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Abstract. We discuss a general way of defining contexts in linear logic, based on
the observation that linear universal algebra can be symmetrized by assigning an
additional variable to represent the output of a term. We give two approaches to
this, a syntactical one based on a new, reversible notion of term, and an algebraic
one based on a simple generalization of typed operads. We relate these to each
other and to known examples of logical systems, and show new examples, in
particular discussing the relationship between intuitionistic and classical systems.
We then present a general framework for extracting deductive systems from a
given theory of contexts, and prove that all these systems have cut-elimination by
the means of a generic argument.

Keywords: algebraic theories, combinatorial species, cut-elimination, display
logic, linear logic, multi-categories, operads, sequent calculus, structural con-
texts, substructural logics, universal algebra.

1 Introduction

In this paper we introduce a general theory of multiplicative substructural logical sys-
tems by using and extending one of the most crucial ideas behind linear logic, namely
that linearity brings symmetry, that is, reversibility between input an output. At some
point in time logicians became aware that the nature of a logical system is very much
dependent on the structure that “binds” formulas in a context. Before that time a con-
text was just one (or two) lists of formulas and the “structural” information amounted
so some operations (e.g., exchange, weakening) that could be effected on these lists. It
is probable that the first time that a context had to be considered as a set-with-structure
was with Lambek’s non-associative calculus of 1961 [37], where it was a binary tree
structure, with the antecedent formulas as leaves and the conclusion as root.

This point that contexts are sets-with-structure is best illustrated if a sufficient class
of examples is given to show the diversity of structural contexts and contextural rules;
this is what is done is G. Restall’s textbook [64], and in M. Moortgat’s handbook sur-
vey [53], which is oriented towards linguistic applications. But what we are looking
for is a theory of theories of contexts, a general, abstract factory of logics. The present
approaches to the problem of a general, systematic definition of contexts and their as-
sociated logics have followed the lead of N. Belnap’s Display Logic, originating in [5],



and perfected by several authors [31, 72]; the state of the art is probably in [23, 24].
Before we attempt a comparison with this work, let us state that we think it is profitable
to view the construction of a logical calculus as a two-step process:

– The definition of a theory of contexts
�

– The extraction of a choice of connectors which is representative of
�

.

We emphasize that once the connectors are chosen, then their introduction rules in the
sequent calculus should be determined by

�
.

With this in mind, we claim that the main conceptual (as opposed to technical) nov-
elty in our approach is the emphasis on structure as opposed to presentation of struc-
ture. We think this distinction is very important and has never been made explicit in
previous accounts of display logic: display calculi abound with structural connectives,
and rewriting rules between them, i.e., structural rules. They are present for technical
reasons, namely, to make possible the “pointing out” (or display, or focusing) of a cho-
sen formula of the context. We claim that the structural rules which can be “undone”,
or reversed, do not change the structure, and so should not belong to the logic proper.
They are simply artifacts of the presentation, necessary for calculations, but they tend to
hide the real objects of interest. In our approach the objects of interest are equivalence
classes of context presentations, and the only structural rules that are left are entropies,
those rules which entail loss of information.

In this paper

– We use abstract algebra to give a completely general description of what it means
to be a theory of linear contexts. Thus these theories become algebraic structures,
which we call structads, very close in nature to groups and rings, and to be studied
by similar means. In particular, structural connectors should be seen as their gen-
erators. Structads have well-known ancestors, in logic (Lambek’s multi- and poly-
categories) as well as in topology (May’s operads) and in combinatorics (Joyal’s
species). Thus their study should benefit from an already extant corpus of litera-
ture. Moreover, once an algebraic structure has been clearly identified, examples of
it pop up in unexpected places, as some of our examples should illustrate: there are
a lot of structads in nature, each one with associated logical calculi.

– The linearity constraint allows the definition of a special kind of syntactical object,
a term with an additional variable for its output. Thus outputs/values do not differ in
nature from inputs/arguments; if we want we can completely erase that difference,
as is done in the standard, one-sided-sequent version of linear logic. But we can also
keep that distinction by the mean of polarities, and moreover get as many outputs
as we want for a term, for two-sided “classical-like” systems.

