-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Experimentation of Data Locality Performance for a
Parallel Hierarchical Algorithm on the Origin2000

Xavier Cavin, Laurent Alonso, Jean-Claude Paul

» To cite this version:

Xavier Cavin, Laurent Alonso, Jean-Claude Paul. Experimentation of Data Locality Performance for
a Parallel Hierarchical Algorithm on the Origin2000. Fourth European CRAY-SGI MPP Workshop,
1998, Garching/Munich, Germany, pp.178-187. inria-00098705

HAL Id: inria-00098705
https://hal.inria.fr /inria-00098705
Submitted on 26 Sep 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/50428514?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00098705
https://hal.archives-ouvertes.fr

Experimentation of Data Locality Performance for a Parallel
Hierarchical Algorithm on the Origin2000

Xavier Cavin, Laurent Alonso and Jean-Claude Paul

{Xavier.Cavin,Laurent.Alonso,Jean-Claude.Paul } @loria.fr

LORIA - INRIA Lorraine
615 rue du Jardin Botanique, BP 101,
F-54600 Villers-les-Nancy, France

August 20, 1998

Abstract

Hierarchical algorithms form a class of applications
widely being used in high-performance scientific com-
puting, due to their capability to solve very large
physical problems. They are based on the physical
property that the further two points are, the less
they influence each other. However, their irregular
and dynamic characteristics make them challenging
to parallelize efficiently. Indeed, two conflicting ob-
jectives have to be taken into account: load balancing
and data locality.

It has been shown that the message passing
paradigm was not well suited for this kind of appli-
cations, because of the intensive communication they
introduce. Implicit communication through a shared
address space appears to be better adapted. Partic-
ularly, the ccNUMA architecture of the Origin2000
can help us getting the desired data locality through
its memory hierarchy.

We have experimented a parallel implementation
of a well known computer graphics hierarchical algo-
rithm: the wavelet radiosity. This algorithm is a very
efficient approach to compute global illumination in
diffuse environments but still remains too much time
and memory consuming when dealing with extremely
complex models.

Our parallel algorithm focuses on load balancing
optimization and heavily relies on the ccNUMA ar-

chitecture efficiency for data locality. Load balancing
is handled with a general dynamic tasking mecha-
nism with specific improvements. Minimal efforts are
made towards memory management (like the writing
of thread-safe non-blocking malloc/free C function-
alities) and the Origin2000 proves all its capabilities
to efficiently handle the natural data locality of our
application.

The implemented algorithm allows to compute the
illumination of a complex scene (a cloister in Quito,
composed of 54789 initial surfaces and leading to
600000 final meshes) in 2 hours 41 minutes with 24
processors. To the knowledge of the authors, this is
the most complex ”real world” scene ever computed.

1 Introduction

As scientific and engineering computing requires
more and more computational power, parallelism ap-
pears to be one, if not the only, efficient response.
Among scientific applications, a class of solutions,
namely hierarchical algorithms, is widely being used
in order to solve very large physical problems. These
include fluid dynamics, chemistry, structural mech-
anisms, semiconductor and circuit simulation, oil
reservoir simulation [4], or more recently computer
graphics [8], and so is representative of a large class
of problems. That is the reason why they greatly



prompted the development of supercomputers and
are now likely to get their benefits.

The design of an efficient parallel hierarchical al-
gorithm, however, is challenging, because it involves
dealing with complex issues. In particular, simulta-
neously management of load balancing and data local-
ity quickly becomes a headache, both because of the
non-uniformity of the physical domain being simu-
lated and because of the dynamic and unpredictable
changes of workload and communication across the
computation of the solution.

Chan, in [4], has pointed out that parallel (hier-
archical) architectures should be designed especially
to support the hierarchical communication and syn-
chronization needs of these algorithms. Singh et al.
focused in [12] on the implications of the hierarchical
N-body methods and concluded to the necessity of
an efficiently supported shared address space versus
the message passing paradigm for this kind of appli-
cations.

