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ABSTRACT

In this work, we consider term rewriting from a functional point of view. A rewrite
rule is a function that can be applied to a term using an explicit application function.
From this starting point, we show how to build more elaborated functions, describing
first rewrite derivations, then sets of derivations. These functions, that we call strate-
gies, can themselves be defined by rewrite rules and the construction can be iterated
leading to higher-order strategies. Furthermore, the application function is itself defined
using rewriting in the same spirit. We present this calculus and study its properties. Its
implementation in the ELAN language is used to motivate and exemplify the whole ap-
proach. The expressiveness of ELAN is illustrated by examples of polymorphic functions
and strategies.

Keywords: Rewriting Calculus, Rewriting Logic, Strategy, Rewrite Based Language,
Term Rewriting, Strategy, Matching.

1. Introduction

Rule-based reasoning is present in many domains of computer science. In al-
gebraic specification methods, rewriting is used for prototyping specifications and
computing the specified functions; in theorem proving, for dealing with equality,
simplifying the formulas and pruning the search space; in programming languages,
the rewriting concept can be explicit like in OBJ or ML, or hidden in the operational
semantics; expert systems and knowledge representation systems also use rewriting

*This is a revised version of [6].



to describe actions to perform; in constraint solving, rewrite rules have been first
used in unification theory [22] to express transformation of equational systems or
constraint systems [10], and are now becoming available at the programming lan-
guage level in systems like Eclipse, via constraint handling rules [17], Claire [9] and
0Z [37]. In the more general setting of logical frameworks, rules are also used for de-
scribing inference systems and logic of computations as in LCF [18], Isabelle [34, 35]
or HOL [19].

In most cases, a rewrite rule is applied to a term but this application is not an
object accessible to the user. As a consequence, the use of term rewriting is always
submitted to hidden strategies and the straightforward standard question is: “what
kind of strategy is your system using? left-most inner-most? outside-in? needed?
random? lazy?...”

The importance of strategies as such has been recognized since a long time.
For example in LCF, “The discovery of the operators THEN, ORELSE, and RE-
PEAT, for combining tactics, was a breakthrough in the development of Edinburgh
LCF” [33]. In the context of rewriting, user-defined strategies have been first in-
troduced in the ELAN language [23]. Now, in this work, we consider a rewrite rule
as a function called a primal strategy, and the application of a rule as an explicit
user-accessible function. We thus give to the user the possibility to express when
and where a rule must be applied. Of course this opens many new possibilities, but
also raises several problems addressed in this paper.

After Section 2 where the main basic notations used in this work are summarized,
we give a formal definition of strategies and the semantics of strategy application
to a term. We introduce strategies step by step, distinguishing between primal
strategies (basically rewrite rules and two constants expressing identity and failure,
composed by concatenation and congruence) in Section 3, elementary strategies
(with choice operators to deal with sets of possible results) in Section 4, and finally
defined strategies (with user-defined operators and rewrite rules) in Section 5. Then
we explain in Section 6 how this can be iterated and used to define functions of
higher level, again by rewriting. Such functions are also called strategies, since they
express the (possibly very complex) way in which basic rewrite rules are applied
to a term. ELAN is a language that makes these concepts available and in which
first class objects are terms, rewrite rules and strategies. We give in Section 7 and
Section 8 several examples to illustrate the language, with a strong emphasis on its
functional features. The formalism developed here gives to the basic constructions
of ELAN a formal functional semantics, which is our primary goal. But it also opens
new insights and questions, sketched in the conclusion.

2. Notations

We first restrict ourselves in Sections 3, 4, 5 to unsorted non-conditional rules.
We then consider in Section 6 the many-sorted case. The order-sorted and con-
ditional cases can be handled in a similar, although more technical, manner, not
presented here. Our definitions are consistent with [16, 22, 2] to which the reader is
referred for detailed considerations on universal algebra and term rewriting systems.



We consider a set F of ranked function symbols, a set X’ of variables and the
set of first-order terms 7 (F,X) built from F and X. The set of variables of a
term ¢ is denoted by Var(t). T (F) is the set of ground terms, i.e. terms without
variables. Substitutions are term endomorphisms written o = {(y — «) ...}, when
the variable y is substituted by the term u. o(t) or ot is the result of applying o
to the term ¢. To simplify notation, we sometimes denote a sequence of objects
(a1,...,ap) by a. A rewrite rule is an object | — r, where [ and r are terms in
T(F,X) respectively called left and right-hand side and where Var(r) C Var(l).
A set of rewrite rules is called a rewrite system or a rewrite program. The set of
variables Var(l — r) is Var(l).

In Sections 3, 4, 5, we define the syntax and the semantics of our strategy
language and specify how each construction is applied to a term. This amounts
to define a strategy application operator [@](@), where @ is a place-holder for
‘@’rguments. This operator takes as arguments a strategy ( and a term ¢, and
produces the term [(](¢). The evaluation of this operator provides the definition of
the interpreter of our strategy language, which is described via labeled rewrite rules
of the form (Label Lw#» R) to distinguish them, at least in a first step, from the
rewrite rules given by the user.

3. Primal strategies

In this section, we build in a progressive way the most elementary notion of
strategy, called primal strategy, and we make precise the associated semantics.

3.1. Applying a rewrite rule

Given a rewrite rule I — r, we consider it first as an untyped function that can
be applied to a term ¢, leading to the object [l — r](¢). This function returns the
empty set when [ does not match ¢. Otherwise, it evaluates to the result of the
standard rewriting operation at the top position of ¢, which consists in replacing ¢
by r whose variables have been substituted by their corresponding instances coming
from the matching of [ to t.

The function on terms associated to a rewrite rule is called a primal strategy.
The semantics of application of a rewrite rule to a term is defined by the rules given
in Figure 1. Their intuitive meaning is the search for a match between [ and ¢; this
is done by decomposing the matching problem thanks to the Decompose rule, and
instantiating the variables in r when they are associated to a subterm in ¢; this is
performed by the Instantiate rule. The Clash and Var-Clash rules detect matching
failure, and the Success rule returns the result when the match is found. All these
rules involve the syntactic construction of tuples of terms separated by commas,
and denoted by (t1,...,t,) or simply ¢1,...,t,. The strategy application operator

[@](@) takes as first argument a syntactic object of the form (¢1,...,t,) = r where
(t1,---,tn) is a tuple of terms and r is a term. In the following, as in Figure 1,
parentheses are often omitted and we write [t1,...,tn, = r](u1,-..,u,) or [l = 7](t),

instead of [(t1,...,tn) = r]((u1,...,uy)) or [() = r]((2)).



