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Abstract

In reinforcement learning, an agent collects information interacting
with an environment and uses it to derive a behavior. This paper focuses
on efficient sampling; that is, the problem of choosing the interaction
samples so that the corresponding behavior tends quickly to the optimal
behavior. Our main result is a sensitivity analysis relating the choice of
sampling any state-action pair to the decrease of an error bound on the
optimal solution. We derive two new model-based algorithms. Simula-
tions demonstrate a quicker convergence (in the sense of the number of
samples) of the value function to the real optimal value function.

Introduction

In reinforcement learning, an agent collects information interacting with an en-
vironment and uses it to derive a behavior. This paper focuses on efficient
sampling; that is, the problem of choosing the interaction samples so that the
corresponding behavior tends quickly to the optimal behavior. The problem we
consider here is different from the well-known exploration-exploitation dilemma
[8], in which an agent wants to collect information while optimizing its inter-
action. In this paper we consider the case where the agent wants to find the
samples that will allow it to tend to the optimal behavior with fewer samples,
while not caring about its exploration performance.

A typical setting where the present work might be useful is when the agent
has a practice epoch at its disposal when its performance does not matter. For
instance, it might be a computer game player which is practicing before a com-
petition like the famous Back-Gammon TD-player [15], or a robot which learns
in a non-harmful environment (e.g. on Earth) before actually going to a similar
risky environment (e.g. on Mars) [1]. Another case where performance dur-
ing training is irrelevant is neurodynamic programming [2], where reinforcement
learning methods are used to solve very large MDPs in simulation. Tackling
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this sampling issue is all the more relevant when sampling has a high cost (in
the robot example, interacting with the world costs a lot of time and energy).
In all these problems, we want the computed behavior to tend to the optimal
behavior quickly with the number of samples.

Our approach is the following: we first derive a confidence bound on the
optimal value function, then we make a sensitivity analysis relating the choice
of sampling any state-action pair to the tightening of this confidence bound. Our
main result is Theorem 3, where we actually predict how sampling in a given
state-action pair will tighten the confidence bound. With such an analysis,
an agent can, step after step, choose to sample the state-action pair that will
tighten its confidence on its behavior quality the most. Going even further,
section 5 introduces an Error MDP, whose optimal policy corresponds to the
best sampling strategy for tightening the confidence bound in the long-term.

Most work in reinforcement learning sampling analysis [2, 3, 6, 7] rely on
the maximum L∞ norm. Though sufficient for many convergence results, L∞
bounds are often disappointing as they don’t give a precise picture of where and
why the approximation is bad. In this paper, we provide a confidence bound
with respect to the L1 norm. Such a bound allows us to have a more precise
insight of where and how much in the state-action space, sampling error on the
parameters R and T incur a global cost on the value function.

The paper is organized as follows. Section 1 presents the core of reinforce-
ment learning: we briefly present the theory of optimal control with Markov
decision processes (MDPs) and the certainty equivalence method for reinforce-
ment learning. Section 2 reviews recent results for analyzing approximations
in the MDP framework. In section 3, we apply this analysis to the reinforce-
ment learning problem and prove the key theorem of this paper: Theorem 3
shows how to estimate the effect of sampling a particular state-action pair on
the approximation error. Section 4 then describes two new algorithms that are
based on this key theorem. Section 5 illustrates experimentally and discusses
the results of these algorithms. Finally, section 6 provides a discussion of the
related literature.

1 The model

Markov Decision processes (MDP) [12] provide the theoretical foundations of
challenging problems to researchers in artificial intelligence and operation re-
search. These problems include optimal control and reinforcement learning [14].

