
1
,→E〉 :: PQ′ :σ at

position2p with redex R.
ii ) σ = σ1∩· · ·∩σn. If D :: B ⊢ M :σ1∩· · ·∩σn, then, for everyi ∈ n, there is aDi,

such thatDi :: B ⊢ M :σi, andD = 〈D1, . . . ,Dn,∩I〉. If there is ani ∈ n such that
Di reduces toD′

i at positionp with redex(λx.P )Q (a subterm ofM ), then, for all
1≤ j 6= i≤n, either
a) there is no redex at positionp because there is no subderivation at that position,

andD′

j = Dj , with P [Q/x] instead of(λx.P )Q, or
b) Dj reduces toD′

j at positionp with redex(λx.P )Q.
ThenD reduces to〈D′

1
, . . . ,D′

n,∩I〉 at positionp with redexR.
iii ) We writeD →D D′ if there exists a positionp and redexR such thatD reduces toD′

at positionp with redexR. If D1 →D D2 →D D3, thenD1 →D D3.

We abbreviate ‘D is strongly normalisable with respect to→D ’ by ‘ SN(D)’, and useSN
for the set of strongly normalisable derivations:SN = {D | SN(D)}.

The following lemma formulates the relation between derivation reduction andβ-reduction.

Lemma 2.4 LetD :: B ⊢ M :σ, andD →D D′ :: B ⊢ N :σ, thenM →→β N .

Proof: By the above definition.

The following states some standard properties of strong normalisation.

Lemma 2.5 i) SN(〈D1,D2,→E〉) ⇒ SN(D1) & SN(D2).
ii ) SN(D1 :: B ⊢ xM1· · ·Mn :σ→τ) & SN(D2 :: B ⊢ N :σ) ⇒ SN(〈D1,D2,→E〉).
iii ) LetD :: B ⊢ M :σ be〈D1∩ · · · ∩Dn,∩I〉, soσ = σ1∩· · ·∩σn. If D→D D′ :: B ⊢ M ′ :σ

at positionp, then, for everyi ∈ n there existD′

i such that

eitherDi →D D′

i :: B ⊢ M :σi at positionp.

iv) For all i ∈ n, SN(D1 :: B ⊢ M :σi) if and only ifSN(〈D1∩ · · · ∩Dn,∩I〉).
v) If SN(D1 :: B ⊢ C[M [N/x]] :σ), and SN(D2 :: B ⊢ N :ρ), then there exists a de-

rivation D3 such thatSN(D3 :: B ⊢ C[(λy.M)N ] :σ).

Proof: Standard, using Definition2.3.
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Example 2.6Let D1,D2 be the derivations from Example3.11, and letD′
2

be the subde-
rivation

x:τ, y:ω→σ ⊢ y :ω→σ x:τ, y:ω→σ ⊢ xxy :ω

x:τ, y:ω→σ ⊢ y(xxy):σ

x:τ ⊢ λy.y(xxy): (ω→σ)→σ

that occurs inD2. By rule (→E) we can construct:

D2

⊢ λxy.y(xxy):τ→(ω→ρ)→ρ

D1

⊢ Θ:τ
(→E)

⊢ (λxy.y(xxy))Θ:(ω→ρ)→ρ

Notice that the term(λxy.y(xxy))Θ has onlyoneredex, that is not typed withω; contract-
ing it givesD′

2
[D1/x:τ ], i.e.:

(Ax)
y:ω→ρ ⊢ y :ω→ρ

(∩I)
y:ω→ρ ⊢ (ΘΘy):ω

(→E)
y:ω→ρ ⊢ y(ΘΘy):ρ

(→I)
⊢ λy.y(ΘΘy): (ω→ρ)→ρ

Notice that this last derivation is in normal form, but the term λy.y(ΘΘy) is not.

2.2 Strong normalisation result

In this subsection, we will prove a strong normalisation result for derivation reduction..
In order to prove that each derivation in ‘⊢’ is strongly normalisable with respect to→D ,

a notion of computable derivations is introduced (the technique of computability predicates
[21, 16] was also used in [11, 14, 1, 2, 4, 5, 7, 6]). We will showthat all computable
derivations are strongly normalisable with respect to derivation reduction, and then that all
derivations in ‘⊢’ contain a computable component.

Definition 2.7 The Computability PredicateComp(D) is defined inductively on types by:

INRIA
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Comp(D :: B ⊢ M :ϕ) ⇐⇒ SN(D)

Comp(D1 :: B ⊢ M :α→β) ⇐⇒

Comp(D2 :: B ⊢ N :α) ⇒ Comp(〈D1,D2,→E〉 :: B ⊢ MN :β)

Comp(〈D1, . . . ,Dn,∩I〉 :: B ⊢ M :σ1∩· · ·∩σn)

⇐⇒ ∀i ∈ n [Comp(Di :: B ⊢ M :σi)]

Notice that, as a special case for the third rule, we getComp(〈∩I〉 :: B ⊢ M :ω)

The following lemma formulates the relation between the computability predicate and
the relation ≤ on derivations, and is crucial for the proof of Theorem2.11. The main
difference between the solution of [3] and the one presentedhere lies in the fact that here
we need to prove this lemma, whereas in [3], it is not needed atall.

Lemma 2.8 IfComp(D :: B ⊢ M :σ), andD ≤ D′, thenComp(D′).

Proof: By induction on the structure of types. Notice that, by Lemma1.8,D′ = B′ ⊢ M :σ′,
with B′ ≤B, σ ≤ σ′.

We distinguish two cases:
(σ′ ∈ Ts) : (σ = ϕ) : Sinceϕ≤ σ′, alsoσ′ = ϕ, and the result is immediate.

(σ = α→β) : Thenσ′ = ρ→µ, with ρ ≤ α, β ≤ µ, and letD′ :: B ⊢ M :ρ→µ.
To showComp(D′), by Definition 2.7, we assumeComp(D0 :: B ⊢ N :ρ), and
use this to show that〈D′,D0,→E〉 :: B ⊢ MN :µ.
SinceD0 ≤ D′

0
:: B ⊢ N :α, from Comp(D0) we getComp(D′

0
) by induction.

AssumingComp(D :: B ⊢ M :α→β), Comp(〈D,D′
0
,→E〉 :: B ⊢ MN :β) fol-

lows by Definition2.7. Then〈D,D′
0
,→E〉 ≤ 〈D′,D0,→E〉 :: B ⊢ MN :µ, and

we getComp(〈D′,D0,→E〉), again by induction. SoComp(D :: B ⊢ M :ρ→µ),
by Definition2.7.