Decompose  [v1, ..., Up, f(@), Vpt2s---,0n = (W1, ..., wp, f(T), Wpt2,..., Wy)

H»
(V1. Up, Uy Upg, .oy Up = Pl(W1, .o, Wp, T, Wpa, ..., W)
if f(a) # f()
Clash [V1,.. s Up, F(@), Vpt2y eV = P](W1y - .oy Wy, g(E), Wpt2, . .., Wy)
H»
0
if f#g
Instantiate  [v1,...,Vp, ¥, Upt2,---,Up = T)(W1, ..., Wp, U, Wpy2,- .., W)
H»
[0V1,. .., 00p, U, OVpt2, ..., OVy = O] (W1, ..., Wp, U, Wpt2, ..., Wp,)

if y € X\Var((w1,...,Wp, U, Wpy2,...,Wy))
where o = {(y — u)}

Var-Clash  [v1,...,0p, ¥, Upt2, v, Un = FJ(W1, .oy Wpy Uy Wpt2, - -« , Wy,)
H»

0
if y € Var((wy,...,Wp, U, Wpt2,.-.,Wn)) AY #u

Success [wi,...,wy = T (W1,...,w,)

H

{r}

Figure 1: PSA: Primal Strategy Application.

The next example shows how the PSA calculus can be used to compute the term
obtained by rewriting ¢ at the top with a rule I — r. Later on, we will formally
prove that this term is the normal form w.r.t. PSA of [[ — r](¢). The PSA calculus
closely corresponds to the implementation of a rewriting step into an interpreter or
a compiler, where the substitution of the matching problem is not explicitly built,
but where variables are instead progressively instantiated.

Example 3.1
[/ (@, h(x)) = h(2)](f (h(z"), h(h(z"))))

H» Decompose [IL', h($) — h(
H Instantiate [h(xl)a )
H»Success {h(h(xl))}

With the same rewrite rule, a simple case of failure is

[f(z,h(z)) = h(@)](f(z',h(y"))) #PDecompose [2,h(x) — h(z)](z',h(y'))
H=? Instantiate [-’E
H» Decompose [fE
W= Var—Clash @



In this case, Var-Clash forbids the instantiations of variables occurring in f(2', h(y')).
These variables must be considered as skolemized.

In the previous example, the rewrite rule f(z,h(z)) — h(z) is not left-linear.
In case where all rewrite rules [ — r are left-linear, the Instantiate rule can be
specialized as follows:

Instantiate-LL  [v1,...,0p, Y, Upy2, ..., 0 = 7)(W1, ..., Wp, U, Wpt2, .- ., W)
>
[V15-- 3 Upy Upt2y -« -y Un = {y = ulr(we, ..., Wy, Wpia, ..., Wn)

which is fully adapted to the left linearity hypothesis and allows furthermore to
get the intuition of the calculus more easily.

3.2. Properties of the PSA calculus

Proposition 3.1 The PSA calculus for primal strategy application is terminating.

Proof. The complexity measure is obtained by a lexicographic combination of
two complexity measures (N, N3) defined as follows:

1. Ni([v1,---vn = rl(wi,...,wy)) = §(Var((vi,-..,vn))\Var(wy,...,wy))),
where Var((t1,...,tn)) = Ui, Var(t;), and
Ni({r}) = N1 (0) = —1.

2. No([v1, .- yvn = T(wr,...,wn)) = > i, |vi|, where |t| denotes the size of ¢,
i.e. the number of function symbols occurring in ¢, and

No({r}) = N2(0) = —1.
It is easy to check that:
e Decompose preserves N; and strictly decreases Na,
e Instantiate strictly decreases IVy,
e Clash, Var-Clash and Success strictly decrease Nj.

O

Proposition 3.2 The PSA calculus for primal strategy application is locally con-
fluent.

Proof. By the classical critical pair lemma [2], we have just to check that
all critical pairs are confluent. Because of the form of the rules and since there is
no recursive strategy call, we have only to check that there is no non-confluent top
critical pair.

Decompose does not superpose with Clash since f # g, and due to its conditional
application, the rule Decompose does not applies if Success applies.

We should notice that in the Instantiate and Var-Clash rules, the variable y
is assumed to be of sort variable, thus it cannot be an object of the form f(a).
Consequently there is no overlap between Decompose and Instantiate or Var-Clash.

The same argument allows us to state that there is no overlap between Clash
and Instantiate or Var-Clash. Since f # g Clash and Success can not overlap.



There is no overlap between Instantiate and Var-Clash because their respective
conditions are mutually exclusive.

Finally because of the syntactic limitation put on the variable y in the rules
Instantiate and Var-Clash, there is no overlap between these rules and Success.

This shows that there is no overlap between the rules of PSA. O

Corollary 1 The PSA calculus for primal strategy application is terminating and
Church-Rosser.

Proposition 3.3 The normal form of a term [vy,...,v, = rj(wy,...,w,) with
respect to PSA is either a singleton or the empty set.

Proof. Ad absurdum. If no rule among Decompose, Clash, Instantiate,
Var-Clash applies anymore on [vq,...,v, — r](wi,...,wy,), then (vi,...,v,) =
(w1,...,wy) and Success applies. O

In order to formalize a correctness result for PSA calculus, we need to introduce
a notion of invariant on expressions reduced in this calculus. Let us define RWT
as follows:

RWT([v1,...,0n = r)(w1,...,wn)) = {or| AL, ov;=w; and
Dom(c) N Var((wy,...,wy,)) = 0}
RWT({r}) = {r}
RWT @)= 0
Lemma 1 For any rule r in PSA and any expressions e, e’, if e #» €', then
RWT(e) = RWT(e).

Proof. Let us check this property for each rule in PSA:

e Decompose: o f(uy,...,uy) = f(t1,---,t,) implies ouy =t1,...,0U, = t,.

e Clash: there is no substitution ¢ such that o f(u) = g(t) if f # g.

e Var-Clash: if y € Var((wy,-..,wy)), there is no substitution o such that
oy = u and Dom(c) NVar((wi,-..,wy,)) = 0, provided that u is not identical
to y.

e Instantiate: ify ¢ Var((w1,...,wn)), oy = u and Dom(o)\Var((w1,...,w,)) =
() implies that the image of y by ¢ is necessarily u.

e Success: ow; = wy,...,0wW, = w, implies that ¢ is the identity substitution
satisfying Dom(o) N Var((w1, - - .,wy)) = @ since Dom(a) = 0.

O

Corollary 2 (PSA correctness) For a rewrite rule | — r and a term ¢ such that
Var(l = r) N Var(t) = §, we have [l — r](t) {psa= {s} if and only if ¢ is rewritten
on top into s with the rewrite rule [ — r.