A Markov Decision Process is a controlled stochastic process satisfying the
Markov property with rewards (numerical values) assigned to state-action pairs.
Formally, an MDPM is a four-tuple 〈S, A, T, R〉 where S is the state space, A

is the action space, T is the transition function and R is the reward function.
T is the state-transition probability distribution conditioned by the action; for

all state-action pairs (s, a) and possible subsequent states s′: T (s, a, s′)
def
=

IP(st+1 = s′|st = s, at = a). R(s, a) ∈ IR is the random variable which
corresponds to the instantaneous reward for taking action a ∈ A in state S.
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We assume throughout this paper that R is bounded. Then, without loss of
generality, we also assume that it is contained in the interval (0, Rmax).

Given an MDP 〈S, A, T, R〉, the optimal control problem consists in finding
a sequence of actions (a0, a1, a2, ...) that maximises the expected long-term dis-
counted sum of rewards: IE [

∑∞
t=0 γtR(st, at)| s0 = s, at] where the expectation

is over the runs of the Markov chain induced by (a0, a1, a2, ...), and γ ∈ (0, 1) is
a discount factor. A well-known fundamental result is that an optimal sequence
of actions can be derived from a deterministic function π : S → A, called policy,
which prescribes which action to take in every state. The value function of a pol-
icy π at state s is the expected long-term discounted amount of rewards if one fol-

lows policy π from state s: V π(s)
def
= IE [

∑∞
t=0 γtR(st, at)| s0 = s, at = π(st)]

where the expectation is over the runs of the Markov chain induced by π, and

satisfies for all states s: V π(s)
def
= IE[R(s, π(s))]+γ

∑

s′ T (s, π(s), s′)V π(s′). The
Q-function of a policy π for state-action pair (s, a) is the expected long-term dis-
counted amount of rewards if one does action a from state s and then follows the

policy π: Qπ(s, a)
def
= IE

[

∑∞
t=0 γtR(st, at)| s0 = s, at =

{

a if t = 0
π(st) else

]

and

satisfies: Qπ(s, a)
def
= IE[R(s, a)] + γ

∑

s′ T (s, a, s′)V π(s′).
Given these notations, the optimal control problem amounts to finding an op-

timal policy π∗ whose value V ∗, called the optimal value function, is the greatest
for all states: ∀s ∈ S, V ∗(s) = maxπ V π(s). Such an optimal policy exists and
its value function V ∗, is the unique fixed point a contraction mapping, so that
for all states s: V ∗(s) = maxa (IE[R(s, a)] + γ

∑

s′ T (s, a, s′)V ∗(s′)) . The corre-

sponding optimal Q-function Q∗(s, a)
def
= IE[R(s, a)] + γ

∑

s′ T (s, a, s′)V ∗(s′) is
particularly interesting as it enables us to derive a deterministic optimal policy
π∗(s) as follows: π∗(s) = argmaxa Q∗(s, a). A standard algorithm for solving
optimal control is Policy Iteration [12] which converges to the optimal solution
in a finite number of iterations.

The reinforcement learning problem is a variant of optimal control where
the MDP parameters (R and T ) are initially unknown, and therefore must be
estimated through sample experiments [14]. While optimal control only involves
planning, reinforcement learning involves both learning (estimation of the pa-
rameters) and planning and is therefore a slightly more difficult problem. A
standard and natural solution to this problem, known as the certainty equiva-
lence method [9], consists in estimating the unknown parameters R and T , and
then deriving a policy from these estimates. Let #(s, a) be the number of times
one has taken action a in state s. Let #(s, a, s′) be the number of times one
arrived in state s′ after having taken action a in state s. Let ΣR(s, a) be the
cumulative amount of rewards received when taking action a in state s. The
idea of the certainty equivalence method is to solve the MDP M̂ = 〈S, A, T̂ , R̂〉
where

R̂(s, a)
def
=

ΣR(s, a)

#(s, a)
and T̂ (s, a, s′)

def
=

#(s, a, s′)

#(s, a)
. (1)

are the maximum-likelihood estimates of R and T . After a finite number of
samples, choosing the optimal policy given this empirical model is clearly an
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approximation. The next sections provide an explicit analysis of this approxi-
mation.