– This algebraic-axiomatic approach extends to the second step of the process, in
the sense that the idea of a “choice of connectors” is given an algebraic formula-
tion. In our approach the difference between a structural connective and a logical
connective is that the latter contains the additional information of what its output
variable (conclusion) is. Once this choice is made, the extraction of a sequent cal-
culus, which benefits from a cut-elimination theorem, is completely automatic. A
given theory of contexts will determine to some degree the arities of the connectors
associated to it, but there is no upper or lower bound on arities when ranging over



all possible theories of contexts. There is no essential distinction between binary
or unary (modal) or ternary or � -ary connectors. They are all treated uniformly as
far as their introduction rules and behavior with respect to cut-elimination is con-
cerned.

Our work is very much in the tradition of linear logic for other reasons than the
ones we have already mentioned. First the fact that we use Gentzen’s sequent calculus
for formalizing all logical systems presented here does not make us forget that a se-
quent proof is only a presentation of a proof object, — a proof net — which naturally
quotients many sequent proofs which differ only because of the tyranny of ordinary syn-
tax. As a matter of fact this work originated in an attempt to give a general conceptual
umbrella that would cover the author’s and Ph. de Groote’s classical non-associative
calculus [17], Abrusci and Ruet’s two-tensor classical system [1, 68] and Q. Puite and
R. Moot’s two-sided multimodal systems [62], and the systems presented in Puite’s the-
sis [61]. All these logics benefit from a theory of proof nets, with correctness criterion.
We claim that the work presented here extends to a general theory of proof nets, with
a generic correctness criterion; but this claim will not be substantiated here. Another
aspect of linear logic which is very important to our work is the distinction between
multiplicatives and additives: what we present is entirely multiplicative; the rules for
traditional additives are automatic in our setting, since they correspond to the ordinary
universal properties of product and coproduct; the generalized additives introduced in
[22] are to be considered in a sequel.

The recent, independent work of J.-M. Andreoli [4] also presents a theory of con-
texts for linear logic, with a system of connectives (that does not have an ordinary
syntactical presentation) that includes the generalized additives and a system of expo-
nentials. It is also work which needs to be compared with ours, and for which this task
is not trivial, given the differences of viewpoints. At this point we can only make the
observation that we are certain that there is a close relationship between a set of vari-
eties as axiomatized in [4] and our own concept of a structad over

�
; the latter being

probably more general than the former.

Now that we have said what this paper is about, we would like to say something on
what it is not about. As we have said above, our theory is general but strictly linear-
multiplicative. Thus, for instance, the deduction rules given in the books [53, 64] that
happen to be non linear are automatically beyond the scope of this article. For the same
reasons, the work on bunched logics [58, 63], which is certainly about structuring con-
texts, but uses non-linear rules in an essential way and cannot be thought of as a partic-
ular case of the present paper.

We can summarize our approach by the means of a (slightly reductive) slogan: the
logic of structads is algebra freely doubled up on itself. That is, the correspondence
between an algebraic system (a structad) and the logical system which is extracted from
it amounts to a “doubling up” of every chosen algebraic operation (more precisely:
operation – choice of conclusion pair) into two connectives, a positive (tensor-like)
and a negative (par-like) one. This doubling up can also be seen as the standard left
introduction/right introduction duality when our systems happen to be two-sided. When
we say that this doubling up operation is donne freely we mean that the tensor and the



par world do not interact at all, from the point of view of ordinary algebra: no equation
is added.