In another paper [13], they studied load balanc-
ing and data locality for the hierarchical radiosity
application, on the 48 processors Stanford DASH
Multiprocessor, and confirmed the appropriateness
of cache-coherent, distributed shared memory (i.e.
DSM) supercomputers for this kind of algorithms.
However, their experiments were limited to a very
small model (94 input polygons) and they had to
“extrapolate” their conclusions. Indeed, dealing
with much larger environments (typically hundreds
of thousands of polygons) changes the amount of
communication, and so the dimension of the prob-
lem. That is why it seems interesting to us to run
these experiments, with a more recent algorithm (the
wavelet radiosity), on “real world” scenes and on a
commercial shared-memory supercomputer, the SGI
Origin2000.

Section 2 of this paper discusses hierarchical meth-
ods in general, detailing hierarchical N-body meth-
ods and hierarchical radiosity, and the issues involved
in their parallelization. Then, Section 3 presents our
parallel algorithm and some interesting implementa-
tion details. Experiments are described in Section 4
and results are commented in Section 5. Finally, Sec-
tion 6 concludes and presents future works.

2 Hierarchical Methods

Many physical processes, described by the mathemat-
ical models of the physical laws, are hierarchical by
nature. That is, they exhibit a large range of scales,
both in space and time. A given point in the physical
domain is progressively less influenced less frequently
by parts of the domain that are further away from
it. Hierarchical algorithms efficiently use the range
of length scale to capture the global features of the
solution. Here are some examples of such algorithms:
multi-grid methods, domain decomposition methods,
adaptative mesh refinement algorithms, wavelet ba-
sis, N-body methods, hierarchical radiosity. All these
algorithms have common features: they result in near
optimal sequential complexities and possess high po-
tential of parallelism.

The remaining of this Section focuses on classical
hierarchical N-body methods and on hierarchical ra-
diosity, and presents the issues of their effective par-
allelization.

2.1 Hierarchical N-body Methods

The N-body problem studies the evolution of a sys-
tem of n discrete particles (or bodies) under the influ-
ence exerted on each particle by the whole ensemble.
The naive algorithm which computes all interactions
between each pair of particles suffers from a O(n?)
complexity. Fortunately, this complexity can be re-
duced to O(n log n) by hierarchical algorithms [1, 2].

Hierarchical N-body methods are based upon a
physical property that dates back to Isaac Newton
(1687): “If the magnitude of interaction between par-
ticles falls off rapidly with distance (as it does in most
physical interactions, such as gravitation or electro-
statics with their 1/r2 force laws), then the effect of
a large group of particles may be approximated by a
single equivalent particle, if the group is far enough
away from the point at which the effect is being eval-
uated.”, as shown by Figure 1 [12].

Actually, hierarchical N-body methods can be ap-
plied to many physical domains, including astro-
physics, plasma physics, molecular and fluid dynam-
ics or computer graphics. They so represent a large
class of supercomputers potential users.



Equivalent body

. h / ® @
ar enough away \
4 e D e
Boby being evaluated R ®
% e s
Group of bodies

Figure 1: Principle of N-body methods.

2.2 Hierarchical Radiosity

Radiosity methods are an efficient approach to com-
pute global illumination in Lambertian (i.e. dif-
fuse) environments. They are based on the physics
of light transport and capture both direct illumi-
nation (by light sources) and indirect illumination
(through multiple inter-reflections), resulting in a
view-independent solution.