2 The approximation error

In this section, we review some recent general results about approximation in
MDPs. We will apply them to the reinforcement learning case in the next
section.

Recall that, in the discounted optimal control problem, we want to find the
optimal value function V ∗ which satisfies for all states s: V ∗(s) = maxa [BaV ∗] (s)
where Ba, often referred to as the Bellman operator, returns for any real-
valued function W on S, and any action a, a new real-valued function of s:

[BaW ](s)
def
= IE[R(s, a)] + γ

∑

s′ T (s, a, s′)W (s′). Consider that, instead of us-

ing this Bellman operator Ba, we use a slightly different Bellman operator B̂a,
which for any real-valued function W on S, and any action a, returns the fol-

lowing function of s : [B̂aW ](s)
def
= R̂(s, a) + γ

∑

s′ T̂ (s, a, s′)W (s′). We shall

call B̂a the approximate Bellman operator as it is based on some approximate
parameters R̂ and T̂ . For any policy π, let V̂ π be the value of the policy based
on these approximate parameters. Similarly, let V̂ ∗ be the corresponding opti-
mal value function and π̂∗ the corresponding optimal policy. In the remaining
of this section, we show how to analyze the error due to using B̂a instead of Ba.

Suppose e(s, a) is an upper bound of the error if using the approximate pa-

rameters to operate on the real optimal value function V ∗:
∣

∣

∣
[BaV ∗] (s)− [B̂aV ∗](s)

∣

∣

∣
≤

e(s, a). As e measures how much error applying once the approximate Bellman
operator will incur, we call it the 1-step error. Though in practice, the 1-step
error might be difficult to estimate as it depends on unknown quantities (Ba

and V ∗), next section will show how to estimate it in the reinforcement learn-
ing case. Let 1I be the indicatrice function. For any transition function T̃ and
any policy π, let IT̃ ,π be the discounted sum of occupations of the dynamical

system whose dynamics is characterized by T̃ and π; IT̃ ,π is the solution of a

linear system of size |S|: ∀s ∈ S, IT̃ ,π(s) = 1+γ
∑

s′ T̃ (s′, π(s′), s)IT̃ ,π(s′). The
following theorem [11] allows to compute the approximation error:

Theorem 1 1) Given a policy π, if Eπ(s) satisfies for all states s, Eπ(s) =
e(s, π(s)) + γ

∑

s′ T̂ (s, π(s), s′)Eπ(s′) then for all states s, |V π(s) − V̂ π(s)| ≤
Eπ(s).

2) If E∗(s) satisfies for all states s, E∗(s) = maxa e(s, a)+γ maxa

(

∑

s′ T̂ (s, a, s′)E∗(s′)
)

then for all states s, |V ∗(s)− V̂ ∗(s)| ≤ E∗(s).
3) We can quantify the relation between the 1-step error e and these approxi-
mation error bounds:
∂‖Eπ‖1

∂e(s,a) = 1I{a=π(s)}IT̂ ,π
(s) and ∂‖E∗‖1

∂e(s,a) = 1I{a=πe(s)}IT̂ ,πE∗
(s) where πe(s)

def
=

argmaxa e(s, a) and πE∗(s)
def
= arg maxa

(

∑

s′ T̂ (s, a, s′).E∗(s′)
)

are the poli-

cies that incur the worst errors in the equation characterizing E∗.
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Note that, in contrast to the optimal value function V ∗ which depends upon
the real transition function T , the approximation errors Eπ and E∗ depend
upon the estimate transition function T̂ . These approximation errors can thus
be easily computed. Indeed, the theorem we have just described can be practi-
cally exploited in the following manner. Given e(s, a) for all state-action pairs
(s, a) (we show in the next section how to derive such a quantity), the error
policy πe = arg maxa e(s, a) can be derived in a straightforward way. Then the
approximation error E∗, and the policy πE can be computed with an algorithm
similar to Policy Iteration (see algorithm 1). By using the triangle inequality,