There is one example in the purely multiplicative realm for which our approach is
bound not to apply, and it is Retoré’s pomset logic [65]. Here the self-duality of the non-
commutative connector � shows that here this “doubling up” is not done freely, since
this connector obviously incorporates both tensor-nature and par-nature. But then our
approach takes the sequent calculus as the reference for the syntax of deductive systems.
It has been known for a decade that finding a sequent calculus for pomset logic (which
benefits from a theory of proof nets, and thus does have some kind of syntax associated
to it) is a very difficult problem, making people wonder whether it had a solution. This
very problem has led to the invention of a new approach for defining deductive sytems
called the calculus of structures [25, 26, 9]. It has been shown [70] that the one system
in the calculus of structures which is conjectured to be equivalent to pomset logic [25]
provably cannot be formalized by the means of a sequent calculus. Such a situation
makes it natural to consider the extension of the theory of structads so as to make it
applicable to the calculus of structures, a problem on which we are working.

This paper is about the algebraic nature of syntactic calculi, more precisely sequent
calculi. The standard approach to the algebra of linear logic uses the theory of monoidal
categories, but we have taken pains to make the present work completely independent
from this kind of categorical algebra, much more oriented towards semantcs, and post-
poned these questions to a subsequent paper [34] (which has already appeared, due to
the vagaries of the editorial process). There is a class of multiplicative linear calculi
that are founded on a specific algebraic property of monoidal categories, namely the
law of linear distributivity (formerly weak distributivity) [13, 8, 11, 12]. Linear distribu-
tivity can be summarized as a relation between a tensor and its associated par, but this
relation does not contradict our concept of “freely doubling up” since it automatically
holds in any categorical model of a structad-derived system where we can test this law.
The extent to which structads cover linearly distributive logics is as follows. It is easy
to show (for a hint see [34]) that commutative multiplicative linear distributive logic
can be defined via a structad. In the non-commutative cases, the fact that the cut rule in
these logics splits into four cases mean that an ordinary structad cannot be used. This
can be remedied in two ways, by either expanding the theory of contexts (and thus the
logic) to one that uses a single ordinary cut (and thus an ordinary structad), or general-
izing the notion of structad so that structadic composition is restricted, in the very same
way that a category can be considered to be a monoid with restricted composition. This
was already mentioned in [34], perhaps too briefly.

There are two reasons why this paper is rather long:

– Since we introduce a few rather abstract concepts we give many examples to help
the reader. Some of these examples are familiar and some of them are new cases
that are suggested by the algebraic framework, illustrating its power.

– Although the whole of the paper is in the spirit of abstract algebra, we have taken
pains to make it self-contained. In particular we assume no familiarity with category
theory; the reader should be aware that some of the proofs in Section 4 are actually
special cases of much more general results.



2 Linear order-enriched algebraic theories

Before we begin let us recall some very standard definitions:
A preordered set ��������� is a set � equipped with a binary relation which is reflexive

and transitive. An ordered set, or poset is a preorder satisfying Anti-symmetry: 	
��
��� ��	���	�� � . A monotone map ��������� between (pre)orders is a function
that preserves the (pre)order structure: 	�� � � ����	�� �!��� � � for all 	"� �$# � .
A monotone map � is an embedding if it is injective and in addition reflects the order:
����	%�&�'��� � �(�)	�� � . An isomorphism of posets is an embedding � which is bijective;
this condition is equivalent to saying that it has an inverse, in other words that there is
a (necessarily unique) ��*,+-�.�/�0� with ���1�"*2+-� � �.��� � �3�"*,+4�5����	%�.�6�!	 for all
	 # �7� �8# � . The opposite ��9;: of a poset �<�7����� is the poset �<�7��=�� with 	>= �
iff � �?	 . A poset is said to be discrete if 	 � � �@	�� � ; a set determines a unique
discrete poset and vice-versa, which allows us to imagine that the universe (or class)
of sets is embedded in the universe of posets. Given a preorder �<�7����� , the relation
	7� � and � �'	 is an equivalence relation A . When we take the quotient �CBDA by that
equivalence relation (the set of equivalence classes), we get a poset ���CB-AE�F��� given byG �IH iff �KJ,LDMON�P Q-MOR(�S	T� � , and the definition obtained by replacing the universal
quantifier by an existential one is equivalent.