(σ = σ1∩· · ·∩σn) : If Comp(D :: B ⊢ M :σ1∩· · ·∩σn), thenD = 〈D1, . . . ,Dn,∩I〉,
by Definition2.7, andComp(Di :: B ⊢ M :σi) for i ∈ n. Sinceσ1∩· · ·∩σn ≤ σ′,
by Property1.3, there existsij ∈ n such thatσij ≤ σ′. ThenD ≤ Dij :: B ⊢ M :τj

and, by induction,Comp(Dij ).
(σ′ = σ1∩· · ·∩σn) : If Comp(D :: B ⊢ M :σ1∩· · ·∩σn), then, by Definition2.7, for every

i ∈ n there existDi such thatComp(Di :: B ⊢ M :σi), andD = 〈D1, . . . ,Dn,∩I〉.
Sinceσ1∩· · ·∩σn ≤ τ , by Property1.3, τ = τ1∩· · ·∩τm, and for allj ∈ m there exists
ij ∈ n such thatσij ≤ τj. SinceDi ≤ Dij :: B ⊢ M :τj, by induction,Comp(Dij ),
and, by Definition2.7,

Comp(〈Di1 , . . . ,Dim ,∩I〉 :: B ⊢ M :τ1∩· · ·∩τm)
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We will now prove thatComp satisfies the standard properties of computability pre-
dicates, being that computability implies strong normalisation, and that, for the so-called
neutralobjects, also the converse holds.

Lemma 2.9 i) Comp(D :: B ⊢ M :σ) ⇒ SN(D).
ii ) SN(D :: B ⊢ xM1· · ·Mm :σ) ⇒ Comp(D).

Proof: By simultaneous induction on the structure of types.
(σ = ϕ) : Directly by Definition2.7.
(σ = α→β) : i) Let x be a variable not appearing inM , and letD′ :: x:α ⊢ x :α, then,

by induction (ii ), Comp(D′). Assume, without loss of generality, thatx:α ∈ B.
By assumption,Comp(D :: B ⊢ M :α→β), andComp(〈D,D′,→E〉 :: B ⊢ Mx :β)
by Definition2.7. Then, by induction(i), SN(〈D,D′,→E〉), so alsoSN(D).

ii ) AssumeComp(D′ :: B ⊢ N :α), then by induction(i), SN(D′). Then also by
Lemma2.5 (ii ), SN(〈D,D′,→E〉 :: B ⊢ xM1· · ·MmN :β). Then, by induction(ii ),
Comp(〈D,D′,→E〉), so by Definition2.7, Comp(D).

(σ = σ1∩· · ·∩σn) : Easy, using Definition2.7, Lemma2.5 (iv), and induction.

The following theorem (2.11) shows that, if the instances of rule(Ax) are to be replaced
by computable derivations, then the result itself will be computable. Before coming to this
result, first two auxiliary lemmas are proved.

The first lemma shows that the predicate is closed for subject-expansion.

Lemma 2.10 IfComp(D′ :: B ⊢ Q :ν) andComp(D[D′/y:ν] :: B ⊢ M [Q/y]P :σ), then
there exists a derivationD′′ such thatComp(D′′ :: B ⊢ (λy.M)QP :σ).

Proof: By induction on the structure of types.
i) σ = ϕ. Comp(D[D′/y:ν] :: B ⊢ M [Q/y]P :ϕ) & Comp(D′ :: B ⊢ Q :ν) ⇒ (2.9 (i))

SN(D[D′/y:ν]) & SN(D′) ⇒ (2.5 (v))
∃D′′ [SN(D′′ :: B ⊢ (λy.M)QP :ϕ)] ⇒ (2.7)
∃D′′ [Comp(D′′ :: B ⊢ (λy.M)QP :ϕ)].

ii ) σ = α→β. Comp(D1 :: B ⊢ N :α) & Comp(D2 :: B ⊢ Q :ν) ⇒ (2.7)
Comp(〈D[D′/y:ν],D2,→E〉 :: B ⊢ M [Q/y]P N :β) ⇒ (IH)

∃D′′[Comp(〈D′′,D2,→E〉 :: B ⊢ (λy.M)QP N :β) ⇒ (2.7)
∃D′′[Comp(D′′ :: B ⊢ (λy.M)QP :α→β)]

iii ) σ = σ1∩· · ·∩σn. By induction and Definition2.7.
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We now come to the Replacement Theorem, i.e. the proof that for every derivation, if the
instances of rule(Ax) in the derivation are to be replaced by computable derivations, then
the result itself will be computable.

We will use an abbreviated notation, and write[Ni/xi ] for [N1/x1, . . . ,Nn/xn], etc.

Theorem 2.11 LetB = x1:µ1, . . . , xn:µn, D :: B ⊢ M :σ, and, for everyi ∈ n, there are
Di, N i such thatComp(Di :: B′ ⊢ N i :µi). Then

Comp(D[Di/xi:µi ] :: B′ ⊢ M [Ni/xi ] :σ).

Proof: By induction on the structure of derivations.
(Ax) : ThenM ≡ xi, for somei ∈ n, with µi ≤ σ. SinceDi ≤ D′ :: B′ ⊢ N i :σ, from

Comp(Di), by Lemma2.8, Comp(D′). Notice thatD′ = (〈Ax〉 :: B ⊢ x :σ)[Di/xi:µi ]

(∩I) : σ = σ1∩· · ·∩σm, and, forj ∈ m, there existsDj , such thatDj :: B ⊢ M :σj and
D = 〈D1, . . . ,Dm,∩I〉. Let, for j ∈ m,

D′

j = Dj [Di/xi:µi ] :: B ⊢ M [Ni/xi ] :σj ,

then, by induction,Comp(D′

j). LetD′ = 〈D′
1
, . . . ,D′

m,∩I〉, then, by Definition2.7,

Comp(D′ :: B ⊢ M [Ni/xi ] :σ1∩· · ·∩σm),

andD′ = D[Di/xi:µi ].
(→I) : Thenσ = ρ→τ , andD = 〈D1 :: B, y:ρ ⊢ M ′ :τ,→I〉 :: B ⊢ λy.M ′ :ρ→τ .