Proof. This follows from Lemma 1 and from standard definition of rewriting:
RWT([l — r](t)) = s, where s is obtained by rewriting ¢ at the top with the rule
l—>r. O



When [l — 7](t) lpsa= 0, we say that the rule I — r does not apply to ¢ and
that the rule application fails. Otherwise, if s € [l — 7](t) lpsa, we call s a result of
the rule application to ¢, which is said successful. Note that currently, the normal
form can only be a singleton or the empty set.

3.3. Comments on the PSA calculus

In contrast to the standard notion of rewriting, the result of a rule application
is a set of terms. This is useful for several purposes.

To avoid partial functions. It is convenient to deal with functions computing a
possibly empty set of results. Otherwise, the rule application should be considered
as a partial function.

To extend to rewriting modulo. The framework extends smoothly to rewriting
modulo equational theories, in which case the result of the application of a rule may
be not unique. For example, if the operator g is assumed to be commutative, then
Decompose and Success are replaced by the following rules:

DecomposeC [...,g(u1,u2),... > 7](...,g(t1,2),...)

I

[...,U17U2,... —)’r‘](...,tl,tz,...)
U
.[...,’U/l,’u/z,... —)’I‘](...,tQ,tl,...)
if g(u1,u2) #c g(t1,t2)

SuccessC [V1,...,0n = (W1, .., wy)
5
(1)
if v =c w1,...,v, =¢ Wy

where =¢ denotes the equality modulo the commutativity of g, and U is the union
operator. In order to take into account the union operator U, considered here
without any equational property, a few rules are added:

Merge {ri,...,rn}U{rnt1,--srm}t W {ri,..,rn, g1, -y Tm}
IdR {ri,...,rn}Ud W {r,...,rn}

IdL pui{ry,...,m} = {re,...,rnt

[dLR QU@ 0

The bottom-up application of the previous rules leads to an expression that
encodes a set of results, not necessarily reduced to one element.
Example 3.2 Let g be a commutative operator, and a,b two constants.

[9(2,y) — 2](9(a, b))
H=» DecomposeC [m,y — IB] (a7 b) U [.’L‘, y — .’E](b, a’)
H [nstantiate [a,b — al(a,b) U[b,a — b](b,a
W Success {a} U {b}
H‘»Merge {aa b}



[9(z,a) — z](g(a,b))
#»DecomposeC  |£,a — z](a,b) U [z,a — z](b,a)
# Clash PU[z,a — b](b,a)
H? Instantiate fu [b, a — b](b, a)
H=»SuccessC @ ) {b}
1L {b}

More sophisticated PSA-like calculi should be designed to implement rewrit-
ing modulo other equational theories, like for instance modulo the associativity-
commutativity axioms, or more generally modulo syntactic equational theories,
where decomposition rules can be used to simplify unification and matching prob-
lems [24, 21, 26].

To deal with more elaborated strategies. After this first step in the definition
of strategies, more elaborate ones will produce sets containing in general more than
a single element. Later on, we will use the same syntax for strategy application on
sets of terms. Then, the result of such an application will be obtained as a union
of results.

Instead of choosing sets as the basic structure for representing the result of
strategies application, other possible choices can be lists or multisets. Similar calculi
could be developed in these cases, some of them sticking closely to implementation
considerations. We have chosen here to use the set representation because of its
simplicity.

3.4. Building more primal strategies

Now, to apply consecutively two rules, the corresponding primal strategies are

K2

composed using the concatenation operator “;” that applies as follows:
Compose [ll — 71 lQ — TQ](t) L [12 — TQ]([ll — T’l](t))

and more generally, for two strategies (; and (3, we have

Compose  [C1; G](t) w»  [C2]([C1](2))-

The composition of two primal strategies is again called a primal strategy. Note
that this strategy corresponds to the THEN tactical in LCF.

It is natural to add as primal strategies the identity (associated to the rewrite
rule z = z) and the failure function, denoted respectively by id and fail. They
apply to terms in the expected way:

dentity [id](¢) w» {t}
Fail [fail]() w» 0.

The next step consists of applying a rule deeper into a term. For this purpose,
function operators (i.e. elements of F) can take as arguments primal strategies ¢
and yield again a primal strategy, that applies to terms as follows:



Congruence [F(Gse s I (B tn)) v F([GI (), - [Gal ()
Congruence-Fail  [f((i,-.-,C)](g(t1, ..., t0)) = 0.

In this definition, the interpretation of f is strongly overloaded: on the left-hand

side of the Congruence rule, the first f operates on strategies and the second on
terms; on the right-hand side, f operates on sets, where it is defined as usual
by f(A41,...,4,) = {f(a1,...,a,)|a; € A;}. When f is a nullary symbol, these
definitions simplify in an straightforward way.

To summarize, primal strategies are built from rewrite rules and the two con-
stants fail and id, using concatenation and congruence w.r.t. the function operators.
The application of a primal strategy to a term is defined by the rules of PSA, and the
set, of rules BP composed of Compose, ldentity, Fail, Congruence and Congruence-Fail.
Proposition 3.4 For a rewrite system R, the application of a primal strategy to a
term ¢ using PSA and BP always results in a set of terms (which, except for rewriting
modulo an equational theory, is either empty or a singleton). When u belongs to
the set of results, there exists a sequence of rewriting steps from ¢ to u using R,
and conversely.

Proof. This follows from Corollary 2 and from the definition of the concatenation,
congruence, identity and failure strategies. O

In order to simplify the notations, and to iterate the construction of functions,
a name is given to rewrite rules. So the basic objects are now labeled rewrite rules
[€] | = r, where the label £ belongs to a set £ of ranked label symbols, and whose left
and right-hand sides are terms of 7(F, X'). When the rule has n distinct variables,
then the label £ is assumed to be of arity n and the rule is denoted [¢(Z)] I(Z) — r(Z).
When variables are irrelevant, we just omit them from the notation.

Example 3.3 Given the rewrite system {[/1(z)] f(z) — z,[f2] g(a) — a}, the
strategy g(f(¢1)); g(£1); £2 is the function that, when applied to the term g(f(f(a))),
yields {a} and the empty set when applied to any other term.

We can notice that in rewriting logic [30], proofs are first-order objects and are
represented by proof terms. Proof terms are terms built from elements of T (F, X),
combined with function symbols in F, label symbols in £ and the concatenation
operator “;”. So a proof term denotes a primal strategy in our approach.