Definition 1. A polarity structure is a pair ��UV�F�XW��;YZ� , where U is a set and [�\�][OY
an involution on U , i.e, a function such that �X[^Y(��Y_�`[ . Given two polarity structures
Ua��U�b a map, or morphism is a function cd�.U>�eU�b which respects the involution, i.e.
such that cE�f[ Y �(�?cE�f[D� Y for all [ # U .

The two most important cases in this paper are
� �hgji-k , with (obviously) i-Y8��i ,

which we call the Basic One-sided case, and l_�`gDmn�3o^k , with mOY>�$o , which we call
the Basic Two-sided case, where m means “left side of a sequent” and o “right side”.

But we will see other examples. The elements of a polarity structure act as sorts, or
types, but in such a way that we can make the distinction, if we want, of a sort used in
an input and a sort used in an output.

We will have variables for any sort/polarity, and declare it by superscripts:
	%p^� �Sq ��rtsO��	u� � � . . . to simplify life, we start with a set of unsorted variablesv �)gj	u� � �;wx�.	 + �.	zy({F{�{|k , and for every sort [ that we happen to come across, there
will be a sorted copy gF	,}4� � }F�.wt}j��	 }+ �.	 }y {F{�{~k of every variable with that sort. This way
we can define an algebraic context (as opposed to structural) in U to be a pair �1�a�;���O��� ,
where ��� v is a finite set of variables, and ���O�<�;����U a function that gives their
polarities. Another way of looking at a context is as a finite subset �`� v�� U which
is the graph of a partial function. We denote the set of all algebraic contexts in U by�a��� ��U�� .

Given a map cd�.U��0U�b of polarity structures it determines a map
�a�.� ��U��6��a��� ��U�b|� between all respective contexts, denoted by ��\��c
� and defined by

c�gj	 }+ �F{�{�{�	 }f�� k��
gF	%� }��+ ��{�{F{��.	 � }X�� ka{
Since we are at the meeting point of algebra and proof theory, our notation delib-

erately draws from both traditions; for example, we will write �V�;� or �>�_� for the



result of taking the disjoing union (sum) of two contexts, or �a�.	 or �'�_gF	uk or � � 	
for the result of adding a new variable to a context, and �8W�gj	2k or �8W 	 for the result
of removing a variable from a context (in this last case it will always be assumed that
	 # � to start with).

Let polarity structure U be given, and let
�

be a signature, i.e. a set of function sym-
bols, each with a given sort; if � # � then its sort is described by �"}��D��	 } �+ ��	 }��y �F{�{�{F��	,}f�� � ,
for [�� # U . We say a signature over U is disjoint if whenever a polarity [ appears in a
function symbol (e.g. [ is one of the [��X�	� ��
�� � above) then it is guaranteed that
[-Y does not appear anywhere in any function symbol of the signature. This seems to
make the presence of [OY useless, but we will show this is not the case at all. We say a
signature is ultrabasic if its set of polarities is lT��gDmn�3oSk and every symbol is sorted
by �,p^��	�p+ �F{�{F{���	�p� � . Ultrabasic theories are obviously disjoint.

Terms are constructed the usual way, taking account that sorts/polarities must be
respected, but we are interested only in linear terms: a variable has the right to appear
only once. We denote by ��
��	��� � � the set of (linear!) terms we have obtained.

In general, instead of equality judgments, we have order judgements, i.e. expres-
sions of the form

	 + ��{F{�{��.	 ����� ��� (1)

where gj	 } �+ ��{F{�{F��	 }X�� k
# �a�.� ��U�� , the terms � ��� have the same polarity, and 	 + ��{�{F{ ��	 �

are exactly the variables that appear in both � ��� . The judgement 	 + �F{�{�{F��	 � ��� ��� is
to be considered as an abbreviation for the pair of judgements

	 + ��{F{�{ �.	 ����� ���e	 + �F{�{F{ ��	 ��� � � � {
This way we are doing a slight generalization of linear universal algebra, where the
terms are not quotiented under an equivalence (congruence) relation, but under a pre-
order. The reason for this is the possible presence of entropy rules (also called structural
rewriting rules): the judgement (1) above means that we are allowed the inference rule
that replaces the structural context structure � (or more pedantically the one determined
by the equivalence class of term � ) by the structure � .