Algorithm 1 Error

Input: a state space S, an action space A, an approximate T̂ , an upper bound
on the one-step error e, the policy πe, and a discount factor γ

Output: the approximation error E and the policy πE

Initialize πE arbitrarily
repeat

1. Find the solution (E(s1), E(s2), ...) of the linear system which satisfies
for all states s:

E(s) = e(s, πe(s)) + γ
∑

s′∈S

T̂ (s, πE(s), s′)E(s′)

2. Update the policy πE for all states s:

πE(s)← arg max
a∈A

(

∑

s′∈S

T̂ (s, a, s′)E(s′)

)

until convergence

it is also easy to derive a bound on the distance between the real value of the
optimal policy π∗ and the real value of the optimal policy π̂∗ derived from the
approximate model:

‖V ∗ − V π̂∗‖1 ≤ ‖V ∗ − V̂ ∗‖1 + ‖V̂ ∗ − V π̂∗‖1 ≤ ‖E‖1 (2)

with E
def
= E∗ + Eπ∗

, and to relate it to the 1-step error:

∂‖E‖1
∂e(s, a)

= 1I{a=πE∗ (s)}IT̂ ,πE∗
(s) + 1I{a=π̂∗(s)}IT̂ ,π̂∗(s). (3)

3 The sampling error

The analysis of the previous section shows how to compute an error bound while
using the optimal policy of the approximate model given the 1-step error e. In
this section, we provide two key theorems that link the approximation analysis
and reinforcement learning. The proofs are deferred to the appendix.

Our first important result shows how to relate the 1-step error e to the
amount of sampling #(s, a) in each state-action (s, a):

5



Theorem 2 Fix δ > 0. Then with probability at least 1− δ, for all state-action
pairs (s, a):

∣

∣

∣
[BaV ∗] (s)− [B̂aV ∗](s)

∣

∣

∣
≤ λµ
√

#(s, a)

where λ
def
= Rmax

(

1 + γ|S|
1−γ

)

and µ
def
=
√

1
2 log 2|S||A|(|S|+1)

δ
are two constant

numbers.

As a corollary, if we set e(s, a)
def
= λµ√

#(s,a)
, and if we derive E as described in

previous section (see Equation 2), we obtain that ‖V ∗ − V π̂∗‖1 ≤ ‖E‖1 with
probability at least 1 − δ. In other words, this analysis provides a confidence
bound on the quality of the policy given the number of samples #(s, a) in every
state-action pair.

Because in the analysis so far, we have considered the L1 norm instead of
the usual L∞ norm, we can predict the effect of sampling on the error bounds
E∗ ≥ |V ∗ − V̂ ∗| and E ≥ |V ∗ − V π̂∗ | we introduced in the previous section
(Theorem 1 and Equation 2). Suppose the agent is about to sample some
state-action pair (s, a). Before it does so, the agent has upper bounds of the
error ‖E∗‖1 and ‖E‖1 which hold with high probability. After the agent has
actually sampled, it might compute new error bounds ‖E′∗‖1 and ‖E′‖1. Let

∆‖E∗‖1
def
= ‖E′∗‖1 − ‖E∗‖1 and ∆‖E‖1

def
= ‖E′‖1 − ‖E‖1 be the variations of

these error bounds when sampling some state-action pair. Let us also define the

function f(k)
def
= 1√

k+1
− 1√

k
. We can predict the evolution of the error bounds

without actually having to compute them for all state-action pairs:

Theorem 3 Fix δ > 0. Then with probability at least 1− δ, sampling action a

in state s will affect the error bounds as follows:

∆‖E∗‖1 = S∗(s, a) + o (f(#(s, a)))

