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Sequent Calculus Viewed Modulo

ErIC DEPLAGNE
UHP - LORIA, B.P. 239, 54 506 Vandoceuvre-lés-Nancy, France
Eric.Deplagne@Iloria.fr

ABSTRACT. The first-order sequent calculus is generally considered as containing
no computation but only pure deduction. But this is not completely true if
we look at it carefully, using a deduction modulo framework. The origins of the
computational part are first implicit behaviours of the calculus, then well known
consequences that we do not want to prove any more. We end up with a calculus
fully in the spirit of deduction modulo [DHK98].

1 Introduction

Dowek, Hardin and Kirchner propose in [DHK9§| a formalism called deduc-
tion modulo that enables to precisely separe deduction, generally undecid-
able, from computation, clearly decidable, so as to be able to forget about
easy computations and focus on key deductions.

The typical proof system in deduction modulo is the sequent calculus
modulo, an extension of the classical first-order sequent calculus designed to
take into account a congruence on propositions representing computations.

Viry [Vir98] had the idea that the classical first-order sequent calculus
itself, turned into a rewrite system, can be viewed modulo and decomposed
into computational and deductive parts using an oriented rewrite theory
[Vird5).

In this paper we make precise what can be viewed as computation in
the first-order sequent calculus. Doing that we obtain a system with a large
computational part which is equivalent to the classical one.

2 Sequent calculus modulo

Let us first recall the notions from sequent calculus modulo that we use
in this paper. This section intends to recall the most important notions
from sequent calculus modulo and to give intuition on how deduction mod-
ulo works. Note however that in this paper we use a congruence allowing
to identify not only formulas but also sets of sequents. The soundness of
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this congruence greatly depends on the properties of the first-order sequent
calculus.

We work modulo some congruence = and when applying a deduction
rule we use matching modulo this congruence. So if we have for instance
C = D from the congruence, we are able to apply any rule using C on an
input that actually contains D. For instance if we have 2 x 2 = 4 then a
proof of

A4=4+2+2=4B

is simply

Ad—4r2x2=4,p Axom

The congruence is conveniently defined by a class rewrite system [IKS&6].
So we can have C = D or C — D, the two meaning that C = D but C — D
meaning that operationally we replace C' by D.

m Axiom

AaD,C,AlFﬁﬁX A+FB,D,C,B RY

A,C,D,A'+B A+ B,C,D,B'

A,C.CHB AFC,C,B

ACFB ¢ AFC.B

AFC,B ACHB

A-CFB " AF-C.B R}

AC,DFB A-C,B A+-D,B

ACADFB X arcan, g

ACHFB ADFB A-C,D,B
icvDprB Y 4ArcvD.B

A-C,B ADFB ACHD,B
AC=>DFB % 4rc=pD,B R~

A, C{a/z},V2.C+ B AFV2.C,C{y/z},B
AVaCFB v AFvz.C,B

A, C{y/z},F2.C+ B At 3z.C,C{a/z}, B
A3zcrB &2 AF3z.C.B ™3

In RV and £3, y must be a fresh free variable.

In LV and R3, a is any term.
Figure 7.1: The classical sequent calculus
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3 Expliciting the sequent calculus

We give here (figure [[T]) a definition of the classical sequent calculus that is
less general than the one in [GLT8Y)] in the sense that it does not enable to
easily extend it, to intuitionism for instance, and that it does not contain a
Cut rule. However, it is sufficient for classical logic and will better serve our
purpose. We have no weekening rule as weekenings do not nicely fit in our
process. The rule RV is not well suited for intuitionism but replacing it by
two rules makes theses rules contain implicit weekenings. Finally the rules
for the quantifiers have implicit contractions in order to later avoid conflicts
when we build contractions in the congruence.

The first-order sequent calculus is generally considered as containing no
computation but only pure deduction. But if we look at it more precisely
this is not really true, so we will modify the calculus by identifying as much
computation as possible. Doing that our care will be in preserving the
provability.