The radiosity - power per unit area [W/r?] - on a
given surface is defined as the light energy leaving the
surface per unit area. Let M denote the collection of
all surfaces in an environment. Let x be a space of
real-valued functions defined on M, that is, over all
surface points. Given the surface emission function
g € X, which specifies the origin and directional dis-
tribution of emitted light, we wish to determine the
surface radiosity function f € x that satisfies!:

f(@) = g(2) + k(z) /MG(w’,w)f(w') s’ (1)

where k(z) is the local reflectance function of the sur-
face (i.e., we suppose that the surfaces are ideally
diffuse), and G(z', ) is a geometry term defined by:

cosf, cosb,
G\ z) = ——5——

!
vz,
Tre,, (@,2)

(2)
and consisting of the cosines made by the local surface
normals with the vector connecting the two surface
points x and z’, of the distance r between theses two
points (see Figure 2), and of the visibility function

In the case of monochromatic radiosity, that is to say for
a given wavelength.

v whose value is in {0,1} according to whether the
line between the two points 2 and z’ is respectively
obstructed or un-obstructed.

Figure 2: Components of geometry term G.

In the original radiosity method, the input surfaces
(M) are subdivided into small elements over which
the radiosity is approximated as a constant function.
This results in a set of O(n?) interactions to be com-
puted, where n is the number of final elements.

Fortunately, the geometry term G(z',z) involved
in the integral equation (1) decays with the inverse
square of the distance r,, between elements z and z'.
As in the hierarchical N-body methods, this property
allows to build a O(n log n) hierarchical algorithm,
which was done by Hanrahan et al. in [8].

It is important, however, to note that hierarchical
radiosity algorithms differ from hierarchical N-body
methods in many points. Indeed, the physical law
used to compute the interactions between surfaces
not only involves the interacting entities  and z' and
the distance r;, between them, but also a cosines
product cos @, cos 8, that takes into account their re-
spective orientations and a visibility function v(z’, x)
that detects possible occluding surfaces. The orien-
tation consideration prevents the “clustering” of sur-
faces without loss of informations; on the contrary,
the starting point of the algorithm is the input sur-
faces of M, which are hierarchically subdivided as the
algorithm proceeds, as shown by Figure 3. The visi-
bility computation is a global term that may involve
other surfaces, from the entire scene, than the two in-
teracting ones; however, it can be accelerated using a
binary space partition (i.e. BSP) of the scene. More-



over, the algorithm in itself does not proceed over
hundreds of time-steps, but either by a few gathering
passes (each surface gathers energy from all others)
or many shooting iterations (the most energetic sur-
face propagates its energy to all others).

T

Figure 3: Principle of hierarchical radiosity.

The wavelet radiosity algorithm, introduced by [7]
and [11] is a generalization of the hierarchical radios-
ity: the radiosity function is no longer approximated
as being uniform on a surface element but is now
projected on wavelet bases, thus allowing a better
subdivision and error control.

2.3 Parallel Issues

As pointed out in [4], hierarchical algorithms possess
relatively high degrees of parallelism. If the paral-
lelization of hierarchical N-body methods has been
well studied [12, 13], the design problem of paral-
lel hierarchical radiosity has not yet been completely
addressed [3, 6, 13, 14]. However, all works seem
to prove that the message-passing paradigm is not
well suited for the dynamic, irregular and unpre-
dictable behavior of hierarchical algorithms. On the
contrary, cache-coherent DSM supercomputers seem
to be able to efficiently support the hierarchical con-
straints through their hierarchy of memories.
Unfortunately, choosing a shared memory super-
computer (randomly, the SGI Origin2000) is not suf-

ficient to get an efficient parallel application! Indeed,
as in many scientific algorithms, designers have to
deal with two key but conflicting problems: load bal-
ancing and data locality.

Related to these problems is the choice of the gran-
ularity used for the decomposition of the algorithm
into elementary tasks. For the hierarchical radios-
ity method, the granularity can go from very coarse
(a task is the set of interactions between a surface
and all other surfaces) to very fine (surface-surface
element interaction or even surface element-surface
element interaction) through intermediate (surface-
surface interaction). Obviously, the smaller the gran-
ularity, the easier the load balancing but the worse
the data locality (and vice versa).

3 Parallel Wavelet Radiosity

We focus in this Section on our work for the paral-
lelization of a wavelet radiosity algorithm. We start
with the description of the sequential version we use,
then we present our parallel algorithm. Finally, we
explain some interesting implementation details.