4. Elementary strategies

How to handle sets of results and to encode search are the main questions we are
facing now. As the last example illustrates, the functions called primal strategies,
are just application of rules at some fixed position. Now we need to express the
search for specific reductions. For instance, we would like to express the leftmost
innermost rewriting strategy as a function that, given a term rewrite system R and
a term t, returns, when it terminates, the set of all its leftmost innermost normal
forms.

For this purpose, we enrich the strategy language by operators allowing the
description of the computation space in a convenient way.



First, we introduce two selectors, specifying in which way the set of results of
a strategy is used: one may be interested in the whole set or just in one of its
elements. For that purpose, we introduce now one and all, two elementary unary
operators on strategies, whose semantics is defined by the following rules:

One  [one(Q)](t) w» {t'}
if ¢ € [C](2)
Al [all(Q]@) = [CI().

The result selectors can be made more precise when a different representation
for results is chosen. For example, when using lists, the one operator could be
completed with selectors for the “nth” result.

Then we also introduce selection operators select-one, select-first, select-all
on strategy tuples. Their semantics is defined by the rules:

Select-first  [select-first((y,...,(n)](t) w»  [(5](2)
j—1

if (JIG]() = 0 and [¢j](¢) # 0
i=1
Select-one  [select-one((1,...,G,)](t) w»  [G](?)
if [G](t) # 0
Select-all [select-all((y,...,¢)](8) v [ JIGI(®)
i=1
This allows us to introduce operators like dk (“dont know”), first and de (“dont
care”). first is indeed the same operator as the “ORELSE” used in LCF [18].

The semantics of these operators is defined w.r.t. the previously introduced
selectors, using rewriting on strategy terms (notice the arrow change) as follows:

Dk  dk((i,...,(n) — select-all(all((y),...,all(,))-

where (1, ... (, are any strategies.
This rule has the same meaning, for all term ¢, as the following rule:

Dk [dk((i,-..,Cn)]() w»  [select-all(all((y),...,all(,))](t).

For example, [dk(a — b,a — ¢)](a) +»* {b,c}.
The dual of the dk strategy is the “dont care” one, dc, defined by:

Dc  dc(¢i,-..,¢n) — select-one(all(¢y),...,all(¢,)).

This last operator, in its version that simply returns the first non-empty set of
results given by its arguments, is called first and is defined by:

First  first((1,...,(,) — select-first(all(¢y),...,all((,)).

For example, [first(a — b,a — ¢)](a) ¥»*{b} and [first(a — ¢,a — b)](a) =»*{c},
while [first(a — ¢,a — b)](b) #¥»* 0.

10



We can also define the dc-one strategy which returns only singletons:

Dc-one  dc-one((y,...,(,) — select-one(one((r),...,one(,)).
Of course, first-one can be defined in the same way:
First-one  first-one((y,...,(,) — select-first(one((1),...,one((,)).

The elementary strategies, and in particular the operators dk and first, in con-
junction with primal strategies, allow us to express, in a very convenient way, search
functions which are particularly useful in mechanized theorem proving.

To summarize, elementary strategies are built using two kinds of selectors. one
and all select one or all elements in the set of results of a strategy, while select-one,
select-all and select-first select one, all or the first element in a sequence of
strategies. The next table presents all elementary strategies previously introduced.
In addition, an elementary strategy dk-one, that chooses one result in each set of
results provided by a sequence of strategies, can also be defined. This strategy may
be useful in the context of concurrent rewriting and strategies, as explored in [4].

result selector
strategy selector | one all
select-one dc-one dc
select-first first-one | first
select-all dk-one dk

To conclude this section on elementary strategies, let us mention that constant
strategies can also be introduced. For all terms ¢ and s, these constant strategies
denoted § are defined by

Constant  [3](t) w» {s}.

In the following, we denote by ES the set of rules performing elementary evaluation
strategies, i.e., the rules One, All, Select-first, Select-one, Select-all, Dk, Dc, First,
Dc-one and First-one.

5. Defined strategies

We have seen how the user can define primal strategies and specify some search
strategies using elementary strategies. The goal is now to give the possibility to
define more complex strategies from elementary ones. This is done as previously, by
defining new strategy operators and rewrite rules to specify the strategy semantics.

For example, the function map can be defined by a strategy rewrite rule in the
following way:

map(¢) — first(nil, cons(¢, map(¢))) (1)

The right-hand side of this definition means that whenever the strategy map with
an argument ¢ (i.e. map(¢)) is applied to a list ¢, either ¢ should be nil, or the
strategy ¢ is applied to the head of ¢ (in which case ¢t should be a non-empty list)
and map((¢) is further applied to the tail of ¢.

11



This strategy definition differs from the traditional functional definition of the
map functor. To get a more standard definition, we can also formulate the definition
of map using the strategy application symbol [@](@) (and the infix notation “.”
for the cons operator):

[map(Q)](nil) > nil (2)
[map(Q)(al) + [C)(a).lmap()]()

The difference relies on the fact that the list, which the functional map is applied
to, is an explicit argument in the second definition, while in the first one, it is
implicit.

In rule (1), map(¢) is a strategy which is defined recursively. When applied
without special control, it may lead to infinite computations. This can of course
be controlled using the concept of meta-strategies, i.e. strategies controlling the
execution of defined strategies. Indeed other rules involving map can be written,
to express in particular some equivalence on defined strategies, for instance the

«.n
’

distributivity of map on the concatenation

map((1) ; map((z) — map((; ()
map(id) — id
Other examples of rules for elementary strategies are:
id; ¢ — ¢;id —
first((, () — ¢ dk(¢(, ¢) — ¢
Given a set of strategy symbols Fp, called defined strategy symbols, rewrite
rules on defined strategies are of the form [¢] (1 — (2 where £ is a label, {; and (»
are strategy terms built from all previously introduced strategy symbols and Fp.
The defined strategy application is then expressed by rules of the form

Dstr [G1](t) w» [(](F)

and the labels Dstr can be used to control the application of defined strategies.
Example 5.1 Several examples of basic strategy definitions are the following ones:

iterate((;) — dk((i;iterate((y), id)
repeat((;) — first((i;repeat((;), id)
map2(nil) — nil

map2((i-(2) —  (.-map2((y)

The iterate strategy differs from repeat by returning all intermediate forms en-
countered during the evaluation of the term by the strategy (i, while repeat returns
only the last one. The strategy map?2 is driven by a list of strategies which are re-
spectively applied to elements of a list of the same length.