3.1 Formula sets

The A, B, ... are sets of formulas, so the operator ’,’:
e is commutative : this is implemented in rules £LX and RX.

e is associative: this is left implicit. Indeed we even have no parenthesis
in LX, RX, LC and RC.

e is idempotent : this is implemented in rules LC and RC.

o admits a left and right unit, the empty set of formulas: this is implicit

in the empty left or right hand side of the turnstyle in expressions like
FBor AF.

So we can add the symbol 5y’ for the empty set of formulas and the
axioms:

A,(Bag) = (A;E)ag Aaﬁ =
Av = A AA =

At this point we can eliminate LC, RC, LX and RX from the deduction
system since they are replaced by the congruence.

A

> |9

3.2 Sequent sets

Two-premisse rules have a silent operator that means that we actually handle
sets of sequents. So this operator that we denote o’ like in

A-C,B o ADFB
AC=DFB

L=
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has the same properties as ’,’. It’s unit element will be denoted ¢’ and is

nothing but the empty premisse of the Axiom rule

o
A,CHCB

We also add to the congruence the axioms for ’e’:

Fe(AeO) = (CeA)eO TeA = AeO

Te() = T Te

M |
= >

Here we need to point out that this changes the proof object from the
proof tree usually used with sequent calculus into a sequence of sets of

sequents.
ADFB AEFB

A-C,B ADVEFB
AC=(DVE)FB

LV

becomes
A-C,B e ADFB e AJE-B

AFC,B e ADVEFB
AC=(DVE B

LV

L=

This change is more important than it seems to be, because it permits to
put together some elements of the proof that would be far away in the proof
tree and possibly use that to simplify the proof.

3.3 Explicit substitutions

Let us have a look at the rules dealing with the quantifiers. The C{a/z}
is a substitution mechanism that is left totally implicit. Making it explicit
is not obvious as, due to the quantifiers, it is not grafting since it should
avoid captures. So we will need an explicit substitution calculus [ACCLI]]
working with the quantifiers instead of the abstraction of A-calculus. This
calculus will have a better behaviour than the corresponding one for A since
its binders — the quantifiers — are formulas and cannot be introduced while
normalizing a substitution. But the need not to capture variables does exist
and we have the same solution, De Bruijn’s indices [dB72]. The calculus
also has to deal with the signature of our terms and formulas to find where
substitutions have to take place.

We use Ao [ACCLO1] as a basis for our calculus. Let us recall here the
meaning of the notations. Substitutions become syntactic objects so they
can be explicitly applied to a term or formula using the ’[]’ operator. A
substitution is basically a list of terms to be substituted to the indices. The
list constructor is denoted ’-’, hence a substitution a-b means that the index
1 is to be replaced by a and the index 2 is to be replaced by b. The identity
substitution is denoted ’¢d’ and corresponds to the infinite list 1-2-3...
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The shift substitution is denoted 1’ and corresponds to the infinite list
2-3-4..., it is used to deal with the binder(s) and so that 2 is denoted 1[1],
3 is denoted 1[][1], ... The last operator is ’o’ denoting the composition of
two substitutions so that 1[1][1] is equivalent to 1[1 o 1].

We get axioms like

flay,-..san)ls] = flals],...  an[s))

P(ai,... ,ay)[s] = Plais],--. ,an[s])
that deal with the signature,
(VA)[s] = V(A[l-(so1)])
(3A4)[s] = 3F(A[1-(so1)])

that handle quantifier crossing, taking into account their binding power and
avoiding capture,
(AANB)[s] = A[s]AB[s]

the axioms for connectors are obvious. We also add the axioms of o except
that Id and Clos are duplicated for a substitution applied to a term and to
a proposition:

afid] = a Alid] = A
(alsh[t] = a[sot] (A[s][] = Alsot]

4 Simplifying the calculus

Now that we have explicited the implicit computation in the classical sequent
calculus, we seek for another source of computation. There are properties
that are consequences of the logic and that we do not want to prove any
more, because they are well known. We can build some of them in the
calculus, but we will later see that we need to be careful about it in order
to preserve the good properties of the resulting system.