∆‖E‖1 = S(s, a) + o (f(#(s, a)))

with S∗(s, a)
def
= λµ1I{a=πe(s)}IT̂ ,π∗

E

(s)|f(#(s, a))| (4)

S(s, a)
def
= λµ

(

1I{a=πe(s)}IT̂ ,π∗

E

(s)+ (5)

1I{a=π̂∗(s)}.IT̂ ,π̂∗(s)
)

|f(#(s, a))|

As f is quickly decreasing to 0 (f(k) ∼ k− 3
2 when k →∞), the o(.) term is more

and more negligible as the number of samples grows. This fundamental result
prescribes to sample the state-action pair (s, a) for which the scores S(s, a) or
S∗(s, a) are the biggest. We show how to practically exploit this information
through two algorithms in the next section.
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4 Two sampling algorithms

This section provides two new algorithms for efficient sampling in reinforcement
learning that are based on the analysis of the previous sections. We consider
two cases, the off-line case and the online case. In the off-line case, the agent
can sample any action from any state whenever it wants to. The on-line case is
a bit more tricky: at any time, the agent is in one state, it chooses an action and
then gets to a new state and can only sample from this new state; the on-line
case is in other words constrained by the real interaction dynamics.

The off-line case algorithm (see algorithm 2) is rather straight-forward. It

Algorithm 2 Off-line sampling

Input: a state space S, an action space A and a discount factor γ

Output: an approximate value function V , a policy π, and a confidence bound
E

Initializations: R̂(s, a)← 0, T̂ (s, a, s′) = 0, e(s, a)← +∞, πe arbitrary.
repeat

(V̂ , π̂)← SolveMDP(〈S, A, T̂ , R̂〉, γ).
(E, πE)← Error(S, A, T̂ , e, πe, γ).
Compute one of the score functions S(s, a) for all (s, a) (Equation 4 or 5).
Sample the state-action pair (s, a) that maximizes S(s, a).
Update the parameters R̂(s, a) and T̂ (s, a, .) given the observed result of
sampling (Equation 1).
Update the error parameters e(s, a) and πe(s, a).

until stopped

can be used with any of the two score function S∗ and S defined just after
Theorem 3. At each iteration, the agent computes the approximate value func-
tion, derives the corresponding error bound, estimates the effect of sampling
(this involves 2 linear systems inversions for S∗ and 4 for S), and samples the
state-action pair that will decrease the approximation error bound the most.

In the on-line case, one wants the agent to take a sequence of actions that
minimizes the approximation error in the long-term. Indeed, the agent needs not
only choose the best current sample, it must also plan to go to regions of the state
space where sampling is useful. To do so, we introduce an Error MDP MS =
〈S, A, T̂ ,S〉, whose optimal policy maximizes the long-term decrease of error (see
algorithm 3). Here we consider the score S but our arguments are similar for S∗.
If the agent follows the optimal policy of this Error MDP, it should expect to
maximize the discounted sum of error decreases

∑∞
t=0 γtS(st, at). As every new

sample might change the score S, the Error MDP must in theory be solved at
each time step. The choice of one action (which thus involves solving an MDP)
might look like a heavy computation. Nevertheless, it is easy to see that after
sampling action a in state s, any score S will at most vary by 2λµ

1−γ
f(#(s, a)).

Let V S
t denote the optimal value function of the Error MDPMS at time t, then

‖V S
t+1−V S

t ‖∞ ≤ 2λµ
(1−γ)2 f(#(s, a)). In other words, while time goes, the variation
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Algorithm 3 On-line sampling

Input: a state space S, an action space A, a starting state s, and a discount
factor γ

Output: an approximate value function V , a policy π, and a confidence bound
E

Initializations: R̂(s, a)← 0, T̂ (s, a, s′) = 0, e(s, a)← +∞, πe arbitrary.
repeat

(V̂ , π̂)← SolveMDP(〈S, A, T̂ , R̂〉, γ).
(E, πE)← Error(S, A, T̂ , e, πe, γ).
Compute one of the score functions S(s, a) for all (s, a) (Equation 4 and
5).
(., πexplore)← SolveMDP(〈S, A, T̂ ,S〉, γ).
Execute the action: a← πexplore(s).