3.1 Sequential Algorithm

Our work takes place inside a large project, named
Candela, which has been designed to provide a flex-
ible architecture for testing and implementing new
radiosity and radiance algorithms [10]. It was at the
same time intended to be able to deal with real input
data and to compute physically correct results.

Several sequential wavelet algorithms have already
been implemented and experimented in [5]. Our se-
quential experiments have shown that the wavelet
coding of the radiosity function is very important in
order to obtain correct results. Moreover, one par-
ticular instance of our wavelet algorithms came out
as the most effective one to deal with large architec-
tural scenes : the progressive shooting wavelet radios-
ity without link storage.

This algorithm sequentially handles the most ener-
getic emitter (either a direct light source or a reflect-
ing surface) and propagates its energy to all scene
receivers (surfaces). Each energy propagation (i.e.



interaction) is done “hierarchically”: an oracle func-
tion decides (on energical or geometrical consider-
ations), which of the two surfaces (maybe none of
them) should be subdivided to enhance the precision
of the solution; then the energy propagation is re-
cursively done between the non-subdivided surface
and each of the children? of the subdivided one (see
Figure 3). In traditional hierarchical radiosity meth-
ods, links are created between surface elements not
involving subdivision; because of the huge amount of
memory this requires, our algorithm does not store
the links.

3.2 Parallel Algorithm

Despite all the qualities of our sequential algorithm,
time and memory requirements still remain too high
for effective use on a single workstation, especially
when the scenes to simulate are very large (the com-
mon case for architectural simulations). Thus, paral-
lelism appears to be the alternate way to bypass the
single workstation limitations.

A complete study of our choices and algorithms can
be found in [3]. We just give here a short description
of the important points.

Basically, we have chosen to decompose the sequen-
tial algorithm with the intermediate granularity (cf.
Paragraph 2.3), that is to say, we have defined a task
as a standard surface-surface interaction. We hoped
this would be fine enough to enable an efficient load
balancing (at least in the case of large scenes), but
not too much to get some data locality (keep in mind
that we heavily rely on the Origin2000 architecture
to help us on this quest).

The parallel algorithm thus consists in distribut-
ing these tasks to processors, in the best load bal-
anced way. Our experiments showed that a simple
dynamic tasking algorithm with a single centralized
tasks queue can give good results, at least at mod-
erate processors scale (up to 40 processors). When
scaling to a much larger number of processors, a dis-
tributed tasks queues algorithm, associated with a
task stealing mechanism, may become necessary to
avoid the single queue bottleneck.

2Each child is referred as a surface element.

3.3 Implementation

The Candela libraries consist of approximatively 360
C++ classes. Even if it can seem challenging to par-
allelize C++ algorithms inside such a large platform,
it is really important not to move apart from the se-
quential part in order to be able to make comparisons
and to take advantage of its last enhancements.

Furthermore, Candela is built over the SGI Open
Inventor library and intensively uses the scene graph
structure and its associated nodes. Hence, we abso-
lutely have no control over the storage and manip-
ulation of the data structures. It is even worse in
parallel, because of the non thread-safe behavior of
the Open Inventor library: a catastrophic error (i.e.
a core dump) may occur if several processes manipu-
late the scene graph at the same time.

Finally, the many dynamic memory allocations im-
plied by the hierarchical wavelet algorithm have to
be done in parallel in a non-blocking way, in order to
avoid memory allocations congestion. Unfortunately,
this is not the case with the standard IRIX memory
allocation package, which has been made thread-safe
by serializing the parallel allocations.

Consequently, we have developed an independent,
general purpose C/C++ framework, which aims to
facilitate the design of parallel programs, at least on
the SGI Origin2000. Here are some of the available
functionalities. First, it provides encapsulated calls
to specific MP routines, such as processes manage-
ment (we use m_fork’ed processes) and synchroniza-
tion methods (locks, barriers). This allows us to au-
tomatically monitor the synchronization times and to
consider porting the application under other operat-
ing systems and/or architectures.

