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Introduction

First introduced by [12], pomset linear logic can deal with linguistic aspects
by inducing a partial order on words. [9] uses this property: it defines modules
(or partial proof-nets) which consist in entries for words, describing both the
category of the word and its behavior when interacting with other words. Then
the natural question of comparing the generative power of such grammars with
Tree Adjoining Grammars [7], as [6] pointed some links out, arises.

To answer this question, we propose a logical formalization of TAGs in the
framework of linear logic proof-nets. We aim to model trees and operations on
these trees with a restricted part of proof-nets (included in the intuitionistic
ones), and we show how this kind of proof-nets expresses equivalently TAG-
trees.

The first section presents all the definitions. Then, in the second section, we
propose a fragment of proof-nets allowing the tree encoding and the third section
defines the way we model operations on proof-nets. As replying to the second
section, the fourth one allows us to come back from proof-nets to trees. Finally,
section 5 shows examples of how the definitions and properties work.

1 Definitions

1.1 TAG

First, extending the original definition of TAG [7] with the substitution operation
as in [15,3], we get:

Definition 1. A TAG is a 5-uple (VN , VT , S, I, A) where:

1. VN is a finite set of non-terminal symbols,
2. VT is a finite set of terminal symbols,
3. S is a distinguished non-terminal symbol, the start symbol,
4. I is a set of initial trees,
5. A is a set of auxiliary trees.

M. Moortgat (Ed.): LACL’98, LNAI 2014, pp. 230–250, 2001.
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Initial trees represent basic sentential structures or basic categories. They have
non-terminal nodes to be substituted for and serve as arguments to themselves
or to auxiliary trees. A leaf (marked with a ∗) with the same label as the root
node characterizes the auxiliary trees. An elementary tree is either an initial tree
or an auxiliary tree.

The TAGs we are considering here will always be such that every elementary
tree has at least a (terminal) node labeled by a terminal symbol, so that the
TAGs are lexicalized.

Second, for refering trees and nodes in these trees, we use the notations [7]
defined for trees on the finite aphabet V (V = VN ∪ VT ):

Definition 2. γ is a tree over V iff it is a function from Dγ into V where the
domain Dγ is a finite subset of J? such that:

1. if q ∈ Dγ , p < q, then p ∈ Dγ ;
2. if p · j ∈ Dγ , j ∈ J, then p · 1, p · 2, . . . , p · (j − 1) ∈ Dγ

where J? is the free monoid generated by J the set of all natural numbers, · is
the binary operation, 0 is the identity and for q ∈ J?, p ≤ q iff there is a r ∈
J? such that q = p · r, and p < q iff b ≤ q and p 6= q.

We call elements in Dγ adresses of γ. If (p, X) ∈ γ, then we say that X is the
label of the node at the adress p in γ. We write it γ(p) = X.

Third, we require another property:

Property 1 ($). A tree γ satisfies the $ property iff ∀p ∈ Dγ such that γ(p) ∈ VT

then p = q · 1 and q · 2 6∈ Dγ .

It means that for a tree, if a node is terminal, labeled by a terminal symbol,
then it is the unique daughter of its mother-node. Performing the two operations
(substitution and adjunction) preserves this property.

But considering TAGs whose elementary trees have the $ property does not
restrict the generated language. Indeed, if G is a TAG whose elementary trees do
not have the $ property, T (G) is the set of all the trees that the two operations
produce in the TAG G, L(G) is the language that G generates (the set of strings
as sequences of terminal symbol-labeled leaves of trees in T (G)) and if G1 is the
TAG made from G in order to get the elementary trees have the $ property,
then we have no special relation between T (G) and T (G1). Nevertheless, we have
L(G) ⊂ L(G1).

Fourth, another restriction, similar to the restriction from [3], is to avoid the
use of trees γ such that:

∃p ∈ Dγ , γ(p) = γ(p · 1) and p · 2 6∈ Dγ

It means there is no tree that have an X-labeled node whose unique leaf is also
an X-labeled node.
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Table 1. Definitions of the links

Name axiom O ⊗ Cut <

Premises none A and B A and B A and A⊥ A and B

R&B-graph
A A⊥

A B

AOB

A B

A ⊗ B

A A⊥A B

A < B
Conclusions A and A⊥ AOB A ⊗ B none A < B

1.2 Lexicalized Proof-Nets

Proof-nets in linear logic have become familiar [4,12,2]. In this paper, we refer
to [13]’s notations of proof-nets, extended to the ordered calculus [14]. It defines
proof-nets as bicolored (Red and Blue, or Regular and Bold) graphs with the
five links corresponding to the axiom, the tensor (⊗), the before (<), the par (O)
and the cut (Cut). This calculus enjoys cut-elimination [12], a crucial property
for our modeling.