∀j ∈ m [Dj :: Bj ⊢ Mj :σj ] & Comp(D2 :: B′ ⊢ P :ρ) ⇒ (IH)

Comp(D1[Di/xi:µi ,D2/y:ρ] :: B′ ⊢ M [N/x,P/y] :τ) ⇒ (2.10)
Comp(〈〈D1[Di/xi:µi ],→I〉,D2,→E〉 :: B′ ⊢ (λy.M [Ni/xi ])P :τ) ⇒ (2.7)
Comp(〈D1[Di/xi:µi ],→I〉 :: B′ ⊢ λy.M [Ni/xi ] :ρ→τ).

andD′ = 〈D1[Di/xi:µi ],→I〉 = D[Di/xi:µi ].
(→E) : ThenM ≡ M1M2, and there areD1,D2, andτ such thatD = 〈D1,D2,→E〉,

D1 :: B ⊢ M1 :τ→σ, andD2 :: B ⊢ M2 :τ . Let

D′
1

= D1[Di/xi:µi ] :: B′ ⊢ M1[Ni/xi ] :τ→σ, and
D′

2
= D2[Di/xi:µi ] :: B′ ⊢ M2[Ni/xi ] :τ,

then, by induction,Comp(D′
1
), andComp(D′

2
), and by Definition2.7,

Comp(〈D′
1
,D′

2
,→E〉 :: B′ ⊢ (M1M2)[Ni/xi ] :σ),

Notice that〈D1,D2,→E〉[Di/xi:µi ] = 〈D′

1
,D′

2
,→E〉.
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Using this last result, we are now able to prove a strong normalisation result for derivation
reduction in ‘⊢’.

Theorem 2.12 If D :: B ⊢ M :σ, thenSN(D).

Proof: By Lemma2.9 (ii ), for everyxi:τi ∈ B, there existsDxi
= 〈Ax〉 :: xi:τi ⊢ xi :τi

such thatComp(Dxi
), so by Theorem2.11, Comp(D[Dxi

/xi:τi ] :: B ⊢ M [xi/xi ] :σ).
Notice thatM [xi/xi ] = M andD[Dxi

/xi:τi ] = D, and by Theorem2.11, SN(D).

3 Approximation and head-normalisation

In this section, we will conclude the main contribution of this paper by showing two main
results, that are both direct consequences of the strong normalisation result proved in Sec-
tion 2.2. Both results have been proven in the past, at least partially, in [1, 2]. In fact, some
of the theorems and lemmas presented here were already presented in those papers and are
repeated here, for completeness, with their proofs.

3.1 Approximate normal forms

We will now show that the above strong normalisation result leads to the approximation
theorem, for which we will prepare the ground by introducingthe necessary concepts.

The notion of approximant for lambda terms was first presented in [22], and is defined
using the notion of terms inλ⊥-normal form (like in [8],⊥ (calledbottom) is used, instead
of ω; also, the symbol⊑ is used as a relation onλ⊥-terms, inspired by a similar relation
defined on Böhm-trees in [8]).

Definition 3.1 i) The set ofλ⊥ -termsis defined as the setλ of lambda terms, by:

M ::= x | ⊥ | λx.M | M1M2

ii ) The notion of reduction→β⊥ is defined as→β , extended by:

λx.⊥ →β⊥ ⊥

⊥M →β⊥ ⊥.

iii ) The set ofnormal forms for elements ofλ⊥ with respect to→β⊥ , is the setN of λ⊥-
normal formsor approximate normal forms, ranged over byA, inductively defined
by:

A ::= ⊥ | λx.A (A 6= ⊥) | xA1 · · ·An (n≥ 0)
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The rules of the system ‘⊢’ are generalized to terms containing⊥ by allowing for the
terms to be elements ofλ⊥. Notice that, because type assignment is almost syntax directed,
if ⊥ occurs in a termM andD :: B ⊢ M :σ, then inD, ⊥ appears in a position where the
rule (∩I) is used withn = 0. Moreover, the termsλx.⊥ and⊥M1 · · ·Mn are typeable by
ω only.

Definition 3.2 i) The relation⊑ ⊆ λ⊥2 is defined by:

⊥ ⊑ M

x ⊑ x

M ⊑M ′ ⇒ λx.M ⊑ λx.M ′

M1 ⊑M ′
1

& M2 ⊑M ′
2

⇒ M1M2 ⊑M ′
1
M ′

2
.

If A ∈ N, M ∈ λ, andA⊑M , thenA is called adirect approximantof M .
ii ) The relation ∼ ⊆ N × λ is defined by:

A ∼ M ⇐⇒ ∃M ′ =β M [A ∼ M ′].

iii ) If A ∼ M , thenA is called anapproximantof M , andA(M) = {A ∈ N | A ∼ M }.

Lemma 3.3B ⊢ M :σ & M ⊑M ′ ⇒ B ⊢ M ′ :σ.

Proof: By easy induction on the definition of⊑ .

The following definition introduces an operation of join onλ⊥-terms.

Definition 3.4 i) Onλ⊥, the partial mapping⊔ : λ⊥ × λ⊥ → λ⊥ is defined by:

⊥⊔M ≡ M⊔⊥ ≡ M

x⊔x ≡ x

(λx.M)⊔(λx.N) ≡ λx.(M⊔N)

(M1M2)⊔(N1N2) ≡ (M1⊔N1) (M2⊔N2)

⊔ is pronouncedjoin.
ii ) If M⊔N is defined, thenM andN are calledcompatible.

From now on, to shorten proofs,⊥ will be the same as the empty join, i.e. ifM ≡
M0⊔ · · · ⊔Mn, andn = 0, thenM ≡ ⊥.

The last alternative in the definition of⊔ defines the join on applications in a more general
way than Scott’s, that would state that(M1M2)⊔(N1N2)⊑ (M1⊔N1)(M2⊔N2), since it
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is not always sure if a join of two arbitrary terms exists. However, we will use our more
general definition only on terms that are compatible, so the conflict is only apparent.

The following lemma shows that⊔ acts as least upper bound of compatible terms.

Lemma 3.5 i) If M1 ⊑M , andM2 ⊑M , thenM1⊔M2 is defined, and:
M1 ⊑M1⊔M2,M2 ⊑M1⊔M2, andM1⊔M2 ⊑M .

ii ) If M ⊑Mi, for i ∈ n, thenM ⊑M1⊔ · · · ⊔Mn.
iii ) If M ⊑N , andN ⊑ P , thenM ⊑ P .
iv) If M ⊑M1M2, then there areM3,M4 such thatM = M3M4, andM3 ⊑M1,M4 ⊑M2.