Then, a set of preprocessor macros allows to trans-
parently transform a variable which could potentially
be modified by several processes at the same time
(typically static class variables) into an array of
variables (one per process).

Finally, a new C memory allocation package (i.e.
overloaded malloc, free, realloc, calloc func-
tions) has been written. It allows fully parallel, con-
tention free, memory operations without any mod-
ifications to the source code.



4 Protocol Considerations

This Section is intended to give a full description,
as complete as possible, of our experiments protocol.
We first describe the hardware/software configura-
tion. Then we mention the measures we perform.
Finally, we present our architectural test scenes.

4.1 Hardware and Software

We performed our experiments on the Silicon Graph-
ics Origin2000 installed at the Centre Charles Her-
mite?, in France.

The machine is equipped with 64 processors orga-
nized in 32 nodes. Each node consists of two 10000
processors with 32 KBytes of first level cache (L1) of
data on the chip, 4 MBytes of external second level
cache (L2) of data and instructions and 128 MBytes
of local memory, for a total of 8 GBytes of physical
memory. The operating system running on it is the
IRIX 6.55F OS.

For sake of completeness, our application has been
compiled with the MIPSpro 7.2.1 C++ compiler,
with the following options: CC -n32 -0fast=IP27
-mips4 -r10000.

4.2 Measures

For our data locality performance analysis, we inten-
sively used the R10000 hardware performance coun-
ters, combined with the software tool perfex. In
particular, we have chosen to study:

o Speed-up. This is defined by the fraction between
the best sequential time over the parallel time
obtained with n processors.

e Memory overhead. This is the fraction of time
spent in memory over the total execution time.

e L1 cache hit rate. This is the fraction of data
accesses which are satisfied from a cache line al-
ready resident in the primary data cache.

o L2 cache hit rate. This is the fraction of data
accesses which are satisfied from a cache line al-
ready resident in the secondary data cache.

3See the web page: http://cch.loria.fr

The curves we present further in this paper are au-
tomatically generated, with the help of shell scripts,
from our application and perfex output traces. We
are currently working on a graphical interface for in-
strumenting, running and exploiting the parallel ex-
periments. Such a tool would be a great help for
parallel program tuning and optimization phases.

4.3 Test Scenes

Our experiments were performed on three test scenes,
all coming from real world applications, but with dif-
ferent characteristics:

e Stanislas Square Opera in Nancy. This test scene
comes from an evaluation project of potential
new lighting design. The geometrical model was
created from architectural drawings. The direct
illumination is computed using accurate light
and reflectance models.

e (Cloister in Quito. It is also a lighting design
project, but it was chosen because the effects of
indirect illumination (inter-reflections) are more
visible. It serves as a life-size test.

e Soda Hall. The Soda Hall building has become a
reference test scene. It is suitable for virtual re-
ality environments and interactive walk-through.
We both consider a single room of this building
(with high precision parameters) for speed-up
measures, and one complete floor with furnitures
as another life-size test.

Table 1 gives their numerical characteristics (num-
ber of initial surfaces, number of light sources and
number of final meshes) and reference computation
times.

| Scene | Initial | Lights | Final|  Time [P]|
Opera 38 258 98| 513 310| 40982 s |1
Cloister | 54 789 83| 597 135| 9663 s [24
Room 9 189 3| 232349| 11001s]1
Floor |144 255 163 |1 721 354 |54 627 s [16

Table 1: The test scenes.



5 Results and Discussion

In this Section, we analyze the performance of our
parallel algorithm on the test scenes of Paragraph 4.3.
Table 1 gives the complexity of each scene and the
computational time needed to simulate them. We
used the Opera and room models for a complete anal-
ysis and the cloister and floor models as punctual
life-size tests.

We start by presenting a performance evaluation,
in terms of speed-up and synchronization times.
Then we focus in detail on the data locality analysis,
and we complete the Section with an open question
about the scalability.