Let us remind the main definitions:

Definition 3 (RB-graphs). A RB-graph is a graph with couloured edges (blue
and red, or bold and regular). B-edges are undirected. The R-edges may be undi-
rected or directed, in which case we call them R-arcs.

Definition 4 (Links). There are five sorts of links, defined as RB-graphs (see
table 1).

Definition 5 (Proof-structure). A proof structure is a RB-graph such that
any B-edge is the conclusion of exactly one link and the premise of at most one
link (the B-edges which are not a premise of any link are called conclusions of the
proof-structure, they contain all the cuts), provided with a set of R-arcs between
conclusions which defines a strict partial order.

Definition 6 (Proof-net). An ordered proof-net is a proof-structure which con-
tains no alternate elementary circuit1.

We speak about correctness criterion, or correctness checking to speak about
the absence of any alternate elementary circuit in a proof-structure, so that we
know wether a proof-structure is a proof-net or not.
1 a path of even length, starting and ending on the same vertex, using only once every

other vertex and with alternating blue and red edges.
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Table 2. Rewriting rules on proof-nets for cut-elimination

A • A⊥ (A < B) • (A⊥ < B⊥) (AOB) • (A⊥ ⊗ B⊥)

A A⊥A A⊥

A B A⊥ B⊥
A B A⊥ B⊥

A A⊥
A B A⊥ B⊥

A B A⊥ B⊥

Proposition 1 (Cut-elimination). Cuts can be eliminated. More precisely:
let Π be a proof-net whose conclusions are F1, F2, . . . , Fk, •1, . . . , •p ordered by
R (where F1, . . . , Fk are formulas and all the •i are cuts) it is possible to rewrite
Π as Π ′ with conclusions F1, . . . , Fk ordered by the restriction of R to these
formulas. Moreover, this rewriting enjoys strong normalisation and confluence
[12].

Table 2 shows the rewriting rules on proof-nets.
We do not consider all proof-nets, but only those taking their formulas in

the C language defined as follows: A is an alphabet of atomic formulas (we shall
take A = VN ) and

B1 ::= A⊥|A⊥
OB1 B2 ::= A|B2 < A

C ::= A|A⊥|A ⊗ A⊥|AOA⊥|B1O(B2 ⊗ A⊥)

Moreover, we always set the R partial order relation to ∅.
In addition to logical formulas, we also decorate proof-nets with labels from a

finite set of terminal symbols. Then, as a restriction of the lexicalized intuition-
istic labeled proof-nets defined in [10], we define:

Definition 7. 1. Output: An output is either a B-edge that is labeled by a
positive atom or the conclusion of a par-link between two atoms dual one
from another (we call such a conclusion a par-gate).

2. Intuitionistic proof-net: An intuitionistic proof-net (IPN) is a proof-net
which contains one and only one output.

3. Simply lexicalized proof-net: A simply lexicalized (SLIPN) is a lexical-
ized IPN the conclusions of which are of the form:
a) atoms or dual of atoms,
b) output,
c) A⊥

j1
O · · ·OA⊥

jn
O((A1 < · · · < Am)⊗Y ⊥) with ji ∈ [1, m](ji ≤ jk iff i ≤ k)

and every A⊥
ji

is labeled by a string wji (Ai ∈ VN and wj ∈ VT ),
d) X ⊗ X⊥ with X atomic (we call such a conclusion a tensor-gate).
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Note that neither the lexicalization nor the intuitionnistic property con-
tribute to the proof-structure correctness checking. The correctness criterion
does not change (since it’s (almost) the only one to handle the before-link, we
would rather keep it). On the other hand, the intuitionistic feature allow the
use of (a variant of) intuitionistic paths [8]. It is stable under the operations
we are considering and paths enable the decoding from proof nets to trees (see
section 4.2).