With a rewrite rule: [¢] z+ 0 — z and all the strategies defined above, we get
the following application examples:

[iterate({)]((a + 0) + 0) w»* {(a+0)+0,a+0,a}
[repeat (€)]((a + 0) + 0) > {a)
[map2(iterate(?).repeat(£).nil)](a + 0.b + 0.nil) w»* {a+ 0.b.nil,a.b.nil}
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Strategy rewrite rules of the form [¢] (; — (» are called implicit since they do
not involve explicitly the application operator [@Q](@). However, as illustrated by
the map example, it is sometimes useful to express a strategy rule depending on
the argument on which it is applied. Such rules are also allowed and are called
explicit strategy rules. They are of the form:

Dstr [G](t) #» R

where (7 is a strategy term as before, ¢ is a term and R is build on terms, strategy
symbols and the strategy application operator. From the evaluation point of view,
these rules are just added to the strategy interpreter.

Example 5.2 To illustrate the definition of explicit strategy rules, let us consider
for instance an if-then-else strategy constructor. if (; then (> else (5 applied to a
term ¢, returns [(1; (2](¢), if [(1](t) is not empty (does not fail), otherwise, it returns
[¢5](t). The semantics is defined using an auxiliary symbol ite as follows:

ltel  [ite(, G2, C3)](%) = [Cs](1)
lte2  [ite({s} U BE), (2, Gs](t)  w» [(]({s} U E)
lte  [if §; then (; else G5](t) w»  [ite([G1](), G2, G3)I(2)

6. The rewriting tower and the typing of strategies

Let us now show how to iterate (ad infinitum) the construction of primal, ele-
mentary and defined strategies, and how this iteration is related to a typed hierarchy
of strategies.

We assume first-order terms classified by a set of sorts S; whose elements are
denoted by s. These terms are built on a set of function symbols Fy and used to
build a set of labeled rules Rg. The 3-tuple (So, Fo,Ro) defines the initial user’s
theory R7y. Strategies representing functions over these terms do not belong to
this theory. To build the theory R7; for strategies, Fo is imported, rules in Rg
(or equivalently their labels) become strategy operators, other operators are added
(id, fail, dc, dk, first,...), and defined functions (like map) are introduced. In
RT1, it is natural to understand the type of a primal strategy | — r as (s — s')
where (s, s') is the pair of sorts of respectively ! and r. Moreover, it is reasonable
to assume that the user’s rewrite rules are sort-preserving, i.e. that s and s’ are
the same. Then, strategies in R7; are typed on a set of sorts §; whose elements
are (s — 8) with s in Sy. In RT;, rules are also involved to define application of
strategies (objects of R71) to terms (objects of R7y). These rules can become in
turn primal strategies at an upper level of theory.

Example 6.1 In Example 5.2, the strategy constructor if @ then @ else @ has
rank:
if {; then (; else (3 : ({(s = s) (s 5) (s 3)) (s — s),

meaning that the first, second and third arguments as well as the co-arity of the
operator are all of strategy sort (s — s).
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The first-order strategies in the theory R7; are objects (or terms) of this theory.
Then, we can construct second-order strategies representing functions over objects
of R71. To deal with these new objects, we extend in the same way the theory RT;
into R7z. Clearly this construction can be repeated as much as needed.

Let us detail the construction of the theory R7;4+1 from R7;. In particular, the
case ¢ = 0 covers all already presented strategies.

1.

If the theory R7; contains sorts s € S;, the sorts of R7;+1 are {{(s+— s) | s €
S;}US;. (s — s) is the sort of a sort-preserving strategy over s. The general
case of sort-changing strategies (i.e. (s — s')) is a bit more technical, and is
developed in [3].

. If the theory RT; contains a symbol f € F with rank f: (s1,...,8,) s, or a

labeled rewrite rule [£] | — r, where I,7 : s and z; : s; are variables of £, the
following symbols of the theory 7R;y1 are primal strategies inherited from
the ¢-th level:

f @ ((s1—s1)...(sn>8n) (s 3s)
£ ({(s1+81)... (s 8,)) (s> 8)
where {z1 : $1,...,Zn : $p} = Var(l) U Var(r)

Primal strategies are made of strategy operators inherited from the previous
step, of two constant strategies id and fail, and of the concatenation operator
“” which are overloaded with the following type declarations:

; i (s s8)(s—38)) (s—s)
id 0 (s s)
fail : (s+—s)

. Elementary strategies are obtained by adding strategy constructors to handle

sets of results. The binary versions of these constructors are overloaded with
the following type declarations:

one, all i ({(s8) (s s)
select-one, select-first, select-all : ((s— s){s > s)) (s> s)
dk, dc, first, dc-one, first-one i (s s) s s)) (s s)

Defined strategies over objects of the theory 7R; become new strategy sym-
bols of the theory TR;+1, .8

map : ({(s — s)) (list[s] — list[s]).

The symbol of the strategy application [@](Q) : ({s — s) s) s is overloaded
with this new type declaration.

Up to this point, we have described the syntax (i.e. the signature) of the theory
TRit1. The semantics of strategies (i.e. objects from TR 1 —T R;) are also defined
by a set of rewrite rules specifying a default strategy interpreter. These rules have
been described in Sections 3, 4 for the primal and elementary strategies, and in
Section 5 for defined strategies.
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Proposition 6.1 The application of rules in BP and ES is sort-preserving at each
level of the hierarchy.

Proof. (Sketch) Both left and right-hand sides of all rules of the strategy
interpreter are well-typed terms in the theory 7R;;1, and sorts of both sides of
each rule are equal. O

We have sketched the construction of strategy symbols with their interpretations
in the theory 7T R;+1. When used in a programming environment and from the user’s
point of view, this construction should come in general for free. However, if needed,
the user can redefine or complete the behavior of the strategy interpreter; he can
extend the set of defined strategy constructors, or describe equalities among objects
of the theory TR;y1 by rewrite rules in this theory.

For example, in the theory 7R;11, we can also define labeled rewrite rules over
strategies, e.g.

[Dm] map(¢i) ; map((z) — map(G; (2)
[Im] map(id) — id

transforming strategies into simpler ones. The symbols Dm and Im represent labels
of rewrite rules in the theory 7R;4+1, but in 7R 42, they are primal strategies, thus
they can be used for the construction of a reduction meta-strategy like

redmap — first(Im, Dm).

7. Strategies in ELAN

ELAN is an environment for specifying and prototyping deduction systems in a
language based on computational systems, i.e. sets of rewrite rules with strategies.
The language has been developed first in order to specify in a uniform framework
and efficiently execute computational systems describing constraint solvers, theorem
provers and kernels of programming languages [38, 23, 7]. The language semantics
is based on the strategy notion presented above and we now briefly describe some
of the strategy features offered by the system.