The rules of inference are just as expected: Reflexivity

� � �V���
for any linear � in context � , Transitivity

� ��� � � � ��� � �
� ��� ���

and Congruence
�V��	 ��� � � b�� � � ���
�V�;� ���"! 	$#%�'&u� � b ! 	$#��Xb(& {

We denote by )*�,+.-x� � � the set of all order judgements between terms of �/
0�1��� � � .



Definition 2. A linear order-enriched theory
�

is given by a triple
� �
�<Ua� � �1���.�E� ,

where U is a set of sorts/polarities,
�

is a signature on U and ��� ��� )*�,+.-z� � � a set
of of order judgments (called the theorems of

�
) which is closed under the deduction

rules. Naturally, often in practice ���.� is described by a subset � � � ���.� of axioms,
that generate ��� � . We say

�
is disjoint (resp. ultrabasic) if its signature is disjoint

(ultrabasic). If � is a set of variables, then ���� �<�V� [D� ���	� is the pre-ordered set whose
elements are all the linear terms of polarity [ whose variables are exactly in � , with
the preorder structure determined by the order judgements in ���.� . The relation ��
 �
denotes the conjunction of � � � ����� � . We take � � �<�V� [D� �F�
� to be the quotient of

�� �<�V� [D� under the usual preorder-to-order equivalence 
 .

The first examples will be ultrabasic theories:

Example 1. Let
�������

have a single binary symbol ��W����2�XW�� and the associativity axiom

	u� � �.w � ��	�� � ��� w�� 	�� � � � wS� {
This is the theory of semigroups, and it is the theory of contexts for the standard (asso-
ciative) Lambek calculus � [36].

Example 2. Let
���
9���� have a single binary symbol ��W����;��W�� and the associativity and

commutativity axioms:

	"� � �.w � �<	 � � �!��w �_	"�O� � �Fwn� {
	"� � � 	"� � � � � 	

Example 3. Let
��#%$'&)(

[16] have the symbols �n�%� , with the same equations as above,
and the additional entropy law

	"� � � 	 � � � 	�� � {
Example 4. Let

��*
*�+ have the same symbols as above, but in addition the axioms [15]

: 	"� � �.w � ��	�� � �,�jwd� 	�� � � �jwn�
	"� � �.w � 	"�O� � � wS�V���<	"� � ��� w
	"� � �.wz�.- � ��	�� � �,�n�<w/��- � ���<	"��wS��� � � �0- ��{

Example 5. To all the theories above we can add a constant 1 , which is a unit for all
the operations, and thus get

���2�3�54)627%8 9 � ���
9���� 4)627%8 9 . . . all these theories share the

property that every closed term is provably equal to 1 . Naturally this corresponds to the
idea that the only contextual structure on the one-formula sequent asserts the truth or
that formula. From the point of view of algebra, nothing prevents having more classes
of closed terms. This should not be dismissed first hand as uninteresting from the point
of view of logic; the existence of different orders of truth may give some syntactic
embodiement to the idea of possible worlds.

Example 6. Let
��:
9
(

have three binary operations ;%�<;tb1�=� such that � obeys associativ-
ity and in addition the unique law 	u� � �.	 � �<	>; � �?;tbjw � 	@� � ��w . This example, along
with similar ones can be found in [56] where the associated logics are used to model
syntactical phenomena like median extraction.



The table on p. 26 in [64] gives a list of possible axioms that can be put on a theory built
with a single binary operation (denoted W���W ). In [53] there is a family of binary sym-
bols, denoted ��W
��W�� � , where the indices are used to distinguish between the different
symbols, and several examples of interactions between two (different or equal) symbols
are given; in addition unary operators are presented for modalities; many papers (here
is only a sampling) [55, 28, 54] give examples of linguistic applications of these tech-
niques. We emphasize that the present paper only deals with the cases in these works
where the axioms are linear.