Proof: By induction on the definition of⊑ .
i) If M1 ≡ ⊥, thenM1⊔M2 ≡ M2, soM1 ⊑M1⊔M2,M2 ⊑M1⊔M2, and

M1⊔M2 ⊑M2 ⊑M . (The caseM2 ≡ ⊥ goes similarly.)
ii ) If M1 ≡ x, andM2 ≡ x, then M1⊔M2 ≡ x. Obviously, x⊑ x⊔x, x⊑ x⊔x, and

x⊔x ⊑ x.
iii ) If M1 ≡ λx.N1, andM2 ≡ λx.N2, thenM ≡ λx.N , N1 ⊑N , N2 ⊑N . Then, by in-

duction,N1 ⊑N1⊔N2, N2 ⊑N1⊔N2, andN1⊔N2 ⊑N . Also λx.N1 ⊑ λx.N1⊔N2,
λx.N2 ⊑ λx.N1⊔N2, andλx.N1⊔N2 ⊑ λx.N . To conclude, notice thatλx.N1⊔N2 ≡
(λx.N1)⊔(λx.N2).

iv) If M1 ≡ P1Q1, andM2 ≡ P2Q2, thenM ≡ PQ, P1 ⊑ P , Q1 ⊑Q,P2 ⊑ P , Q2 ⊑Q.
By induction, we knowP1 ⊑ P1⊔P2, P2 ⊑ P1⊔P2, andP1⊔P2 ⊑ P , as well asQ1 ⊑
Q1⊔Q2, Q2 ⊑Q1⊔Q2, and Q1⊔Q2 ⊑Q. Then alsoP1Q1 ⊑ (P1⊔P2)(Q1⊔Q2),
P2Q2 ⊑ (P1⊔P2)(Q1⊔Q2), and(P1⊔P2)(Q1⊔Q2)⊑ PQ. To conclude, notice that
(P1⊔P2)(Q1⊔Q2) ≡ (P1Q1)⊔(P2Q2).

3.2 The⊥ type assignment system

A first approach to the problem dealt with in this paper was to try to show that, when
no redex is typed withω, then reduction on typeable terms is strongly normalisable, so
in particular, terms typeable in ‘⊢

⊥
’ then should be strongly normalisable. In detail, this

implied that, in this system, the use ofω is restricted to⊥ only, instead of allowing any
term to be typeable byω. However, perhaps surprisingly, the strong normalisationresult
turned out not to hold.

We will start this section by defining this⊥-system in detail, also because it is of use in
the last section of this paper.
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Definition 3.6 ⊥-type assignmentand⊥-derivationsare defined by the following natural
deduction system (where all types displayed are strict, exceptσ in the rules(Ax), (→I), and
(→E)):

(Ax) : (σ ≤ τ)
B,x:σ ⊢

⊥
x :τ (∩I) :

B ⊢
⊥

M1 :σ1 . . . B ⊢
⊥

Mn :σn
(n ≥ 0)

B ⊢
⊥

M1⊔ · · · ⊔Mn :σ1∩· · ·∩σn

(→I) :
B,x:σ ⊢

⊥
M :τ

B ⊢
⊥

λx.M :σ→τ
(→E) :

B ⊢
⊥

M :σ→τ B ⊢
⊥

N :σ

B ⊢
⊥

MN :τ

We writeB ⊢
⊥

M :σ if this statement is derivable using a⊥-derivation.

Notice that, by rule(∩I), B ⊢
⊥
⊥ :ω, and that this is the only way to assignω to a term. In

particular, since by the remark made after Definition3.1, the termsλx.⊥ and⊥M1 · · ·Mn

are typeable in ‘⊢’ by ω only, these terms arenot typeable in ‘⊢
⊥
’. So a term typeable in ‘⊢

⊥
’

contains no redexes of those forms.

An important point to note is that the operation of join is used for rule (∩I) in the above
definition. Of course it is possible to define a notion of type assignment on terms – that
allows for the use ofω for ⊥ only – without the join operation, but the system obtained in
that way would not be expressive enough; the idea is to, in derivations of the full system,
replace subterms typed byω by⊥. In the presence of intersection types, this has to be done
with care.

The relation between the two notions of type assignment ‘⊢’ and ‘⊢
⊥
’ is formulated by:

Lemma 3.7 IfD :: B ⊢
⊥

M :σ, thenD :: B ⊢ M :σ.

Proof: By induction on the structure of derivations in ‘⊢
⊥
’.

(Ax) : Immediate.
(∩I) : ThenM = M1⊔ · · · ⊔Mn for someM1, . . . ,Mn, and, for everyi ∈ n, B ⊢

⊥
Mi :σi.

Then, by induction, for everyi ∈ n, B ⊢ Mi :σi, so by3.5 (i) & 3.3, for everyi ∈ n,
B ⊢ M :σi, so by(∩I), B ⊢ M :σ1∩· · ·∩σn.

(→I) : ThenM ≡ λx.M ′, andσ = α→β, andB,x:α ⊢
⊥

M ′ :β. SoB,x:α ⊢ M ′ :β by
induction, soB ⊢ λx.M ′ :α→β by (→I).

(→E) : ThenM ≡ M1M2, and there existsτ such thatB ⊢
⊥

M1 :τ→σ, andB ⊢
⊥

M2 :τ .
Then, by induction,B ⊢ M1 :τ→σ, andB ⊢ M2 :τ , so by(→E) we getB ⊢ M1M2 :σ.

Lemma 3.8 IfD :: B ⊢ M :σ, then there areM ′ ⊑M , andD :: B ⊢
⊥

M ′ :σ.

Proof: By induction on the structure of derivations in ‘⊢’.
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(Ax) : Immediate.
(∩I) : Thenσ = σ1∩· · ·∩σn and, for everyi ∈ n, B ⊢ M :σi, and, by induction, for every

i ∈ n there areMi ⊑M such thatB ⊢
⊥

Mi :σi. ThenB ⊢
⊥

M1⊔ · · · ⊔Mn :σ1∩· · ·∩σn,
by (∩I). By Lemma3.5 (i), M1⊔ · · · ⊔Mn ⊑M .

(→I) : ThenM ≡ λx.M1, andσ = α→β, andB,x:α ⊢ M1 :β. So, by induction, there
existsM ′

1
⊑M1 such thatB,α ⊢ M ′ :β. By rule(→I) we obtainB′ ⊢ λx.M ′

1
:α→β.

Notice thatλx.M ′

1
⊑ λx.M1.

(→E) : ThenM ≡ M1M2, and there is aτ such thatB ⊢ M1 :τ→σ, andB ⊢ M2 :τ .
Then, by induction, there areM ′

1
⊑M1 and M ′

2
⊑M2, such thatB ⊢

⊥
M ′

1
:τ→σ,

B ⊢
⊥

M ′

2
:τ . Then by(→E), B ⊢

⊥
M ′

1
M ′

2
:σ. Notice thatM ′

1
M ′

2
⊑M1M2.

Notice that the derivation forB ⊢
⊥

M ′ :σ is not truly equal toD in that the term involved is
different; however, they are equal in structure in the senseof applied rules. Morever, notice
that the caseσ = ω from part3.8 is hidden in the case(∩I) of the proof. Thenn = 0, and
M1⊔ · · · ⊔Mn = ⊥.

Using these relations, the following property becomes easy.

Proposition 3.9(SUBJECT REDUCTION) If B ⊢
⊥

M :τ andM →→β N , then there existsN ′ ⊑
N such thatB ⊢

⊥
N ′ :τ .