7.1. Rewriting with Strategies

ELAN provides a kernel that implements the leftmost innermost standard rewrit-
ing strategy, the elementary strategies, and which allows iterating the construction
on defined strategies.

An ELAN program consists of two parts: a set of rewrite rules and a set of
strategies describing the rule application. A rewrite rule in ELAN is of the form:

[label]l => r
where p1 =K S1 >t

where p, =K S, > t,

in which
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o Lr,p1,..,Pnst1,--,tn € T(F, X),

e Var(p;) N (Var(l) UVar(p1) U---UVar(p;—1)) =0,
e Var(r) C Var(l) UVar(p;) U---UVar(p,),

e Var(t;) C Var(l) UVar(p:) U---UVar(p;_1),

e S1,...,S, are strategy terms built from the strategy constructors or defined
by the user,

e and € @ > @ is either the application operator —denoted in ELAN (@)@—
of elementary strategies on terms, or the application operator —denoted in
ELAN [@]@— of defined strategies on terms.

For each matching condition where p :=< § > t, the term p is matched successively
to each result in € S > ¢, where S denotes a strategy and ¢ a term. This matching
process provides values for the variables in p. A rule may have an empty label []
and a matching condition may be of the form where p := ()¢. A matching condition
where true := () ¢, where ¢ is a boolean term, is written as a boolean condition
if c.

When programming in ELAN, it is important to realize the difference between:

— labeled rules whose evaluation is fully controlled by the user strategies and,

— unlabeled rules which are intended to perform deterministic computations and
are applied using a built-in leftmost innermost strategy.

To make the system easier to use, three basic evaluation mechanisms for strategies
are available.

7.1.1. Leftmost Innermost Strategy

The first evaluation mechanism available in ELAN is the leftmost innermost
standard rewriting strategy. It is used for applying the set of all unlabelled rules.
It is also called in matching conditions of the form where p := ()t.

Example 7.1 A typical example of such a rule set, given in the ELAN syntax, is
the specification of the Fibonacci function:
rules for int
n : int ;
global
[1 £ib(0) => 1 end
[1 £fib(1) => 1 end
[1 fib(n) => fib(n - 1) + fib(n - 2) if n > 1 end
end
The program is executed by giving to the evaluator top level the query £ib(33),
which indeed means
“evaluates [built-in-leftmost-innermost-strategy] (£ib(33))”.
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The set of unlabeled rules is assumed to be terminating and Church-Rosser. For
instance, we can implement the PSA calculus (see Figure 1) as a set of unlabeled
rules.

7.1.2. Built-in Primal and Elementary Strategies

The second kind of built-in strategy provided by the system consists in applying
primal and elementary strategies. The rules in PSA are implemented as a built-in
rewriting operation, and all rules in BP and ES are implemented as built-ins.

Example 7.2 A simple example, involving associative commutative rewriting and
the built-in strategies dk or first, is a program that extracts all the elements of a
multiset. Assuming that an element is automatically coerced to a singleton when
needed, the main rule has the following form:
rules for elem

S : set; e : elem;

global

[extractrulel element(S U e) => e end

end

where the operator U (the union operation on multisets) is assumed to be associative
and commutative. The element operator returns one of the elements in its argu-
ment. In this context, if the user calls the strategy dk(extractrule) on a term of
sort set, he gets all elements of the multiset. The strategy first (extractrule)
on the contrary, returns only one element of the multiset. The request

[dk(extractrule)](1U2U 1)

is evaluated by the system into {1,2,1}.

7.1.3. User-Defined Strategies

As explained in the previous sections, the application of strategies on terms is
also defined by rewrite rules in BP, ES and the set of rules for defined strategies,
as described before using (for clarity) the #» symbol. Indeed these rules can also
be defined as ELAN rules. This provides a rewrite system describing the meta-
interpreter of strategies. The third evaluation mechanism, for the meta-interpreter,
is given through a built-in strategy ewval, which is applied to strategy rules using
their labels. By convention, for defined strategy rewrite rules, when the label is a
single dot ([.]), the system automatically transforms the rule
[.] L => R into the meta-interpreter rule [Dstr] [L](t) => [R](t) where t is
a variable of the right sort. The strategy eval has been implemented in ELAN by
using the rules described in this paper, and built-in primal and elementary strategies
provided by ELAN.

7.2. The ELAN Environment

The ELAN system provides a library of built-ins and standard modules, an in-
terpreter and a compiler [39, 32]. In compiled mode, ELAN can apply more than 15
millions of unlabeled rewrite rules per second on alpha-powered machines (300/500).
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For instance, it can evaluate £ib(33) in 0.695 seconds. For theorem proving ap-
plications, where strategies and labeled rules are heavily used, it rewrites at the
average speed of 800 000 labeled rules per second. As an example, the completion
of non-Abelian groups is performed in less than 1 second.

More informations and access to the system as well as web demos are available
at http://www.loria.fr/ELAN.

7.3. Ezramples of more complex strategies

In order to illustrate the previous concepts and how they can be used in ELAN
(these examples are actually running), we introduce now two examples of increasing
difficulty. The first one illustrates the strategy language describing the normaliza-
tion of A-terms using the leftmost innermost and leftmost outermost strategies.
A-terms are represented using de Bruijn notation, and thus there are two prim-
itive operations: free(v,t) meaning that a variable v is free in a A-term ¢, and
replace(v, a,t) standing for {(v + t)}(a). The definition of A-terms and beta and
eta evaluation rules is straightforward in ELAN:

import global int; local bool; end
sort lterm; end
operators global

Q : (int) lterm;
la @ : (lterm) lterm;
(@ @ : (lterm lterm) lterm;
end
rules for lterm
M, N : lterm;
global
[betal (la M N) => replace(1,M,N) end
[etal (la M 1) => M if not free(1,M) end
end

The definition of the innermost or outermost normalization strategies lis(s) and

los(s) is done in a natural way by writing:
import global strat[lterm]; end
stratop global
lis(@) : (Klterm—->lterm>) <lterm->lterm>;
los(@) : (Klterm—>lterm>) <lterm->lterm>;

end

strategies for lterm

S : <lterm->lterm>;
implicit

[.] 1is(S) => first(
(1is(S) id), (id 1is(S)),
la 1is(S), S ) end
[.] los(S) => first(
S, (los(S) id),
(id los(S)), la los(S) ) end
end
The strategies lis(S) and los(S) fail if the input A-term does not contain any S-

redex reducible with the substrategy S (later instantiated to first(beta, eta)). The
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strategy lis(S) tries to apply the substrategy (lis(S) id), which succeeds if the input
term has a form (M N) and lis(S) is applicable to M, i.e. if M contains an S-redex.
Otherwise, it continues on the right A-subterm N by the application of (id lis(S)).
If the input term has the form A M, the strategy lis(S) is propagated towards M by
the application of la lis(S). If none of the three cases above succeeds, the strategy
S is applied to the top of this A-term. The fact that S is applied in this order,
makes the crucial difference between strategies lis(S) and los(S).