Another example of a systematic treatment of axioms between several binary and
unary function symbols is in [18].

Later in this paper we will give a natural example of a ternary symbol.

We have to think of a term � � � as a structure that has been given to the set � .
In some of the examples above, the structure in question can be given a more familiar
aspect. For

� �2�3�
, it should be obvious that a term � as above is simply a word on the

alphabet � which is nonrepeating (no letter of � appears twice), and such that every
variable of � appears in � ; in other words the structure on � is a total ordering of the
variables. For

��*
*�+ the structure in question is also an ordering, but a less constrained

one known as a series-parallel order [15, 52, 71]. For
�>�
9���� , the structure in question

is. . . no structure at all, or more correctly just that of a set of variables.
As we have said a judgement of the form � ��� � � means that the replacement of

� by � is a valid rule in any logic derived from
�

. Sometimes this is called structural
rewriting, sometimes entropy, but the use of (pre)-orders comes from the fact that there
is no point in knowing more about how the rewriting was done, i.e., the actual sequence
of rewriting steps; they have nothing to do with the nature of proofs in ordinary (i.e.,
one-dimensional) logic. This is an insight that the author got from conversations with
R. Moot and Q. Puite.

An algebraically-minded person will contend that the family of posets

� � �<�V� [D� �F� ��� P }
where � ranges over the set of all possible U -sorted contexts and [ all sorts in U , is
the order-sorted theory

�
, in other words, it is the mathematical object we should

focus our attention on. The idea of treating first-order theories as algebraic objects, not
very different from groups and fields, dates from Lawvere’s seminal thesis [40], which
inaugurated, among other things, of the field of categorical model theory [30].

The structure we are dealing with does not have a single carrier (underlying) set,
but a family of these, namely the � � �<�V� [D� � � P } . Thus the algebra associated to a linear
order-enriched theory is a multi-sorted algebra. The structure that these carrier sets are
naturally equipped with consists of:

– the order structure � � �<�V� [D� ���
� for every �a��[ .
– The operations associated with renaming/substitution of variables: for every polarity-

respecting bijection ���;�T� � between contexts, we have an action ��� � �1�a��[-�V�
� �1� ��[-� obtained by renaming

�Z� ���a� � ! 	 + #��Z��	 + � ��{�{F{��.	 � #��Z�<	 � � & #
� �1� ��[-��{



– The operations associated with substitution of terms: for every � # � �1�a��[-� ��� #
� �1� ���n� and 	,} # � we can construct the composite �to L � # � �5�>W6gF	2k�� �V���S� ,
by the means of substitution: �xo L � � � ! 	 # � & , provided the new context is a disjoint
union; if it is not, just rename to satisfaction.

These operations, and some associated constants naturally satisfy some equations
and relations, that we will fully describe in section 4 (some readers will have already
guessed that we are dealing with poset-enriched multicategories, the kind with permuta-
tions). The most important fact about the algebraic approach to model-theoretical logic
is that it allows the easy description of the interpretation of a theory into another as a
structure-preserving homomorphism between the associated algebraic structures. But
first:

Definition 3. Let
� �h��UV� � �	��� �d� and

� bz� �<U"b<� � b1�	���.� b � be linear order-enriched
theories. An interpretation (or map) cd� � � � b is given by:

– a map of polarity structures cd��U��)U�b . Given a context �?�>	 } �+ �.	 } �y ��{F{�{ �.	�}f�� we
write c
� for the context c
�?�>	�� } �+ ��	z� } �y �F{�{F{ ��	 � }f�� ,

– for every function symbol � # � , given a choice � � ��} of context , we have a term
cu� with c
� � �1cu�,� � } in

� b . The exact choice of the variables in � is obviously
not important, since given any two contexts 	 + �.	 y {F{�{ �.	 � � ���<	 + ��{�{F{��.	 � � and� + � � y {F{�{�� � � � ��� � + ��{�{F{�� � � � there is a unique polarity-respecting bijection 	 ���� � that will map one atomic term to the other. Once we have this, we can define c �
for any term � � � in any context of

�
. This is done in the usual fashion: structural

induction on � .
– Finally c is required to obey the rule that for any theorem � � � ��� of

�
we have

to have that c
� � c � � c � is a theorem of
� b .