2 From Trees to Proof-Nets

This section defines for each elementary tree of a TAG a corresponding SLIPN
with an induction on the height of the trees. The set of atoms for logical formulas
comes from VN , and labels come from VT .

Table 3. Initial trees maping

Trees Proof-nets
X

x
X⊥ : xX

h = 1

Y

X

X

Y

Y ⊥

X⊥

Y

X1 Xi Xp

X⊥
1

X1

X⊥
2

X2

Xp

X⊥
p

YY ⊥

h = 2

Y

X1 Xi1 Xi2 Xip Xn

xi1 xi2 xip

(see figure 1(a))

general
case

Y

X1 Xi1 Xj1 Xjm
Xil Xip Xn

xi1 xil xip

(see figure 1(b))
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2.1 Initial Trees

We first give the general idea of this encoding on the tree T2 of table 5. Forgetting
the lexicalized part, we can read this tree as a terminal node (N) preceding
another terminal node (V ) to produce their mother-node (P ). We can express
this idea with a formula of pomset logic: (N < V ) ( P . But do not forget that
this is a brick from which we want to derive S. Moreover, proof-nets correspond
to one-sided sequent, so that, actually, we are more intersted in the dual of such
formula, namely: (N < V ) ⊗ P⊥. Thus, we shall have a SLIPN with this latter
sub-formula, other connectives dealing with the lexicalization.

Table 3 sums up the translation. Note that for h = 1, the two latter cases
do not belong to the considered TAG. Nevertheless, we require the definition of
their corresponding SLIPNs for the next steps of the induction. The case h = 2
only presents the case where lexicalized subtrees’ height (at least one exists)
is 1 and other subtrees’ height is 0, for we deal with the cases where other
subtrees’ height can be 1 in the next general case. For this latter, we possibly
have {i1, . . . , ip} = ∅ and in figure 1(b) the Πj1 , . . . , Πjm are the inductivily built
SLIPNs corresponding to the subtrees of γ at Xj1 , . . . , Xjm

.

X⊥
i1

: xi1

X⊥
ip

: xip

X1 X2X
⊥
2X⊥

1

X3 X⊥
3

Xn X⊥
n

YY ⊥

Xi1

Xip

(a) SLIPNs corresponding to
trees of height 2

X1 X2X
⊥
2X⊥

1

X3 X⊥
3

Xi1

Πj1Xj1

Πjm

Xjm

Xn X⊥
n

YY ⊥

X⊥
ip

: xip

X⊥
i1

: xi1

Xip

(b) SLIPNs corresponding to trees
in the general cases

Fig. 1. SLIPNs for higher trees
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X X⊥

X

X⊥

XOX⊥

ΠΠ+

X X⊥

X

X⊥

Fig. 2. Auxiliary trees

Definition 8. For every initial tree T , we call corresponding initial SLIPN, or
T transformation, the SLIPN defined as in table 3 and figure 1.

Remark 1. 1. The unique output of every SLIPN corresponds to the root node
of the tree, and every terminal node, labeled by a non-terminal symbol, of a
tree corresponds to a conclusion of the corresponding SLIPN.

2. There is a one-to-one maping between the non-terminal symbol labeled nodes
of a tree and the axiom links of the corresponding SLIPN.

2.2 Auxiliary Trees

Let γ be an auxiliary tree and let us define γ+ as the same tree as γ except
for its X∗ node replaced with an X node. We call r the adress of N∗ in γ so
that γ(r) = X∗ and γ+(r) = X. Then, following the definition in the previous
section, we can define Π+ the SLIPN corresponding to γ+. And, as γ is an
auxiliary tree, γ+(r) = γ+(0) and Π+ has a conclusion X (corresponding to
γ+(0)) and a conclusion X⊥ (corresponding to γ+(r)).

Thus we define Π the corresponding SLPIN to γ as the proof-net built from
Π+ in binding with a O-link its X and its X⊥ conclusions (see figure 2). Π is a
(correct) SLIPN.

Definition 9. For every auxiliary tree γ, we call auxiliary corresponding
SLIPN, or γ transformation, the SLIPN defined as above. Then, for every ele-
mentary tree, we call corresponding SLIPN the initial or auxiliary SLIPN cor-
responding to that tree.