5.1 Speed-up Results

Figure 4 shows the speed-up results for the Stanis-
las Square Opera illumination and for the Soda Hall
room simulation. The speed-ups, although not linear,
are quite good for both scenes.

35

) Linear
30 anislas Squarg~e--
Soda Hall R e

25

20

Speed-up
&
Y

15

10

5

0
0 5 10 15 20 25 30 35
Processors

Figure 4: Speed-up measures.

Our application was instrumented to compute
the time lost at synchronization points (é.e. locks
and barriers); unfortunately, a bug in time() and
gettimeofday ()* prevents us from exploiting the re-
sults. However, when it did not occur, we could no-
tice that synchronization times increase slowly with
the number of processors and only represent, in the
worst cases, about 10% of the total execution time.

4Making sometimes time go backward of 1 second!

The intermediate granularity we have chosen al-
lows a fair load balancing with an algorithm of low
complexity, at least in the case of large scenes and
at a moderate scale. Indeed, reducing the amount of
work (i.e. the scenes size) or increasing the number
of processors might have processors either waiting on
a lock, or remaining idle at the end of the computa-
tion, especially when only a few interactions, sharing
common receivers, are time consuming compare to
the others.

Let us now see the impact of this granularity choice
on the data locality afforded by the algorithm.

5.2 Data Locality

The aim of our study was to evaluate the capabilities
of the SGI Origin2000 architecture to handle the hi-
erarchical behavior and inherent data locality of the
parallel hierarchical wavelet radiosity algorithm.

Actually, the design of our parallel algorithm did
not take into account the data locality problems. In-
deed, we expected that the granularity we had cho-
sen would naturally increase the data locality. First,
when a given processor handles a surface-surface in-
teraction, it computes the energy transfers at each
needed level of the hierarchy, thus ensuring a good
reuse of the data structures. Then the visibility com-
putations for this interaction involve points of the
two surfaces and thus lead the same parts of the BSP
structure to be traversed. Finally, the ccNUMA ar-
chitecture of the SGI Origin2000 [9] seems to be very
promising to handle the dynamic behavior of our hi-
erarchical algorithm.

The first point of our experiments concerns the
memory overhead. Figure 5 shows the ratio of time
spent in memory to total execution time for the
Opera and room models. We can first notice that
our application intensively uses the memory (about
70% for a single processor and about 50% with more
than 8 processors). This fact is due to the many mem-
ory allocations involved by the hierarchical algorithm
and confirms the necessity of an efficient non-blocking
memory management.

Moreover, the communication to computation ra-
tio decreases slightly with the number of processors.
This can be explained by the fact that a large amount



of memory (more than 128 MBytes®) is needed for the
simulation of both scenes: the memory becomes bet-
ter distributed as the number of processors increase,
and the latest have only access to a part of the total
memory.

100
Stanislas Square ——
Soda Hall Room

g RS - S—
g U SR :\%
8 R
& 40
20
0

0 5 10 15 20 25 30 35
Processors

Figure 5: Time accessing memory/Total time.

At the same time, the cache miss rates are very
low: less than 5% for the L1 cache and less than 10%
for the L2 cache (see Figure 6).

20 :
Stanislas Square L1 ——
Stanislas Square L2 -+
16 SodaHall Room L1 -
SodaHall Room L2 -
S 12
[
ko]
n: X,
8 8 "
= % o x «
4 B
oL g a

0 5 10 15 20 25 30 35
Processors

Figure 6: Cache Miss Rates.

This rates have surprisingly low values, if we con-
sider that we do not focus our algorithm on data lo-
cality. However, this seems to prove that the working
set (i.e. hierarchical data structures + parts of the
BSP) of an elementary task has an adequate size for

5The size of a processor’s local memory.

the memory caches of the Origin2000 and that its
ccNUMA architecture is very efficient to handle the
dynamic communications of the algorithm.

To be complete, our two punctual life-size tests,
with the Quito cloister and the Soda Hall floor mod-
els, gave similar results. Naturally, we plan to con-
firm these experiments with a complete study of these
two models.