This last stipulation ensures that for every �V� [ , we get preorder maps
�c � P � � �� �1�a��[-�a�

�� b �1c
�a�;c�[-� which collapse to monotone functions c � P } �
� �1�a��[-�a� � b �1c
�a�;c�[-� . So

an interpretation of theories defines a family of maps between the carrier sets. We will
see that this family of maps respects the algebraic structure associated with theories.

In this first list of examples the map cd��U��)UFb is always identity.

Example 7. There is an obvious interpretation H � � �2�3� � � �
9 ��� which is identity on

polarities, defined by stating HC�<	u� � � 	
� � �(�>	"� � � 		� � . The action on a general term
is: go from the list (non-repeating word) of variables to the associated set it determines.

Example 8. There is also an “endomap” 	�� � �2�3� � � �2�3�
defined by

	 � 	u� � � 	�� � � � 	"� � � � �V	u{
So what it does in general is turn a word of variables into its reverse.

Example 9. In addition to the obvious embeddings
� ����� � ��#%$'&)(

and
� �
9 ��� �� #%$'&�(

, and the “inclusion of order structures”
� #%$'&)( � � *

* + there is an interpretation
��
)$'&)( � � �

9 ��� that collapses the two operations into ��W��?���XW�� and the order relation
into the identity.



Example 10. Let
��� (3$<$�� 8 7

have a unique binary symbol ; and no axioms, while
���
* �

is the associative theory
���2�3�

augmented with one unary operator
�

and no additional
axiom. There is a map

��� (3$<$�� 8 7 � �	�
*
:

that sends 	u� � � 	 ; � to 	u� � � � �<	>� � � . The
point of this map is that it is an embedding (every

� � (3$<$�� 8 7 �<�V�3mO�a� � �
*
: �<�V�3m^� is an

injective function), thus allowing [32] a conservative translation between the associated
logics. In that paper more such results can be found. Notice that the property of being an
embedding is preserved if we add the stipulation that

�
is idempotent: 	 � � � � ��	%�.�(�� ��	�� .

3 Reversibility

We come to the main technical tool of this paper, a syntax for which terms have an
additional variable at their output. An ordinary term can always be seen as a tree, whose
nodes are decorated with function symbols. Such a tree has a predetermined root: the
“output” of the outermost function symbol, in other words the only end which is not
decorated by a variable. What we are interested in is trees all whose roots are decorated
with a variable. It would be possible to present these objects using the language of
graphs and trees, but it is more practical to use the standard technology of terms as a
basis and construct our trees by adding a new constructor.

Let ��UV�F�XW��.YZ� be a polarity structure.

Definition 4. A tree signature over U is a triple ��
C�
�	�D�5�.���O��� , which we tend to abbre-
viate by 
 , where

– 
 is a set of node symbols
– �	�D�5��
����

4
, is a function, the valence,

– ���O� is a function that to � # 
 and � # g �x�%1^��{�{F{ ���	�O�1���4�aW 1Dk assigns a polarity
���O�5���^� �u� # U .

So every node symbol � of valence �E� 1 should be seen
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as an atom with ��� 1 wires (or ports) attached to it, numbered from � to � . Each
port has its polarity [ � �����O�<���O� �u� . At this point the “orientation tab” +, // has no
other function than to distinguish the zero port; when we know where that port is our
graphical convention is that the others are numbered in a counterclockwise fashion. So
our intention is to connect tree symbols via their ports, while respecting the polarity
stipulations:
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a consequence of this is that the following

} � and � } �

will always mean exactly the same thing. In other words, the involution operation on
polarities corresponds to inverting the direction you a looking at a wire; when [ �$[nY
this direction is unimportant.