3 Elementary Operations

This section deals with a particular case of the next section but focuses on the
core operations which we can refer to during the generalisation.
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X X⊥ X X⊥ X X⊥

Fig. 3. Adding a tensor-gate

3.1 The Substitution Operation

Let γ1 and γ2 be two trees such that we can substitute γ2 to a terminal node
X (whose adress is r) of γ1, and let Π1 and Π2 be their corresponding SLIPNs.
Then γ1(r) = γ2(0), and (cf. remark 1) Π1 has a conclusion X⊥, and the output
of Π2 is X.

Thus we can bind these conclusions with a cut-link and yield a new SLIPN
from which we eliminate the cut and obtain a new SLIPN Π.

Definition 10. For every tree γ resulting from the substitution of γ2 to a node
of γ1, we define its corresponding SLIPN Π as above.

3.2 The Adjunction Operation

Preparing the Target Tree. In order to allow the adjunction of an auxiliary
tree on a target tree, we need to modify a little bit this latter.

Let γ be the tree on which we want to perform an adjunction, r the adress
of the node where to perform the adjunction, and Π the corresponding SLIPN.
As noted in remark 1, Π contains an axiom link γ(r) γ(r)⊥ corresponding
to the node γ(r). So we can split this link into two axiom-links linked with a
tensor-link and we obtain (with X = γ(r)) a new SLIPN Π ′ as shown in figure 3.

Proposition 2. Adding a tensor-gate preserves the correctness of the proof-net.

Actually, such a conclusion is an instance of cuts (as a cut is equivalent
to a conclusion (∃X)(X ⊗ X)). Then if this tensor-gate remains unused, cut-
elimination amounts to delete this tensor-gate and come back to a simple axiom-
link. The second example of section 5 uses this feature at the very end of the
derivation.

Performing the Operation. In this section, we define the SLIPN correspond-
ing to the result of adjoining the tree γ2 to γ1. In this preliminary case, both γ1
and γ2 are elementary trees (γ2 is an auxiliary tree and γ1 is the target tree).
And Π1 and Π2 correspond to them.

We assume Π1 already has a tensor-gare added on the axiom corresponding
to the node where we want to adjoin γ2. So that if X labels the stared-node of
γ2, then X also labels the node of γ1 receiving the adjunction and we have a
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tensor-gate conclusion X ⊗ X⊥ for Π1 and a par-gate XOX⊥ (the output) for
Π2 (merely by construction).

Thus, we can bind Π1 and Π2 with a cut-link and eliminate this cut to obtain
a new SLIPN (because there is no modification on the lexicalized parts, still no
alternate elementary circuit and still only one output: γ1’s one).

Definition 11. For every tree γ resulting from the adjunction of the auxiliary
tree γ2 on γ1, we call the corresponding SLIPN the SLIPN built as above.

3.3 Operations on Derived Trees

Up to now, we defined a way of modeling elementary trees in the framework
of SLIPNs, and a way of combining these SLIPNs to model the adjunction and
substitution operations on elementary trees. We now are about to extend this
modeling on derived trees, so that a SLIPN will correspond to every tree (ele-
mentary or derived) of a TAG.

Definition 12. For a tree γ and an elementary tree E0, we call derivation of γ
the pair < E0, ((�1, E1, γ1), . . . , (�n, En, γn)) > such that γn = γ and for every
i ∈ [1, n], γi results from the operation �i (adjunction or substitution) between
γi−1 and the elementary tree Ei.

n is the length of the derivation.

Remark 2. For a derived tree, the derivation is not necessarily unique.

Definition 13. Let γ be a derived tree from the derivation d. Then we can define
the d-SLIPN corresponding to γ, built only with cut and cut-elimination (between
unlabeled conclusions) from the SLIPNs corresponding to the elementary trees of
the derivation.

Actually, proving the existence of this SLIPN interests us more than the
simple definition, as it also gives its construction’s steps.

Proof. We prove the existence of Π(d) by induction. We also prove the property
that if γ has a terminal node (except for the stared node of an auxiliary tree),
labeled by a non terminal symbol X, then Π(d) has a pendant conclusion X⊥

(corresponding to this node, hence not labeled neither).