Proof: If B ⊢
⊥

M :τ , by Lemma3.7, alsoB ⊢ M :τ . SinceM →→β N , by Theorem1.5 (iii ),
alsoB ⊢ N :τ . Then by Lemma3.8, there exists aN ′ ⊑N such thatB ⊢

⊥
N ′ :τ .

To prepare the characterisation of terms by their assignable types, first we prove that a
term inλ⊥-normal form is typeable withoutω, if and only if it does not contain⊥. This
forms the basis for the result that all normalisable terms are typeable withoutω.

Lemma 3.10([2]) If B ⊢ A :σ, andB,σ areω-free, thenA is ⊥-free.

Proof: By induction onA. As before, only the partσ ∈ Ts is shown.
i) A ≡ x. Immediate.

ii ) A ≡ ⊥. Impossible, by the observation made after Definition3.6.
iii ) A ≡ λx.A′. By (→I) there areα, β such thatσ = α→β, andB,x:α ⊢ A′ :β. Of

course alsoB,x:α, andβ areω-free, so by induction,A′ is ⊥-free, so alsoλx.A′ is
⊥-free.

iv) A ≡ xA1· · ·An. Then by(→E) and (≤) there areσi (i ∈ n), τ1, . . . , τn, τ , such
that for everyi ∈ n, B ⊢ Ai :σi, andx:τ1→· · ·→τn→τ ∈ B, andτ1→· · ·→τn→τ ≤
σ1→· · ·→σn→σ. So, especially, for everyi ∈ n, σi ≤ τi. By Property1.5 (i), also for
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everyi ∈ n, B ⊢ Ai :τi. Since eachτi occurs inB, all areω-free, so by induction each
Ai is⊥-free. Then alsoxA1· · ·An is ⊥-free.

As already shown in [1], when restricting the system ‘⊢’ to one that does not use the
type constantω at all, all typeable terms are strongly normalisable. This could give rise
to the idea that possible non-normalising subterms can onlyoccur in derivations in ‘⊢’ in
subderivations that deriveB ⊢ M :ω. This is not the case: although in the system ‘⊢

⊥
’ no

redex can be typed withω, typeable terms need not be strongly normalizing, as clearly
illustrated by the following example.

Example 3.11(CF. [3]) Take Θ = λxy.y(xxy), thenΘΘ is typeable in ‘⊢
⊥
’. First we

deriveD1 (whereB = {x:(α→β→γ)∩α, y:(γ→δ)∩β}):

B ⊢
⊥

y :γ→δ

B ⊢
⊥

x :α→β→γ B ⊢
⊥

x :α

B ⊢
⊥

xx :β→γ B ⊢
⊥

y :β

B ⊢
⊥

xxy :γ

B ⊢
⊥

y(xxy):δ

B\y ⊢
⊥

λy.y(xxy): ((γ→δ)∩β)→δ

⊢
⊥

Θ:((α→β→γ)∩α)→((γ→δ)∩β)→δ

Let τ = ((α→β→γ)∩α)→((γ→δ)∩β)→δ (i.e. the type derived in the previous deriva-
tion), then we can deriveD2:

x:τ, y:ω→σ ⊢
⊥

y :ω→σ x:τ, y:ω→σ ⊢
⊥
⊥ :ω

x:τ, y:ω→σ ⊢
⊥

y⊥ :σ

x:τ ⊢
⊥

λy.y⊥ : (ω→σ)→σ

⊢
⊥

λxy.y⊥ :τ→(ω→σ)→σ

From these, by(∩I), sinceλxy.y⊥⊑Θ, we obtain a derivation for⊢
⊥

Θ:(τ→(ω→σ)→σ)∩ τ .
Let B = x:(τ→(ω→σ)→σ)∩ τ, y:ω→σ, then also:
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B ⊢
⊥

y :σ→σ

B ⊢
⊥

x :τ→(ω→σ)→σ B ⊢
⊥

x :τ

B ⊢
⊥

xx : (ω→σ)→σ B ⊢
⊥

y :ω→σ

B ⊢
⊥

xxy :σ

B ⊢
⊥

y(xxy):σ

x:(τ→(ω→σ)→σ)∩ τ ⊢
⊥

λy.y(xxy): (ω→σ)→σ

⊢
⊥

Θ:((τ→(ω→σ)→σ)∩ τ)→(ω→σ)→σ

Then, by(→E), we obtain ⊢
⊥

ΘΘ:(ω→σ)→σ. Notice that this term is not strongly
normalisable, since

ΘΘ→β λy.(ΘΘy)→→β λy.(y(ΘΘy))→→β · · · .

and that, in particular, the redex is not typed withω. Moreover, all its reducts are typeable
in ‘⊢

⊥
’.

3.3 Characterisation of approximation and head-normalisation

In this section, we will prove two results. First it will be proved that, for everyM,B andσ
such thatB ⊢ M :σ, there is anA ∈ A(M) such thatB ⊢ A :σ. From this result, the well-
known characterisation of (head-)normalisation of lambdaterms using intersection types
follows easily, i.e. terms, all terms having a (head) normalform are typeable in ‘⊢’ (with
a type withoutω-occurrences). The second result is the the well-known characterisation of
strong normalisation of typeable lambda terms, i.e. all terms, typeable in ‘⊢’ without the
type-constantω, are strongly normalisable.

Using Theorem2.12, as for the BCD-system and the strict system, the relation between
types assignable to a lambda term and those assignable to itsapproximants can be formu-
lated as follows:

Theorem 3.12 B ⊢ M :σ ⇐⇒ ∃A ∈ A(M) [B ⊢ A :σ ].

Proof: ⇒) Let D :: B ⊢ M :σ, then, by Theorem2.12, SN(D). Let D0 :: B ⊢ N :σ be
the normal form ofD with respect to→D , then by Lemma2.4, M →→β N , and by
Lemma3.8, there isN ′ ∈ λ⊥ such thatD0 :: B ⊢

⊥
N ′ :σ, andN ′ ⊑N . SinceD0 is a

redex-free derivation,N ′ ∈ N, soN ′ ∈ A(M). Also, by Lemma3.7, B ⊢ N ′ :σ.
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⇐) Since A ∈ A(M), there is anM ′ such thatM ′ =β M and A⊑M ′. Then, by
Lemma3.3, B ⊢ M ′ :σ, and, by Theorem1.5 (iii ), alsoB ⊢ M :σ.

Using this result, the following becomes easy.

Theorem 3.13([2]) ∃B,σ [B ⊢ M :σ] ⇐⇒ M has a head normal form.