Update the current state s, and the parameters R̂(s, a) and T̂ (s, a, .) (Equa-
tion 1).
Update the error parameters e(s, a) and πe(s, a).

until stopped

of V S
t gets smaller and smaller. This suggests that starting the resolution of

MS at time t+1 with its solution at time t will speed up the process. We study
the practical efficiency of these algorithms in the next section.

5 Experiments

We have experimented our two algorithms, each with the two possible score
criteria S∗ and S, and compared them to two standard sampling approaches:
1) Random Sampling: At any iteration, one chooses an action a uniformly at
random in A (in the offline case, one also chooses s uniformly at random). 2)
Exhaustive Sampling: At any iteration, one chooses the action a (in the offline
case, the state-action pair (s, a)) that has been experienced the less.

We considered two classes of problems: 1) Random Grid MDPs: We created
a set of random 5 × 5 grid MDPs, with 4 actions, where transitions are local:
the next-state distribution from the state of coordinates (x, y) on the grid only
includes the states {(x±1, y±1)}. 2) Howard’s Automobile Replacement prob-
lem: We consider this 40-state 41-action MDP as it is defined in [5], because it
often stands for a test-bed in the optimization literature.

In all experiments, we set the discount factor γ to 0.99 and we randomly
chose a starting state. We measured, sample after sample, the efficiency of
the 4 different exploration strategies by computing 1) the real relative distance
between the real optimal value function and the approximate optimal function

C∗ def
= ‖V ∗−V̂ ‖1

‖V ∗‖1
and 2) the real relative distance between the real optimal value

function and the real value of the approximate optimal policy C
def
= ‖V ∗−V π̂∗‖1

‖V ∗‖1
.

Recall that ‖E∗‖1 (resp. ‖E‖1) constitutes an upper bound of ‖V ∗‖1C∗ (resp.
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‖V ∗‖1C), and that using score S∗ (resp. S) is aimed at reducing ‖E∗‖1 (resp.
‖E‖1). In figure 1 and 2, we display a typical performance evolution of C∗

and C for the offline and the online cases; this gives 4 sub-figures by problem.
We show the performance evolution for the 4 different exploration strategies:
using score S∗, using score S, exhaustive sampling, random sampling; this thus
gives 4 curves. For each curve, we ran the simulations 20 times and display the
median and the ranges (after having removed the 4 worst and best values). For
all these curves, the quicker they go to 0 the better.

A first glance at figures 1 and 2 leads to the following general observation: the
score S is better than S∗ for decreasing C and C∗. This is somehow surprising,
as S was designed to minimize C while S∗ was designed to minimize C∗; indeed,
one would have expected that using S∗ would be more efficient for decreasing
C∗. We think that the reason why this effect stands is related to the fact that
the score S depends upon the current approximate optimal policy π̂∗ whereas
S∗ does not (compare definitions of S and S∗ in Theorem 3). Thus, the current
knowledge of the approximate optimal policy π̂∗ tends to favour sampling along
the state-action pairs which belong to π̂∗, and therefore can be seen as a heuristic
that accelerates the convergence.

Then, our main experimental result is the following: our algorithms with
score S lead to a clear quicker decrease of C∗ than both standard approaches
for all problems (see figures 1-a, 1-b, 2-a, 2-b). If we consider the error measure
C, our algorithms lead to a clear improvement in all cases except figure 2-b’
where there does not seem to be a significant improvement, although there
is actually one (figures 2-b and 2-b’ correspond to two measures of the same
experiments and the improvement is clear for C∗ in figure 2-b.).