1. if l = 0 : γ is an elementary tree, and we already defined its transformation
Π(0). And its construction also proves the property of the pendant conclu-
sion.

2. if l > 0 : Let dl−1 =< γ0, ((�1, E1, γ1), . . . , (�l − 1, El−1, γl−1)) > and
Π(dl−1) be the SLIPN corresponding to γl−1 in the d-derivation.
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a) If �l is the substitution of a leaf X of γl−1 by El (whose transformation is
πl) then Π(dl−1) has an axiom-link X X⊥ in which X⊥ is a pendant
conclusion (induction hypothesis), and πl has an axiom-link X X⊥

in which X is a pendant conclusion (El(0) = X). Then we can link
these two pendant conclusions with a cut-link, and eliminate it. This
yields a new SLIPN. It also proves the property of pendant conclusion,
as every terminal node of the new tree, labeled with a non-terminal
symbol, already was terminal in one or another of the two trees so that
(by induction hypothesis) they already had the property.

b) if �l is the adjunction on the leave X of γl−1 of the auxiliary tree El

(whose transformation is πl) then γl−1 has an axiom-link F F⊥

we can replace (with respect to the SLIPNs class belonging) with two
axiom-links linked together with a tensor-link (i.e. we add a tensor gate
X⊗X⊥ as for adjunctions on elementary trees). πl has a par-gate XOX⊥

so that we can bind the two gates with a cut-link, and then eliminate
this latter. We obtain a new SLIPN, and as above, the induction proves
the property of the pendant conclusion.

ut

Remark 3. This shows that cuts are only between atomic formulas or tensor and
par-gate. Actually, the grammar given for the conclusions of SLIPNs indicates
that no other cut can occur.

During this section, we made the assumption of allowing adjunctions at ev-
ery time on every node. Of course, sometimes we do not want such possibilities.
Allowing the tensor-gate addition only in the lexicon, and not during the deriva-
tion, brings a solution to this option.

Section 5 shows examples for both cases. In particular, the mildly-context
sensitivity of TAGs, generating {anbncndn}, illustrates the second case.

4 From SLIPNs to Trees

So far, we explained how, given a TAG and a derived tree in this TAG, we could
obtain a SLIPN that we qualify as corresponding. But we now have to see how
this SLIPN actually corresponds so that we shall henceforth be able to handle
only proof-nets and translate the results on trees.

4.1 Polarities

Let us define a positive polarity (◦) and a negative one (•). Every formula is
inductiveley polarized as follows: if α is an atom then α◦ and α⊥•. Then, for
each link we define the polarity of the conclusion from premises’ ones as in
table 4.

We call input the negative conclusions, and output the positive one (which is
coherent with the previous definition of the output).

The grammar on SLIPNs’ conclusions shows that SLIPNs are polarized.
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Table 4. Polarities of the conclusions

⊗ ◦ •
◦ ◦ •
• • −

O
◦ •

◦ − ◦
• ◦ •

< ◦ •
◦ ◦ −
• − −

4.2 Reading of SLIPNs

We give an algorithm for the reading of any cut-free SLIPN, based on formulas’
polarities. It uses a very simple principle: following from a starting point (namely
the output) the positive polarities, we define a path across the proof-net. And
every time the path crosses an axiom-link, we add a node to the tree under
construction. Actually, we build both the function γ and Dγ . Of course, the
path can not cross twice the same axiom-link (such a possibility would occur
only with par-gate).

As we shall see later, the path never cross a par-link (except par-gates, from
the positive conclusion), always enter a tensor-link through a negative premise
and always enter a before-link throuh the positive conclusion. So, because of
the before-link, the path is not linear (both premises, positive ones, are likely to
be the next on the path), and we define the first branch as the path from the
positive premise of the before-link at the beginning of the arrow, and the second
branch as the path from the other premise.

Then, when adding a new node on the tree, its mother-node is the the last
node met on the same branch of the path (in a before-link, both premises are on
the same branch as the conclusion, but they are themselves on different branchs;
other connectives do not create branchs). So that if its mother-node’s adress is
p, then the new node’s adress is p · j with j ∈ IN∗ and for all i such that 0 < i <
j, p · i ∈ Dγ

Then, we state the algorithm as follows:

1. Enter the net through the only output (so, if X is the output, 0 ∈ Dγ , and
(0, X) ∈ γ).

2. Follow the path defined by the positive polarities until reaching an atom
(when a before-link is crossed, first choose the premise at the beginning of
the red arc) and cross it. If its conclusions are X and X⊥, we define its
adress p as precised above (wrt the branchs) and p ∈ Dγ and (p, X) ∈ γ.