Proof: ⇒) If B ⊢ M :σ, then, by Theorem3.12, there existsA ∈ A(M) such thatB ⊢ A :σ.
By Definition 3.1, there existsM ′ =β M such thatA⊑M . Sinceσ ∈ Ts, A 6≡ ⊥, so
A is eitherx, λx.A′ or xA1· · ·An. SinceM ′ matchesA, M ′ is eitherx, λx.M1 or
xM1· · ·Mn. ThenM has a head-normal form.

⇐) If M has a head-normal form, then there existsM ′ =β M such thatM ′ is eitherx,
λx.M1 or xM1· · ·Mn, with eachMi ∈ λ.
a) M ′ ≡ x. Thenx:ϕ ⊢ x :ϕ.
b) M ′ ≡ λx.M1. SinceM1 is in head-normal form, by induction there is aB such

thatB ⊢ M1 :σ. If x:τ ∈ B, thenB\x ⊢ λx.M1 :τ→σ, otherwiseB ⊢ λx.M1 :ω→σ.
c) M ′ ≡ xM1· · ·Mn. Thenx:ω→· · ·→ω→ϕ ⊢ xM1· · ·Mn :ϕ.

Then, by Theorem1.5 (iii ), there existsB such thatB ⊢ M :σ.

In the next section, as in [1] for the strict system, we will prove that the essential inter-
section type assignment system satisfies the (strong) normalisation properties of the BCD-
system.

4 (Strong) normalisation

In this section we will show that, all terms typeable withoutusing the type constantω in
context or conclusion, are normalisable. We will also show that, for the essential notion
of type assignment withoutω, all terms are strongly normalisable, as first shown in [1].
These results are obtained via the strong normalisation result proved above for derivation
reduction.

4.1 Intersection Type Assignment withoutω

While building a derivationB ⊢ M :σ (whereω does not occur inσ andB) for a lambda
term M that has a normal form, the typeω is only needed to type sub-terms that will be
erased while reducingM to its normal form and that cannot be typed starting fromB. We
will prove that the set of all terms typeable by the system withoutω is the set of all strongly
normalisable terms.
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Definition 4.1 i) T−ω−, the set ofω-free intersection types, ranged over byσ, τ etc, is in-
ductively defined by:

σ ::= ϕ | (σ1∩· · ·∩σn → σ), (n ≥ 1)

The set ofω-free intersection types is defined by:

{σ1∩· · ·∩σn | n≥ 1 & ∀ i ∈ n [σi ∈ T−ω−]}

ii ) OnT−ω− the relation≤ is as defined in Definition1.1, except for the second alternative.

∀ i ∈ n [σ1∩· · ·∩σn ≤ σi] (n≥ 1)

∀ i ∈ n [σ ≤ σi] ⇒ σ ≤ σ1∩· · ·∩σn (n≥ 1)

σ ≤ τ ≤ ρ ⇒ σ ≤ ρ

The relations≤ and ∼ are extended to bases as before.
iii ) If M :σ is derivable from a basisB, using onlyω-free types and the derivation rules of

‘⊢’, we write B ⊢−ω− M :σ.

Notice that the only difference between this definition and Definition1.1 is thatn≥ 1 rather
thann≥ 0.

Let ‘⊢−ω−’ denote the notion of derivability obtained from ‘⊢’ by removing the type con-
stantω. Then the following properties hold:

Lemma 4.2 i) B ⊢−ω− x :σ ⇐⇒ ∃ρ ∈ T [x:ρ ∈ B & ρ≤ σ].
ii ) B ⊢−ω− MN :σ & σ ∈ Ts ⇐⇒ ∃ τ ∈ T [B ⊢−ω− M :τ→σ & B ⊢−ω− N :τ ].
iii ) B ⊢−ω− λx.M :σ & σ ∈ Ts ⇐⇒ ∃ρ ∈ T , µ ∈ Ts [σ = ρ→µ & B,x:ρ ⊢−ω− M :µ].
iv) B ⊢−ω− M :σ & B′ ≤B ⇒ B′ ⊢−ω− M :σ.
v) If D :: B ⊢−ω− M :σ, thenD :: B ⊢ M :σ.

Proof: Easy.

Lemma 4.3([2]) If A is⊥-free, then there areB, andσ, such thatB ⊢−ω− A :σ.

Proof: By induction onA.
i) A ≡ x. x:ϕ ⊢−ω− x :ϕ.

ii ) A ≡ λx.A′. By induction there areB, τ such thatB ⊢−ω− A′ :τ . If x does not occur in
B, take anω-freeσ ∈ Ts; otherwise, there existx:σ ∈ B, andσ is ω-free. In any case,
B\x ⊢−ω− λx.A′ :σ→τ .
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iii ) A ≡ xA1· · ·An. By induction there areB1, . . . , Bn andσi (i ∈ n) such that for every
i ∈ n, Bi ⊢−ω− Ai :σi. Then∩{B1, . . . , Bn, x:σ1→· · ·→σn→ϕ} ⊢−ω− xA1· · ·An :ϕ.

Theorem 4.4 ([2]) ∃B,σ [B ⊢ M :σ & B,σ ω-free] ⇐⇒ M has a normal form.

Proof: ⇒) If B ⊢ M :σ, then, by Theorem3.12, ∃A ∈ A(M) [B ⊢ A :σ ]. SinceB,σ
areω-free, by Lemma3.10, thisA is⊥-free. By Definition3.1 there existsM ′ =β M
such thatA⊑M ′. ThenM ′ itself is in normal form, so, especially,M has a normal
form.

⇐) If M ′ is the normal form ofM , then it is a⊥-free approximate normal form. Then
by Lemma4.3 there areB,σ such thatB ⊢−ω− M ′ :σ. Then, by Theorem1.5 (iii ),
B ⊢ M :σ.

4.2 Strong normalisation for Intersection Type Assignmentwithout ω

As was remarked in the beginning of this paper, if we are interested in deriving types without
ω occurrences, the type constantω will only be needed in the ‘⊢’-system to type sub-
termsN of M that will be erased while reducingM . In fact, if there is a typeρ such
that B ⊢−ω− N :ρ, then, even for thisN we would not needω. However, there are lambda
termsM that contain a sub-termN that must be typed withω in B ⊢ M :σ, even ifω does
not occur inB andσ. We can even find strongly normalisable lambda terms that contain
such a sub-term (see also the remark made after Lemma4.5).

The following lemma shows a subject expansion result for theω-free system.

Lemma 4.5 IfB ⊢−ω− M [N/x] :σ andB ⊢−ω− N :ρ, thenB ⊢−ω− (λx.M)N :σ.

Proof: We focus on the case thatσ ∈ Ts, the case thatσ is an intersection is just a gen-
eralisation. We can assume thatx does not occur inB, and proceed by induction on the
structure ofM .