The second example shows higher-order strategies on the classical example of
the Church’s numbers that can be defined, using the standard notations of lambda
calculus, by two functions zero and succ:

zero: (X = X) » (X =» X)

zero = Af.Az.x

succ: (X =2 X)X =2X) o X=2X) (X = X)
suce = A Af x.(f ((n f) x))

These functions can be represented as strategies in several ways, because of the
absence of currying for defined strategies. The function zero can be defined as a
binary function, a unary defined strategy, or a nullary defined strategy where X
denotes a parameter sort:

zero2(@,Q) : (<X->X> X) X;
zerol @ : (KX->X>) <X->X>;
zero0 HIEGR S €59 S219 GE>) 6

The semantics of these symbols can be easily defined by:

rules for X

global

[1 zero2(f,x) => x end
end

strategies for X

explicit

[.] [zerol f] x => x end
end

strategies for <X->X>

explicit
[.] [zero0] f => id end
end

where f : (X — X),x : X are variables. The explicit definition of zerol is equivalent
to the following implicit one:

strategies for X

implicit
[.] zerol f => id end
end

but not to the third one. Similarly, there are several possibilities for defining succ:

succ3(@,0,0): (KKX->X>-><X->X>> <X->X> X) X;

succ2(Q,@) : (KKX->X>-><X->X>> <X->X>) <X->X>;
succl @ 1 (RX->X>-><X->X>>)  <<KX->X>-><X->X>>;
succO 1 <LK -><X-DX>>->LLX->X>-><KX->X>>>;
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The definition of succ3 is quite natural from the functional point of view:

rules for X
global
0 succ3(n,f,x) => [f1([[n] ()] (x)) end

where n: ((X — X) = (X = X)), £: (X X), and x : X are rule variables. The right-
hand side of the rule is not far from the original functional definition. The term
[£]([[n](£)](x)) is an abbreviation of the term x2 which is defined by the following
sequence of where local affectations: £1 := [n](f),x1 := [f1](x), %2 := [f](x1). For a
better understanding, the first application symbol in the expression £1 := [n](f) has
the type ({{X — X) — (X — X)) (X — X)) (X — X), while those in the expressions for

x1 and x2 have the following type ((X — X) X) X.
The definition of suce2 is similar:

strategies for X
explicit
[.1 [succ2(n,f)] x => [£1([[n](£)1(x)) end

The explicit definition of succl introduces primal strategies [ — r with the syntax
[1=>rl:

strategies for <X->X>
explicit
[.1 [sucecl nl £ => [ x => [£1([[n](£)]1(x)) ] end

where [ x => [£]([[n] (£)1(x)) 1] stands for the primal strategy referencing the
rewrite rule z — [f]([[n](f)](z)). A more complex example is the definition of succ0:

strategies for <<X->X>-><X->X>>
explicit

[.] [succO] n => [f => [x => [f1([[2]1(£)](x)) 11 end

8. Dynamic types and ad-hoc polymorphism

Polymorphism is an important feature of functional programming languages.
We explain in this section how dynamic types and ad-hoc polymorphism can be
provided in ELAN, thanks to a module any available in the library.

8.1. Dynamic types

Let us first explore an idea based on a simple sort construction called dynam-
ics [27], or dynamic typing [1, 20], which allows to define functions that essentially
require run-time type-checking in statically typed language. A weakness of static
typing can be eliminated by the construction of objects with dynamic types (or
dynamics, for short) [28], or by the introduction of an advanced polymorphic sys-
tem [31]. Both methods were combined in [8], where the concept of dynamics is
generalized into dependent data types. Another approach combining dynamics and
the parametric polymorphism is studied in [27] from the point of the type-inference.

The definition type Any = (t : Type, =z : t) introduces a sort Any (called dyn
in [27, 1]), which is the simplest example of a dependent data type. The first part
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of the pair Any indicates the sort of the second part. This means that the type
t ranges over the domain of all types, and the type of x depends on the value of
t. There are different approaches with respect to the construction of the set of all
types [28, 31, 8], but the situation we consider here is much simpler, since we restrict
to first-order rewrite rules and to finite sets of sorts S.

The sort Any is defined in the parametric module any [X]:

module any[X]

sort Any; end

operators global
(X)e : (X) Any;

end

where the argument X of this module is supposed to be (the name of) a sort.
This module defines also one embedding coercion wrapping up terms of sort X into
terms of sort Any, in such a way, that if t:X, then (X)t : Any. A projection
(X~1)@ : (Any) X from the sort Any into X can be also defined by: (X71)(X)t — t.

This simple construction of dynamics gives the possibility to define functions in
an ’ad-hoc’ polymorphic style, to introduce a set of general term constructors and
destructors, and to write polymorphic strategies.

8.2. Ad-hoc polymorphic functions

A simple example of an ’ad-hoc’ polymorphic function is the function export
converting terms into a list of lexems. The ’ad-hoc’ polymorphism of export means
that it works for terms of different types, and terms of different type are treated
in different ways. Lexems such as integers and strings, can be represented as Any-
terms (i.e. terms of sort Any), namely (int)n and (string)s, where n:int and
s:string. The function export : (Any) list[Any] is defined on these two
elementary sorts:

[1 export((int)n) => (int)n . nil end
N export((string)s) => (string)s . nil end

Then on other sorts, for instance 1ist [X], export is defined as follows:

[1 export((list[X])nil) => (string)'"nil" . nil end
[1 export((list[X])a.as) => export((X)a)+(string)"." . export((list[X])as) end

where the symbol + stands for the append and . for cons over 1ist [Any]. For terms
of an arbitrary type s, there are rules for each constructor f : (s ...s,)s where ti
are variables of sort si:

N export((s)f(tl,...,tn)) =>
(string) "f(" . export((s1)tl)+(string)","

export ((sn)tn)+(string)")" . nil end
So the sort Any allows defining ’ad-hoc’ polymorphic functions dealing with terms
of an arbitrary sort. However, in general, for each function and each constructor, a
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rule defining the behavior of the function over that constructor has to be provided.
The first possible solution is to generate these rules with a pre-processor that au-
tomatically enriches programs. We explore another solution, conceptually simpler,
in the next section.