3. a) if the input is lexicalized, then lexicalize the last written node of the tree
under construction (if the lexicalization is x, we then add p · 1 ∈ Dγ and
(p · 1, x) ∈ γ). Either there is no more link after, or this input is premise
of a par-link whose other polarities are negative. In both cases, come
back to the last before-link the path did not go through the two branchs
and make as in 2.

b) else juste follow as in 2
4. Stop when the path joined all the atoms.



Lexicalized Proof-Nets and TAGs 241

The next section will show that every SLIPN built from elementary SLIPNs
can be read such a way and that the path cross every axiom-link.

Remark 4. 1. This reading provides a unique correspondance between any ax-
iom link of the SLIPN and a node (labeled by a non terminal symbol).
Moreover, if the negative conclusion of an axiom-link is pendant and not
lexicalized, then it corresponds to a terminal node of the tree.

2. Two different SLIPNs can have the same reading. It underlines the impor-
tance of making precise a base of elementary SLIPNs (corresponding to the
elementary trees of a given TAG).

4.3 From SLPINs, Back to Trees

We now have both a maping from trees to SLIPNs, and a maping from SLIPNs to
trees. It remains us to see if the composition of these mapings gives the identity.

This consists in three steps:

1. check that the reading of a SLIPN corresponding to an elementary tree is
the same as the elementary tree;

2. check that the reading of a SLIPN corresponding to the substitution between
two trees is the resulting tree;

3. check that the reading of a SLIPN corresponding to the adjunction between
two trees is the resulting tree.

Moreover, given a TAG, the basic bricks we consider are SLIPNs corresponding
to elementary trees of this TAG. Then the only way to build new SLIPNs is
binding them with cut between unlabeled conclusions.

Let us remind the definition of subtrees and supertrees as in [7]

Definition 14. Let γ be a tree and p ∈ Dγ . Then

γ/p = {(q, X)|(p · q, X) ∈ γ, q ∈ J?}

γ\p = {(q, X)|(q, X) ∈ γ, p 6< q}
γ/p is called the subtree of γ at p and γ\p is called the supertree of γ at p.
Further, for p ∈ J?

p · γ = {(p · q, X)|(q, X) ∈ γ}

Property 2. γ = γ\p ∪ p · (γ/p) for every tree γ and p ∈ Dγ .

Remark 5. If the reading of a SLIPN Π gives γ, and if we make the path begin at
any positive conclusion of an axiom link that corresponds to the node at adress
p in γ, then the reading algorithm returns γ/p. And of course, the reading of Π,
with a pruning at the same axiom link returns γ\p.
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��

X X⊥

Π1 Π2

X X⊥X⊥

Π1 Π2

X

Π

Fig. 4. Substitution

Elementary Reading. Let γ be an elementary tree. To prove the reading of
the SLIPN corresponding to γ being γ itself, we simply proceed by induction,
with the same steps as for the building of elementary SLIPNs.

Substitution. Let us consider two SLIPNs Π1 and Π2, whose readings are
respectively γ1 and γ2. We assume Π1 was built (with cuts) from elementary
SLIPNs and Π2 is an elementary SLIPN itself.

Proposition 3. If a negative (not labeled) atomic conclusion of Π1 and a pos-
itive atomic conclusion of Π2 support a cut-linking, then the corresponding ter-
minal node of γ1 accepts a substitution by the root of γ2. And the reading of the
new SLIPN, after cut-elimination, corresponds exactly to the resulting tree.