(M ≡ x) : B ⊢−ω− N :σ ⇒ B ⊢−ω− (λx.x)N :σ

(M ≡ y 6= x) : B ⊢−ω− y :σ ⇒ B ⊢−ω− λx.y :ρ→σ ⇒ B ⊢−ω− (λx.y)N :σ. By α-conversion,
we can assume thatx does not appear inN .
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(M ≡ λy.M ′) : Then(λy.M ′)[N/x] ≡ λy.(M ′[N/x]), andσ = δ→µ.

B ⊢−ω− λy.(M ′[N/x]) :δ→µ & B ⊢−ω− N :ρ ⇒ (→I)
B, y:δ ⊢−ω− M ′[N/x] :µ & B ⊢−ω− N :ρ ⇒ (IH)

B, y:δ ⊢−ω− (λx.M ′)N :µ ⇒ (→E)

∃ τ [B, y:δ ⊢−ω− λx.M ′ :τ→µ & B, y:δ ⊢−ω− N :τ ] ⇒ (→I) & y 6∈ fv(N)

∃ τ [B, y:δ, x:τ ⊢−ω− M ′ :µ & B ⊢−ω− N :τ ] ⇒ (→I)
∃ τ [B ⊢−ω− λxy.M ′ :τ→δ→µ & B ⊢−ω− N :τ ] ⇒ (→E)

B ⊢−ω− (λxy.M ′)N :δ→µ

(M ≡ M1M2) : Then(M1M2)[N/x] ≡ M1[N/x]M2[N/x].

B ⊢−ω− M1[N/x]M2[N/x] :σ & B ⊢−ω− N :ρ ⇒ (→E)

∃ τ [B ⊢−ω− M1[N/x] :τ→σ & B ⊢−ω− M2[N/x] :τ ] & B ⊢−ω− N :ρ ⇒ (IH)

∃ τ [B ⊢−ω− (λx.M1)N :τ→σ & B ⊢−ω− (λx.M2)N :τ ] ⇒ (→E) & (→I)
∃ρ1, ρ2, τ [B,x:ρi ⊢−ω− M1 :τ→σ & B ⊢−ω− N :ρ1 & B,x:ρ2 ⊢−ω− M2 :τ & B ⊢−ω− N :ρ2]

⇒ (∩I) & (4.2 (iv))
∃ρ1, ρ2 [B,x:ρ1∩ρ2 ⊢−ω− M1M2 :σ & B ⊢−ω− N :ρ1∩ρ2] ⇒ (→I)
∃ρ1, ρ2 [B ⊢−ω− λx.(M1M2):ρ1∩ρ2→σ & B ⊢−ω− N :ρ1∩ρ2] ⇒ (→E)

B ⊢−ω− (λx.(M1M2))N :σ]

This result extends by induction (easily) to all contexts: if B ⊢−ω− C[M [N/x]] :σ andB ⊢−ω− N :ρ,
thenB ⊢−ω− C[(λx.M)N ] :σ.

Notice that the conditionB ⊢−ω− N :ρ in the formulation of the lemma is essential. As a
counter example, take the two lambda termsλyz.(λb.z)(yz) andλyz.z. Notice that the first
strongly reduces to the latter. We know that

z:σ, y:τ ⊢−ω− z :σ

but it is impossible to give a derivation for(λb.z)(yz) :σ from the same basis without using
ω. This is caused by the fact that we can only type(λb.z)(yz) in the system withoutω from
a basis in which the predicate fory is an arrow type. We can, for example, derive

B ⊢−ω− z:σ, y:σ→τ : (λb.z)(yz)σ.

We can therefore only state that we can derive

⊢−ω− λyz.(λb.z)(yz) : (σ→τ)→σ→σ and ⊢−ω− λyz.z :τ→σ→σ
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but that we are not able to give a derivation withoutω for the statement

⊢−ω− λyz.(λb.z)(yz) :τ→σ→σ.

So the type assignment withoutω is not closed forβ-equality, but of course this is not
imperative. We only want to be able to derivea type for each strongly normalisable term,
no matter what basis or type is used.

The proof of the crucial lemma as presented below (Lemma4.7) and part (⇐) of the
proof of Theorem4.9 are due to Betty Venneri, of the University of Florence, Italy, and
goes by induction on the left-most outer-most reduction path.

Definition 4.6 An occurrence of a redex R= (λx.P )Q in a termM is called theleft-most
outer-most redex ofM (lor(M )), if:

i) There is no redex R′ in M such that R′ = C[R] (outer-most).
ii ) There is no redex R′ in M such thatM = C0[C1[R′]C2[R]] (left-most).

M →lor N is used to indicate thatM reduces toN by contractinglor (M).

The following lemma formulates a subject expansion result for ‘⊢−ω−’ with respect to left-
most outer-most reduction. A proof for this property in the context of the strict system
appeared in [3]; it is easily modified to fit the essential system.

Lemma 4.7([3]) LetM →lor N , lor (M) = (λx.P )Q, B ⊢−ω− N :σ, andB′ ⊢−ω− Q :τ , then
there existsB1, ρ such thatσ ≤ ρ, andB1 ⊢−ω− M :ρ.

We can now show that all strongly normalisable terms are typeable in ‘⊢−ω−’.

Theorem 4.8 If M is strongly normalisable, then there areB andσ such thatB ⊢−ω− M :σ.

Proof: With induction on the maximum of the lengths of reduction sequences for a strongly
normalisable term to its normal form (denoted by#(M)).

i) If #(M) = 0, thenM is in normal form, and by Lemma4.3, there existB andσ ∈ Ts

such thatB ⊢−ω− M :σ.
ii ) If #(M)≥ 1, so M contains a redex, then letM →lor N by contracting(λx.P )Q.

Then#(N) < #(M), and#(Q) < #(M) (sinceQ is a proper subterm of a redex in
M ), so by inductionB ⊢−ω− N :σ andB′ ⊢−ω− Q :τ , for someB,B′, σ, andτ . Then, by
Lemma4.7, there existB1, ρ such thatB1 ⊢−ω− M :ρ.

Theorem4.9shows that the set of strongly normalisable terms is exactlythe set of terms
typeable in the intersection system without using the type constantω.
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Theorem 4.9 ∃B,σ [B ⊢−ω− M :σ] ⇐⇒ M is strongly normalisable with respect to→β .

Proof: ⇒) If D :: B ⊢−ω− M :σ, then by Lemma4.2 (v), alsoD :: B ⊢ M :σ. Then, by
Theorem2.12, D is strongly normalisable with respect to→D . SinceD contains no
ω, all redexes inM correspond to redexes inD. Since derivation reduction does not
introduceω, alsoM is strongly normalisable with respect to→β .