More general observations can be derived from all the experiments we have
run and whose results are not shown in this paper. The convergence accelera-
tion is always smoother and easier to notice for the relative distance between the
approximate value function and the real optimal value function (C∗) than for
the relative distance between the real value of the approximate optimal policy
π̂∗ and the optimal value (C). The reason for C to show less clear improvement
is probably related to its more general complex shape: C only changes by dis-
continuous jumps each time a new sample leads to a change of the approximate
policy π̂∗. Another general observation is that the efficiency for decreasing C∗

by our algorithms with score S is usually more striking for the on-line rein-
forcement learning problem than for the off-line case (compare for instance 2-a
and 2-b). This is particularly interesting, as it is likely that problems for which
samples have a high cost are also on-line problems.

6 Discussion

We showed through simulations in the previous section that our algorithms can
in practice speed-up the convergemce towards the optimal value function and
the optimal policy. We here discuss our contributions to the literature.

This work can be seen as an extension of the L1 norm error analysis of [11]
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Figure 1: Error measure evolution for Random Grid MDP simulations: a (resp.
a’) shows C∗ (resp. C) for the off-line algorithm; b (resp. b’) shows C∗ (resp.
C) for the on-line algorithm.
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Figure 2: Error measure evolution for Howard’s automobile replacement prob-
lem simulations: a (resp. a’) shows C∗ (resp. C) for the off-line algorithm; b
(resp. b’) shows C∗ (resp. C) for the on-line algorithm.
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1 referred to in this paper as Theorem 1, to the reinforcement learning problem.
A key issue in such an approach is to estimate in a sound way the 1-step error
which depends upon unknown parameters (Ba and V ∗). The work we have
presented in this paper shows that, for the reinforcement learning problem,
standard tools of the statistical theory allow us to derive an upper bound of
this 1-step error which is true with high probability, and we can consequently
exploit the strength of the L1 norm error analysis as explained in [11].

The idea of optimizing the choices of samples based on a gradient descent of
the error on the value function was also suggested in [10]. However the approach
of the author for analyzing the error is quite different; from our viewpoint, the
most important difference is that the author does not provide any confidence
bounds on the approximate policy value, or even on the approximate value,
which might be crucial in practice for deciding when it is reasonable to stop
sampling. Furthermore, the author does not provide any specific algorithm for
the reinforcement learning problem nor does show any empirical evaluation.
If given a gradient analysis of the error given the sampling, the algorithm for
sampling in the off-line case can be derived in a rather straight-forward way,
the on-line case algorithm, which shows the most interesting improvements in
our simulations, and the very idea of introducing an Error MDP, are completely
new contributions.

A closely related work is [3], where the exploration-exploitation dilemma
is tackled with confidence bounds on the Q-values and an action elimination
procedure which progressively restricts the set of possible actions to sample
in each state. Using such an action elimination procedure (and even though
their algorithm samples uniformly in the actions that have not been eliminated
yet), the authors show that an eventual non uniform sampling strategy is better
than the random sampling strategy2. As we also derive confidence bounds on
the policy, we could have incorporated an action elimination procedure in our
algorithm3. We decided not to do so. Indeed, our simulations show that just our
gradient-based approach can be efficient for reducing the number of samples.
A natural subsequent work will evaluate the combination of action elimination
with our gradient approach in the minimization of sampling we considered in
our paper, and in the exploration-exploitation dilemma.

From a computational viewpoint, our algorithms (especially the on-line al-
gorithm) require, for choosing every next sample, to solve a couple of MDPs
and to invert a couple of linear systems. We already argued that it would be,
in practice, quite efficient to use the solutions of the Error MDP at time t, as a
starting point for finding the solutions at time t+1. Considering this complexity,
we would like to stress here the fact that there is a potential leverage on what we

1This work was originally aimed at tackling optimal control problems in large state spaces
with linear value function approximation.