5.3 Scalability Problems?

The careful reader will have noticed that the results
we have shown only concern 1 to 32 processors, while
our Origin2000 has 64 processors. Actually, Figure 7
shows the complete speed-up curve for the Stanis-
las Square Opera model (the same problem appears
with the room scene): with more than 28 processors,
the speed-up is limited about 20. There is clearly a
scalability problem.

70
Stanislas Square ——
Ideal -
[=%
3
& 30
20 e
10 potr i
0 e

0 8 16 24 32 40 48 56 64

Processors
Figure 7: Speed-up for the Opera model.

What seems very surprising to us is that all perfex
informations (T LB, L1, L2, ...) and synchronization
times are coherent from 1 to 60 processors.

One common cause to speed-up decrease is known
under the term of false sharing: when a process mod-
ifies a memory page owned by one or several other
processes, this page is automatically invalidated in
their memory caches, thus causing a cache miss and
a page transfer for the next access. The more pro-
cesses there are, the more it is likely to happen. It
may be more critical within our application, because



we did absolutely nothing (for instance, data align-
ment) to prevent this phenomenom.

Fortunately, a specific counter of the R10000 pro-
cessor (counter 31) allows to study false sharing,
by counting stores or prefetches with store hints to
shared blocks in secondary memory cache. Figure 8
shows the evolution of this counter with the number
of processors for the same scene. Surprisingly, our ap-
plication does not suffer from false sharing problems:
another good point for the Origin2000.

20
18 f\
16 I
14
> Ll
B 1
o 10
S
© |
6
. /
2
OJ

0 8 16 24 32 40 48 56 64

Processors
Figure 8: Evolution of R10000 counter 31.

However, “the truth is out there”: for an unknown
reason, the number of cycles increases with the num-
ber of processors, thus decreasing the speed-up, as
shown by Figure 9. This curve is interesting: it
presents a (non dramatic) first grow from 1 to 4,
due to the parallelism overhead. Then, it remains
constant (the normal case) to 20, giving a quite lin-
ear speed-up. It then begins to slowly increase from
24 to 40 before abnormally growing until 60, with a
strange decrease at 56. Looking at Figure 7, we can
notice that the speed-up curve exactly follows these
variations.

It just remains to locate the problem, that is to
say, the part of the code which takes more time as
the number of processors increase. We first tried the
ssrun tool, but the results it gave were not coher-
ent enough to help us. We would have liked to try
the pixie tool, but, unfortunately, it seems to crash
the computer under the IRIX 6.5SE OS, and so we
cannot use it. The scalability problem remains open.

120000

110000

100000

90000
80000

70000

Cycles(s)

60000

SR

30000

0 8 6 24 32
Processors

40 48 56 64

Figure 9: Scalability problem.

6 Conclusion

We intended in this paper to make a data locality per-
formance analysis of the SGI Origin2000 for a mod-
ern computer graphics hierarchical application: the
wavelet radiosity algorithm. The machine proves to
be, as it was designed for, very efficient to handle
the dynamic and unpredictable communication and
synchronization needs of this algorithm. The mem-
ory management performances (memory caches, false
sharing) of its ccNUMA architecture, from 1 to 60
processors, allow us to focus on load balancing prob-
lems, leaving the data locality to the computer.

However, the speed-up of our parallel application
is currently bounded to 20, from 28 to 60 proces-
sors. Indeed, for an unexplainable reason, the num-
ber of cycles suddenly increases after 20 processors.
Currently, the state of the available tools and of our
knowledges do not allow us to solve this scalability
problem: we are still working on it.

During this study, we have felt the need to work
on the development environment. Indeed, the SGI
Origin2000 provides some efficient, but not convivial,
tools for applications development and tuning. We so
have developed a framework for C/C++ applications
development, synchronization times monitoring and
perfex outputs automatic graphical analysis. We
plan to apply it to a completely different application
to be sure of its reusability.