Proof. Let p be the adress of X in the reading γ1 of Π1, where X corresponds to
the axiom link of figure 4 (on the left). The adress of X in the reading γ2 of Π2
is 0 (the root node) and the reading of γ2 starts at this X axiom-link. On the
other hand, the reading of γ1 stops at X for its branch. After the cut and the
cut-elimination, the reading of the new SLIPN (on the right of figure 4) starts
at the output, which also was the output of Π1, and continues like for γ1 until
the new X axiom-link is reached. Its adress in the new tree γ is also p. There,
the reading of γ2 takes place. So that, as defined in the algorithm, if γ is the
reading of the new SLIPN,

∀q ∈ Dγ2 , γ(p · q) = γ2(q)

and nothing changes for the remaining reading: it is the same as for γ1 (because
γ1 = γ\p). Then the reading γ of Π is such that

γ = γ1 ∪ p · γ2

which corresponds to the definition of the substitution of the γ1(p) node with
γ2. ut

Adjunction. As above, let us consider two SLIPNs Π1 and Π2, whose readings
are respectively γ1 and γ2. We assume Π1 was built (with cuts) from elementary
SLIPNs and Π2 is an elementary SLIPN itself.
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X

X⊥
X

X⊥X
X⊥ X⊥X⊥XX

X⊥
Π1Π2Π1 Π2

Π

X, (p) X, (r)

Fig. 5. Adjunction

Proposition 4. If a tensor-gate of Π1 and the unique positive conclusion of
Π2 support a cut-linking, then the node corresponding to the tensor-gate on
γ1 accepts an adjunction of γ2. And the reading of the new SLIPN, after cut-
elimination, corresponds exactly to the resulting tree.

Proof. In the following, when dealing with γ1, we speak about the reading of Π1
without the tensor-gate.

Let us consider Π on figure 5 (the SLIPN on the right). The input of Π is the
same as Π1. As the positive conclusion of an axiom-link always occurs before the
negative conclusion in the path, then new tree γ from Π, after reaching X in Π1
cross the axiom-link to Π2, so that γ/p 6= γ1/p but γ\p = γ1\p (see remark 5).
Yet, The X⊥ on Π2 is the other conclusion of the starting axiom-link for γ2. So
that at the p adress, for γ, we read γ2. Then for every q ∈ Dγ2 , γ(p · q) = γ2(q).

Moreover, reaching the X of Π2, the path does not stop but continue with
the remaining part of γ1, namely γ1/p. So that at the new adress of X of Π2 in
γ we add γ1/p. And the new adress of X in γ is p · r (with r the adress of X∗ in
γ2).

Then
γ = γ1\p ∪ p · γ2 ∪ p · r · γ1/p

which is the definition of the adjunction of γ2 on γ1 at X. ut
Eventually, we can state the next propositions:

Proposition 5. Every derived tree (from an elementary tree lexicon) corre-
sponds to the reading of a SLIPN, the latter resulting from Cut operations be-
tween SLIPNs corresponding to the elementary trees of the lexicon.

Reciprocally, with a lexicon of elementary SLIPNs corresponding to trees,
with the restriction of Cut operations on formulas that are not lexicalized, the
reading of the resulting SLIPNs are the derived trees.

Proof. This is immediate after the previous propositions. ut
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Table 5. Lexicon

Jean(T1) Dort(T2)

Trees

N

Jean

P

N V

dort

SLIPNs
N N⊥ : Jean

N V

P⊥ P

V ⊥ : dort

N⊥

Beaucoup(T3) Pense que(T4)

Trees

V

V ∗ Adv

beaucoup

P

N0 V

pense

P

C

que

P ∗

SLIPNs

V Adv

V ⊥VV ⊥

Adv⊥ : beaucoup

N⊥ N V

P

P⊥ P P⊥

C P

P⊥

C⊥ : que

V ⊥ : penser

5 Examples

5.1 Substitution and Adjunction

First let us define from the lexicon of the TAG the corresponding elementary
SLIPNs. We assume the lexicon of table 5. This lexicon can yields the trees of
figure 6 (for the first tree: substituting N in T2 with T1, then adjoining T3 on
the result. For the second tree: continue with the adjunction of T4). But we can
also make this derivation on the SLIPNs as shown in the figures 7 and 8.