A=B = —-AVB
JA = -—v-4

permit to drop the rules L=, R=-, £3 and R3.

ANA = A
AVA = A

permit to simplify proofs at an expense that we will see later in section B
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We can also, by equating sequents and sets of sequents, directly move
some rules into the congruence, including the Aziom rule:

Aa_'0|_§ = AFC,B AF_'C,B = A,C"B
ACADFB = AC,DFB AFCVD,B — AFC,D,B
ACVDFB = ACFB e ADFB
A,CHCB = ¢

5 Orienting the equations

Now we want to orient the axioms in order to be operational and to actually
prove that the congruence is decidable. The congruence is decidable if we
can orient the axioms into a class rewrite system convergent modulo a set
of axioms for which we can determine such a property. In practice, this
means that only associativity-commutativity axioms can remain (figure [[2).
This also meets the requirements for operationality and ensures that we
can implement it with a system using rewriting like for instance ELAN
[BKKT98].

Ac A/ (B,C) = (4,B),C

Cc AB = B,A

E =
Ae Te(AeB) = (CeA)eO
Ce FeA = Aol

Figure 7.2: The remaining (associativity-commutativity) axioms

Doing that shows that we have to be careful about the properties that
we build in, as there can be confluence problems. For instance, the axioms
in [Vir98)] introducing the boolean values true and false cannot be oriented
successfully.

With the axioms of sections Bl and Hl there is a problem with expressions
like

AFCAD,CND,B

since choosing to decompose the 'A’ or to use the idempotency of ’,’ does
not converge. This problem is solved by adding another axiom which was
missing in [Vir9§| and represents subsumption:

A-BeAA'-B,B=AFB

We should notice that this axiom is easy to express in our framework but
cannot be applied while keeping the usual tree representation for proofs.

"http://www.loria.fr/ELAN/
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Ic
Ue-1
Ue-2
Ie

f=

fIN
fIv
=

3

s—l-1
s—l-2
s—r-1
§—r-2

LA-1
LAN-2
RV-1
RV-2
RA-1
RA-2
LV-1
LV-2

ERSeq =3

Az-1
Az-2
Az-3
Az-4

Sub-2
Sub-3
Sub-4
Sub-5
Sub-6
Sub-7
[ Sub-8

ER = ERy3, U ERseq

= I
|. o |. L&Lﬁ;
HO< ]

d
|
S

bbb

A= B
JA

A,-CkHB
~-C+ B
Ar--C,B
A+ -C

A,CADFB
CADFB
AFCVD,B
AFCVD
AFCAD,B
AFCAD
A CVDFB
CVDFB

A CHCB
ACKC
C+C,B

CrC

Sub-1 A-BeA A BB

A-BeAA'FB
A-Be A+ BB
AFveA A'FB
v+FBeArB'.B
AFveArB
VHFBeARB
VEveArRB

bl b

Dbl bLbbbbll bbbl

PLbblilll

Lo B Law Hiaw N s IS

-AVB
-V-A

AFCB
vkEC B
A,CFB
ACEvY

ACDFB
C,D-B
A-C,D,B
AFC,D
AFC,BeA+D,B
AFCe A D

A CHFBeA DFB
C-BeDFB

< < =< s s s SO O
T T T T TTTT
g wd w<d W Iw W

Figure 7.3: The congruence (oriented)
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Appy
Appp

App_,
Appn
Appy
App=

AbSV
Ab8§|

Id,
Idyg
Clos;
Closy

ERvzs = ¢

VarCons

IdL
ShiftCons
AssEnv
MapEnv
IdR
VarShift
SCons

idos
Tofa-s)
(31032)033
(a-s)ot
soid

1-1
1[s] - (1 0s)