⇐) With induction on the maximum of the lengths of reduction sequences for a strongly
normalisable term to its normal form (denoted by#(M)).
a) If #(M) = 0, thenM is in normal form, and by Lemma4.3, there existB and

σ ∈ T−ω− such thatB ⊢−ω− M :σ.
b) If #(M)≥ 1, soM contains a redex, then letM →lor N by contracting(λx.P )Q.

Then#(N) ≤ #(M), and#(Q) ≤ #(M) (sinceQ is a proper subterm of a
redex inM ), so by inductionB ⊢−ω− M :σ andB′ ⊢−ω− Q :τ , for someB,B′, σ, and
τ . Then, by Lemma4.7, there existB1, ρ such thatB1 ⊢−ω− M :ρ.

5 Alternative type assignment systems

In this section, we will illustrate the result of Section2.2by looking briefly at other systems,
for which the above results come more easily.

5.1 The relevant type assignment system

It is worthwhile to remark that, in fact, it is the presence ofthe relation≤ on types, and,
especially, the derivation rule(Ax) that greatly complicates the possible solution to the main
problem dealt with in this paper. Restricting the setting toa relevantsystem, i.e. where the
types assumed for free variables are restricted to those that areneededin the derivation, and
where(→I)-rule can only be applied againstusedassumptions over a term-variable, gives
a rather straightforward solution.

Below, we will just give the presentation of the⊥-variant of the relevant type assignment;
the definition of the original system should be clear from that (see [2, 15]).

Definition The⊥-variant ofRelevant type assignmentis defined by the following natural
deduction system (where all types displayed are strict, except σ in the rules(→I), and
(→E)):
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(Ax) x:σ ⊢⊥R x :σ

(∩I)
B1 ⊢⊥R M1 :σ1 · · · Bn ⊢⊥R Mn :σn

(n≥ 0)
∩{B1, . . . , Bn} ⊢⊥R M1⊔ · · · ⊔Mn :σ1∩· · ·∩σn

(→I)
B,x:σ ⊢⊥R M :τ

B ⊢⊥R λx.M :σ→τ

B ⊢⊥R M :τ
(x not inB)

B ⊢⊥R λx.M :ω→τ

(→E)
B1 ⊢⊥R M :σ→τ B2 ⊢⊥R N :σ

∩{B1, B2} ⊢⊥R MN :τ

Notice that, by rule(∩I), ⊢⊥R ⊥ :ω, and that this is the only way in ‘⊢⊥R’ to assignω to a
term.

This notion of type assignment isrelevant in the sense of [13]: bases contain no more
type information than that actually used in the derivation,and, therefore, in the(→I)-rule,
only those typesactually usedin the derivation can be abstracted. This implies that, for
example, for the lambda term(λab.a) types likeσ→τ→σ cannot be derived, only types
like σ→ω→σ. Likewise, forλx.x types like(σ∩τ)→σ cannot be derived, only types like
σ→σ can.

In this system, contrary to the essential system we considered above, all typeable terms
are strongly normalisable with respect to→β⊥ ; all characterisations results follow from
that. We will not discuss the proof for that result in detail here, since it would be very similar
to the proof that was given above, or to that in [1]. The main difference lies in the fact that
a relevant system is not closed for≤, so in particular no variant of Lemma2.8 need to be
proved. Since the strong normalisation result now talks about terms, also the Computability
Predicate can be defined in a less evolved way:

Definition Comp(B,M,σ) is recursively defined onσ by:

Comp(B,M,ϕ) ⇐⇒ B ⊢⊥R M :ϕ & SN(M)

Comp(B,M,α→β) ⇐⇒ (Comp(B′,N, α) ⇒ Comp(∩{B,B′},MN, β))

Comp(∩{B1, . . . , Bn},M1⊔ · · · ⊔Mn, σ1∩· · ·∩σn)

⇐⇒ ∀ i ∈ n [Comp(Bi,Mi, σi)]

Notice that, by the third part,Comp(∅,⊥, ω).
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Lemma2.8, which in turn is essential to prove part(≤) of the proof of Theorem2.11, is
not needed here. Instead, the replacement theorem here reads:

Theorem Let B = x1:µ1, . . . xn:µn, B ⊢ M :σ, and B′ be such that, for everyi ∈ n,
there is aNi such thatComp(B′, Ni, µi). ThenComp(B′,M [Ni/xi ], σ).

For the relevant system this part would be(Ax), and that step of the proof would be
trivial. All other proofs follow the line of [1], and are verysimilar to (simplified versions)
of those of Section2.2.

5.2 The strict type assignment system [3]

Another system for which the strong normalisation result for derivation reduction comes
relatively easy, is the strict system of [1], for which the results proved here were shown in
[3]. It can be defined as follows:

Definition The strict type assignment[1] is defined by the following natural deduction
system (where all types displayed are strict, exceptσ in the rules(→I), and(→E)):

(∩E) : (n ≥ 1, i ∈ n)
B,x:σ1∩· · ·∩σn ⊢S x :σi

(→I) :
B,x:σ ⊢S M :τ

B ⊢S λx.M :σ→τ

(∩I) :
B ⊢S M :σ1 · · · B ⊢S M :σn

(n≥ 0)
B ⊢S M :σ1∩· · ·∩σn

(→E) :
B ⊢S M :σ→τ B ⊢S N :σ

B ⊢S MN :τ

Notice that, essentially, the difference between the relevant and the strict systems lies in
going from derivation rule (Ax) to (∩E). In fact, derivation rule (∩E) is implicitly present in
the system ‘⊢R’, since there the intersection of types occurring in bases is produced using the
∩-operator. The system ‘⊢S’ does not use this operator; instead, it allows for the selection
of types from an intersection type occurring in a basis, regardless if all components of that
intersection type are useful for the derivation. In this sense, the strict system is not relevant.

A difference between the strict and the essential system is that the selection of types
from those provided in the bases is done through the relation≤, not just selecting from an
intersection. In the essential system, it is possible to derive ⊢

⊥
λx.x : (α→β)→(α∩γ)→β,

which is not possible in ‘⊢S’.
In this strict system, as for the essential system, it is possible to type non-normalisable

terms; however, derivation reduction is strongly normalisable, as could be expected. Again
we will omit almost all the proof for that result here, since it would be very similar to the
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proof that was given above. In particular, the Computability Predicate can be defined in a
similar way.

The main difference between the solution of [3] and the one presented here lies in the
fact that here we prove Lemma2.8, whereas in [3], it is not needed at all. However, the
difference between the strict system and the one consideredin this paper, rule(∩E) versus
(Ax), makes that the first part of the Replacement Lemma becomes:

(∩E) : Thenx:σ1∩· · ·∩σn ∈ B′, σ = σi for somei ∈ n, andDi :: B ⊢ Ni :σi. By Defin-
ition, Comp(Di), andD0 [D/x:µ ] = Di.
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