Let us see how to read the SLIPN of figure 7(e), and obtain the derived tree
of figure 6(a): first the path enters the net through the atom P (the unique
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P

N

Jean

V

V

dort

Adv

beaucoup

(a) Derived tree

P

N0 V

pense

P

C

que

P

N

Jean

V

V

dort

Adv

beaucoup

(b) Derived tree

Fig. 6. Resulting trees

output) and marks P as a node. Then it follows the positive polarities and
reaches a before-link with two branches. It first chooses the positive formula
at the beginning of the red (regular) arc and crosses an axiom-link. There is a
negative lexicalized atom. So on the tree we add a lexicalized (Jean) node N .
Then doing the same with the other premise of the before-link we get a new atom
V and the negative conclusion of the axiom-link is not lexicalized. So we have
a junction which will produce new branches under the V node. They are two
simple branches: one is a (lexicalized by dort) V , and the other is a (lexicalized
by beaucoup) Adv.

To have a deeper adjunction, let us continue with the adjunction of T4.
Figure 8 shows the different steps of the operation. But we leave the reader
check that polarizing the resulting SLIPN of figure ?? and reading it leads to
the tree of figure 6(b).

5.2 A Formal Language

As in the previous section, we first define the lexicon of table 6. Note that in
this lexicon, the tensor gate belongs to the lexical item, so that we shall never
use a tensor-gate addition during a derivation.

We only initiate the use of this lexicon with an adjunction of T2 on another
instance of T2 (figure 9(a)), then an adjunction on T1, resulting in the SLPIN
of figure 9(c). At every adjunction on T2, a new tensor-gate appear (provided
by T2), as the former (on the derived SLIPN) disappears with the adjunction
operation (the cut between the par-gate and the tensor gate of T2). As the reader
can check, the reading actually corresponds to our expectations and generates
the word aabbccdd.

Thus, without splitting any axiom-link and adding any tensor-gate during
the derivation, we can generate the language {anbncndn}.
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��

V

P⊥

V ⊥ : dort

N⊥ : Jean N

P

N N⊥

(a) Substitution of the N node of
dort by Jean

V

P⊥

V ⊥ : dort

N

P

N⊥ : Jean

(b) Substitution (contin-
ued): cut-elimination

V

P⊥

V V ⊥ : dort

NN⊥ : Jean

P

V ⊥

(c) Addition of a tensor-
gate on Jean dort

��

V Adv

V ⊥VV ⊥

Adv⊥ : beaucoup

V

P⊥

V V ⊥ : dort

N

V ⊥

N⊥ : Jean

P

(d) Adjunction of beaucoup on Jean dort

����

����

����

���� ����

����

����

V

P⊥

V ⊥ : dort

Adv

V ⊥

N⊥ : Jean N

PV

Adv⊥ : beaucoup

(e) Adjunction (continued): cut-elimination and polar-
ization

Fig. 7. Operating on SLIPNs
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Fig. 8. Operating on SLIPNs (continued)
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(c) Adjunction onT1 and cut-elimination

Fig. 9. Generating aabbccdd
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Table 6. Lexicon

Empty (T1) Main tree (T2)

Trees

S

ε

S

T

a

S

T

b

S∗ T

c

T

a

SLIPNs
S⊥SS⊥ : ε

S

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

T⊥ : b

SS⊥

T

S⊥ S

S

T

T⊥ : a

T⊥ : d

T S

S⊥

T

T⊥ : c

S⊥

Conclusion

Using a restricted fragment of pomset intuitionistic proof-nets, we showed how
to generate the same language as a TAG. This indicates how a more generic for-
malization (namely [11]’s one) allows both keeping generative power and dealing
with some linguistic phenomena not by lexical rewriting rules on trees, but by
lexical definitions. For instance, we can compare the modeling of clitics in [1] or
in [11].

We also want to underline that we do not really use the partial order capa-
bilities of pomset proof-nets: the before-links arrange totally the atoms in order.
Of course, this results straightforwardly from the fact that the order in the trees
is total, so that the same occurs in the SLIPNs with respect to the before-links.

Moreover, we use both commutative and non-commutative connectors, and
the building of the path defines the order of the lexical items. The path performs
the splitting of the sequent required in the rules (especially the adjunction rule)
of [3].

Finally, to know how to express the semantics, at least two possibilities arise:
to see it as for intuitionistic proof-nets [5], or as having an alternative expression
like with the derivation trees (trees that track the operations performed during
a derivation).
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3. Abrusci, V. M., C. Fouqueré, and J. Vauzeilles. Tree adjoining grammars in
non-commutative linear logic. In Retoré, C., editor, LACL’96 , volume 1328 of
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