8.3. Term constructors and destructors

Basic operations with Any-terms are composition and decomposition, defined by
two function symbols explode and implode. The symbol explode transforms an
Any-term into a list of Any-subterms. To be able to construct back the initial term,
we introduce a symbol implode, that takes a list of Any-subterms ti and a function
symbol £, and constructs the Any-term f(t1,...,tn). If f is the top-most function
symbol of a term t, then t = implode(f,explode(t)) holds. In this situation, we
have to consider function symbol as constants. Therefore, we introduce a new sort
Functor, which collects all function symbols: if £(@,...,@) : (sl...sn) s is
in the signature, then the following constant is introduced in the sort Functor:
f(sl,...,sn) : Functor.

The module Any introduces the sort Functor, a function functor which extracts
a function symbol from an Any-term, and the functions explode and implode:

module Any

import global list[Any]; end
sort Any Functor; end
operators global

functor (@) : (Any) Functor;

explode (@) : (Any) list[Any];

implode(@,@) : (Functor list[Any]) Any;
end

Example 8.1 Let us illustrate these functions on a small example. In a module
importing any [int] and any[tree[int]], the sort tree[int] is defined as follows:

operators global

empty : treelint];

leaf (@) : (int) treelint];

node(@,Q@,Q) : (treel[int] int tree[int]) treel[int];
end

An Any term (treel[int])node(leaf(3),4,node(leaf(5),6,empty)) is destruc-
ted with explode into a list of Any-terms:

explode ((tree[int])node(leaf (3) ,4,node(leaf (5),6,empty))) =>
(tree[int])leaf(3) . (int)4. (tree[int])node(leaf(5) ,6,empty) .nil

To get back, we use the symbol implode applied on this list with a function symbol
name node (tree[int],int,tree[int]) :Functor, and we obtain:

implode (node(tree[int],int,tree[int]),
(treelint])leaf(3). (int)4. (tree[int])node(leaf(5),6,empty) .nil) =>
(tree[int])node (leaf (3) ,4,node(leaf (5),6,empty))
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The functions explode, implode and functor are defined by three sets of rewrite
rules, generated and imported automatically, whenever the user imports the module
any [X]. For instance, for the symbol node (@, @,@), the following rules are automat-
ically generated:

[1 explode((Any)node(x,y,z)) => (tree[int])x.(int)y. (tree[int])z.nil end
[1 implode(node(tree[int],int,tree[int]),
(tree[int])x. (int)y. (tree[int])z.nil)
=> ((Any)node(x,y,z)) end
[1 functor((Any)node(x,y,z)) => node(treel[int],int,tree[int]) end

where x,z:tree[int] and y:int are variables. These rules can be correctly parsed

if the following function symbol name is declared:
node(tree[int],int,tree[int]) :Functor.

Similar rewrite rules and symbol definitions are also automatically produced for

other constructors of the sort tree[int], and in general, for any function symbol

f:(sl...sn)s in the signature, provided the user has already imported modules

any[si] and any[s], for any ¢ = 1..n.

This feature allows us to include typed terms using type flags (also called type
decorations) into mono-sorted Any-terms. We can also make projections of Any-
terms into a particular sort X, which is a run-time test of a type flag (it can fail).
We can define various symbols and strategies over this sort Any, which can be
viewed (from the point of view of many-sorted systems) as polymorphic symbols or
strategies. This is explored in the next section.

8.4. Polymorphic strategies

Let us concentrate now on the definition of ‘polymorphic’ strategies, i.e. strate-
gies working over an arbitrary user-defined sort. Our goal is to get a polymorphic
version of the ‘leftmost innermost’ strategy, which runs over any sort. The module
presented in Figure 2 defines a strategy 1is(S): (<X->X>) <Any->Any> (an abbre-
viation for ‘leftmost innermost’).

This definition introduces two auxiliary strategies, map and mis. The strategy
mis (S) assigns to the variable as the list of subterms of a, on which the strategy
map (8) is applied. The final result is constructed by implode (functor (a) ,as) (it is
an Any-term). If mis(S) fails, the strategy (X)S : (Any), is applied. The operational
meaning of this strategy expression is as follows: when applied to an Any-term, it
destructs it into a term of sort X (which is, in fact, a test of the type flag) and then,
it applies the strategy S on the obtained term. Finally, it constructs back the result
term from the result of the strategy application (which is of sort X) as an Any-term.

The second auxiliary strategy map(S) : (1ist[Any]) tries to apply the strategy
1is(S) to the input list. Actually, it applies 1is(S) on the head, and if it fails,
map(S) continues on the tail of this list. If the input list does not contain any
element, on which the strategy 1is(S) is applicable, map(S) fails too.

By swapping two strategy expressions in 1is(S), we obtain a ‘left-most outer-
most’ polymorphic strategy.
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module lis[X]

import global Any list[Any] strat[X] strat[Any] strat[list[Any]];
end

stratop global

1lis (@) ¢ (<X->X>) <Any->Any>;
local
map (@) : (<X->X>) <list[Any]l->1list[Any]l>;
mis (Q) ¢ (<X->X>) <Any->Any>;
end
strategies for Any
S : <X->X>; a : Any;
as : list[Any];
implicit
[.1 1is(S) => first(mis(8), (X)S) end
explicit

[.] [mis(S)]a => implode(functor(a),as)
where as:=[map(S)Jexplode(a) end

end
strategies for list[Any]
S 1 <X->X>;
implicit

[.] map(S) => first(cons(1lis(S),id), cons(id,map(S))) end
end

Figure 2: Left-most inner-most strategy

9. Conclusion

In this paper, we have presented rewriting from a functional point of view. This
allows giving a functional semantics to rewrite based environments like ELAN [7],
Maude [13] and Claire [9] where strategies play a crucial role. Applications of such
languages range from knowledge representation to constraint solving, theorem prov-
ing and language executable descriptions. Based on many non-trivial examples run
with ELAN, we believe that the “rewriting tower” approach induced by the formal-
ism developed in this paper is extremely attractive in terms of expressiveness and
readability for such applications.

Moreover, in addition to the functional semantics developed here, such languages
have a logical semantics based on rewriting logic [29] which allows us in particular to
understand strategies as sets of proof terms of a specific rewrite theory, as introduced
in [5]. This latter approach provides a reflective view of languages like ELAN [25]
or Maude [14], in the lineage of Scheme [36], and Nuprl [15].

Based on the ideas developed here, we are now working on the definition of
a rewriting calculus, called the p-calculus, which is a higher-order calculus fully
integrating the notion of strategies, and thus of rule application at the object
level [11, 12].
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