2Note also that in the present paper, we compare our algorithms with the exhaustive sam-
pling strategy which experimentally appears to be better than the random sampling strategy,
whereas [3] only compares their algorithms to the random sampling strategy

3Indeed, the original L1 analysis by [11] precisely describes how to incorporate such an
action elimination procedure.
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might call a complexity-quality trade-off. Because all the computations we con-
sider (for the MDPs as for the linear system inversions) are contraction mapping
fixed points, it is straightforward to imagine variations of these computations,
where one just applies a small number of (possibly asynchronous) back-ups of
the contraction operators and use the corresponding approximate solutions for
choosing the samples. This leverage principle for contraction mapping was used
many times in the reinforcement learning literature (for instance, one can think
of the DYNA architecture [13] as an asynchronous version of the natural cer-
tainty equivalence method introduced in section 2). Here again for the current
paper, we decided not to over-complexify the analysis with such details so that
the theoretical justifications of our algorithms remain clear, and also so that we
could analyze the very process of doing sampling based on a sensitivity analysis
without perturbing it with some other approximation issues.

Conclusion

In this paper, we provided a sensitivity analysis and two new algorithms which
enable us to reduce the amount of sampling in reinforcement learning. Simula-
tions show that our algorithms provide a quicker convergence (in the sense of
the number of samples) of the value function to the real optimal value function
than standard approaches. In the near future, we will investigate incorporating
action elimination and using lower complexity variations of the algorithms pre-
sented in this paper. We will also relate our work to the well-known exploration-
exploitation dilemma. Further future directions include deriving model-free ver-
sions of our algorithms and combining them with function approximation in a
neurodynamic way [2] for tackling large state space problems.
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Appendix

A. Proof of Theorem 2

Let us define ∆R(s, a)
def
= |R(s, a) − R̂(s, a)| and ∆T (s, a, s′)

def
= |T (s, a, s′) −

T̂ (s, a, s′)|. Hoeffding’s inequality [4] gives:

IP

({

∆R(s, a)

Rmax

≥ µ
√

#(s, a)

})

≤ 2e
−2

(

µ√
#(s,a)

)2

#(s,a)
.

Given the definition of µ, we can infer:

IP

({

∆R(s, a)

Rmax

≥ µ
√

#(s, a)

})

≤ δ

|S||A|(|S|+ 1)
.

Similarly for T , we can write:
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IP

({

∆T (s, a, s′) ≥ µ
√

#(s, a)

})

=
δ

|S||A|(|S|+ 1)
.

Using the union bound we can deduce:

IP

({

∃(s, a),
∆R(s, a)

Rmax

≥ µ
√

#(s, a)

}

∪
{

∃(s, a, s′), ∆T (s, a, s′) ≥ µ
√

#(s, a)

})

≤ δ.

Then, using the triangle inequality, we have with probability at least 1 − δ, for
all (s, a):

∆R(s, a) +
γRmax

1− γ

∑

s′

∆T (s, a, s′)

≤ µRmax
√

#(s, a)
+

γRmax

1− γ
|S| µ
√

#(s, a)
=

λµ
√

#(s, a)
.

Eventually, the theorem follows from the triangle inequality which allows to say
that for all (s, a):

∣

∣

∣
[BaV ∗] (s)− [B̂aV ∗](s)

∣

∣

∣

≤ ∆R(s, a) +
γRmax

1− γ

∑

s′

∆T (s, a, s′).

B. Proof of Theorem 3

Let us first concentrate on E∗. We use a Taylor development to prove Theorem
3:

∆‖E∗‖1 =
∂‖E∗‖1
∂e(s, a)

∆e(s, a) + o(∆e(s, a)).

where ∆e(s, a) is the variation of e(s, a) if the agent samples (s, a). We have:

∆e(s, a) =
λµ

√

#(s, a) + 1
− λµ
√

#(s, a)
= λµf(#(s, a)).

Theorem 1 gives the value of ∂‖E∗‖1

∂e(s,a) .

The proof is similar for E.
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