I

I

PLbl Ll bbb

I

LLbllbl

flas],...  an[s])
P(afl[s]a aan[s])
—(Als])
A[s] A Bls]
Als] V Bls]

Als] = Bls]

810 (82 @) 83)
alt] - (sot)

1d

Figure 7.4: The substitution calculus for quantifiers

The subsumption axiom added, the orientation can be done and com-
pletion using CiIME [CM96] adds rewrite rules (see figure [[3]) to handle the
case of a set of formulas being empty like

~CFB—v+FC,BandCFC,B— ¢

This ensures that ER is locally confluent modulo E. We conjecture the
termination of the system.

6 Disconnecting deduction and congruence
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with the congruence. To do that we need to avoid that the congruence
can interfere with the deduction. To ensure this, we use the techniques
from [Vir95)], so we turn the remaining deduction rules into rewrite rules to
form an oriented rewrite theory. These rules have to be coherent with ER
modulo E, which is achieved by coherence completion adding rules (see figure
[C0) to handle the case of a set of formulas being empty like

VC'+ B - Cla-id],YC + B

We also add the rule ¢ — 0. This rule permits to check if the proof
has been finished by the congruence, for instance in the propositional case
where this rule is the only one to remain, traducing the decidability of the
proposition calculus. The rule I e 0 — I in ER is only needed to preserve
coherence, but will never be used with a strategy using the congruence as a
normalization. It does not affect the properties of ER.

We get that R is strongly coherent with ER modulo E, which ensures that
any strategy can be safely applied in the use of the congruence with respect
to the application of the rules of R. Notice that the congruence can lead
to a major increase in the size of the object. This increase can actually be
exponential like when reducing a formula to its conjunctive normal form.

LV-1 ANVCHFB — A, Cla-id,YVC+ B
LY-2 VCFB — Cla-id],YC+ B

R=< RV-1 AFVC,B — AFVYC,C[n-id],B
RV-2 AFYC — AFRVC,Cln-id
congruent O — O

In RV-1 and RV-2, n must be a fresh free index.
In £V-1 and LV-2, a is any term.

Figure 7.5: The deduction rules

Theorem 1 A sequent A+ B has a proof in R modulo ER U E if and only
if it has one in the classical sequent calculus.

A proof of A - B in R modulo ER U E is a derivation from A + B
to 0. The results in sections Bl and [@] prove that using the strategy we have

described is equivalent to using the relation R/ER U E so it remains to be
R/ERUE

proved that AF- B — [0 if and only if A+ B has a proof in the classical
sequent calculus. Notice that the relation R/ERUE considers ER as a set of
equations rather than as a set of rules.

The if part is easy, simulating each rule of the sequent calculus with
rules of R or axioms of ER U E and noticing that a proof is always finished
by using the congruent rule.
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The only if part must ensure that all the equations introduced in sections
B @ and B equate objects whose provability is the same in the classical
sequent calculus. This is obvious for the equations introduced in section Bl
This is still easy for the equations introduced in section Bland [ remembering
that we want to preserve proofs and not their structure.

7 Conclusion

We have shown that the first-order sequent calculus can be viewed as a
calculus modulo. First by expliciting its implicit computational elements,
then by adding in the congruence several consequences of the calculus.

The only deduction rules remaining after that are the different versions
of RV and LV. We can see that these are the ones handling the quantifier
and indeed it is well known that the undecidability of the first-order logic
does live there. We have thus obtained a clear distinction between the
undecidable deductive part and the decidable computational part placed in
the congruence. This makes proof search easier since the computational
part can be dealt with by simply normalizing the set of sequents we want
to prove and thus we only have to look for the clever option when using a
rule from R. This idea can be implemented in ELAN [BKK™T98| by using
unnamed rules for ER and named rules and a strategy on R.
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