Acknowledgments

The authors would like to thank Francois Cuny, Sli-
mane Merzouk and Christophe Winkler for their work
on the Candela platform, Marc Albouy, from Elec-
tricité de France which provided the Stanislas Square
and the Quito models, Carlo Sequin who provided the
Soda Hall. We also thank the Centre Charles Her-
mite, which owns the Origin2000, and Alain Filbois
for his great technical support on the computer.

References

[1] Andrew W. Appel. An efficient program for
many-body simulation. SIAM Journal on Sci-
entific and Statistical Computing, 6(1):85-103,
January 1985.

[2] Josh Barnes and Piet Hut. A hierarchical
O(N logN) force-calculation algorithm. Nature,
324(4):446-449, December 1986.

[3] Xavier Cavin, Laurent Alonso, and Jean-Claude
Paul. Parallel Wavelet Radiosity. In Proceedings
of the Second Eurographics Workshop on Paral-
lel Graphics and Visualisation, Rennes, France,
September 1998. Eurographics. To appear.

[4] Tony F. Chan. Hierarchical Algorithms and
Architectures for Parallel Scientific Computing.
In Proceedings 1990 International Conference
on Supercomputing, ACM SIGARCH Computer
Architecture News, volume 18, pages 318-329,
Amsterdam, Netherlands, September 1990.

[5] Francois Cuny, Christophe Winkler, and Lau-
rent Alonso. Wavelet Algorithms for Complex
Models. Technical Report, LORIA, INRIA Lor-
raine, 1998.

[6] Thomas A. Funkhouser. Coarse-Grained Par-
allelism for Hierarchical Radiosity Using Group
Tterative Methods. In Computer Graphics Pro-
ceedings, Annual Conference Series, 1996 (ACM
SIGGRAPH ’96 Proceedings), pages 343-352,
1996.

10

[7]

[10]

[11]

[12]

[13]

[14]

Steven J. Gortler, Peter Schroder, Michael F.
Cohen, and Pat Hanrahan. Wavelet Radios-
ity. In Computer Graphics Proceedings, Annual
Conference Series, 1993 (ACM SIGGRAPH 93
Proceedings), pages 221-230, 1993.

Pat Hanrahan, David Salzman, and Larry Aup-
perle. A Rapid Hierarchical Radiosity Algo-
rithm. In Computer Graphics (ACM SIG-
GRAPH ’91 Proceedings), volume 25, pages
197-206, July 1991.

James Laudon and Daniel Lenoski. The SGI Ori-
gin: A ccNUMA Highly Scalable Server. In Pro-
ceedings of the 24th Annual International Sym-
posium on Computer Architecture, pages 241—
251, Denver, June 1997. ACM Press.

Slimane Merzouk. Architecture logicielle et al-
gorithmes pour la résolution de l’équation de ra-
diance. PhD thesis, Institut National Polytech-
nique de Lorraine, 1997.

Peter Schroder, Steven J. Gortler, Michael F.
Cohen, and Pat Hanrahan. Wavelet Projections
for Radiosity. In Fourth Eurographics Workshop
on Rendering, number Series EG 93 RW, pages
105-114, Paris, France, June 1993.

Jaswinder Pal Singh, John L. Hennessy, and
Annoop Gupta. Implications of Hierarchical
N-body Methods for Multiprocessor Architec-
tures. ACM Transactions on Computer Systems,
13(2):141-202, May 1995.

Jaswinder Pal Singh, Chris Holt, Takashi Tot-
suka, Anoop Gupta, and John Hennessy. Load
Balancing and Data Locality in Adaptive Hierar-
chical N-body Methods: Barnes-Hut, Fast Mul-
tipole, and Radiosity. Journal of Parallel and
Distributed Computing, 27(2):118, June 1995.

David Zareski. Parallel Decomposition of View-
Independent Global Illumination Algorithms.
M.Sc. thesis, Ithaca, NY, 1995.