Given a tree signature 
 as above its derived ordinary signature )*�,+��������2� 
�� is
obtained by taking, for every symbol � # 
 of valence �6� 1 , a set of ��� 1 ordi-
nary function symbols of arity � , which we denote �5� � � �	� � � � , with the following sort
assignments:

� � } �� ��	 } �+ �.	 } �y ��{F{�{��.	�}X�� � �;�2+S}
�
� �<	 } �y ��{F{�{��.	�}X�� ��	 }��� � �^� y }

�
� ��	 }�
� �F{�{F{ ��	,}f�� �.	 } �� ��	 } �+ � ��{�{F{

{F{�{F�;� � } �� �<	 } �� ��	 }��+ ��{�{F{ ��	 }f��� �� *,+ ��{
so we see that the ordinary signature is obtained by expanding the tree signature with
the additional information “right now I am looking down port � ”.
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and that the way ordinary terms are sorted is affected by this point of view: the polarities
in the ordinary syntax are the ones that are on the viewer’s side of the wires, so the
“output” gets inverted but not the “inputs”.

But there is more to it. Let us add a new binary symbol 
�W
��W�� , and define a re-
versible (or one-sided)1 term judgement with context � to be an expression of the form

� ��� 
 � + ���Xy��
1 what is one sided is is not the judgement but the term.



where � }+ ��� }
�
y are terms in )*�,+��������2� 
 � that have opposite polarity, and such that there

is a partition ���>� + � � y into two disjoint sets of variables, with

� + � � +�2y � �Xy
term judgments in ��
��	���')*�1+�� � � �2��
���� .

Reversible terms are actually equivalence classes of such expressions, since they
are quotiented under the equivalence relation � , defined by the (reflexive symmetric,
transitive closure) of the rule of Adjunction:

� � � � ���t�X{F{�{F� � � ��{F{�{ � ����� � � � �;� � ��{�{�{F� � � �F{�{F{ ��� (2)

where something like � � ��{�{F{�� � � �F{�{�{ � means that the term � appears at the � -th place in
the atomic term � � �X{F{�{ � , along with rule Perm:

� � � 
 � + �	� y � � 
 � y ��� + �,{
This last rule will never be mentioned, being so innocuous. We write � � �
	 for a
reversible term, when there is no need to go into more details.
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 � �;� � �'� �%� � � 
5� � �'�%� � � ��� �

We see that a reversible term � � ��	 , i.e. a � -class, is a tree, whose nodes are labeled
with node symbols, and where the polarity discipline for connecting nodes is followed,
as described above; in addition every port of a node which is not connected to another
node is labeled with a single variable in � . Every representative of the � -class of 	 , i.e,
every 
 � � � � with � � � 	 � 
 � � � � corresponds to choosing a wire of 	 and “pinching” it,
turning the tree into a pair of terms.

Remark 1. The name Adjunction comes from the formal, syntactical aspect, since the
rule is just like an adjunction between matrices or operators. But it is actually a more
primitive concept than an adjunction (called residuation by many logicians) in category
theory, in the sense that the latter adjunctions involve two distinct operators. These
“real” adjunctions will appear once we define logical calculi, and their existence will
be due to the formal Adjunction defined above. But at the present moment we are only
dealing with a single reversible operator and this formal adjunction is simply a relation
between two ordinary symbols that represent that very same reversible operator.



Proposition 1 (Generalized Adjunction). Let � � � 
 � � � � � 
<	u���Xb � be obtained by
a sequence of Adjunctions. Then given any ordinary terms � � � ��� � � of the right
polarities, we have

� �����.�_W8gj	u� � k ��� 
 � ! 	 # � &5� � � � 
 � ��� b ! � # � & ��{
The result is obtained by applying the “same” sequences of Adjunctions on the larger
terms obtained by substituting � and � ; more fastidiously, if � � � 	 + � 	 y � {F{�{ � 	��
is a sequence of Adjunctions (or Perms) such that 
 � � � �(� 	 + and 
<	u����b �(� 	�� then the
sequence

� �����.�?W8gj	u� � k � � 	 + ! 	$# � � � # � & � 	 y ! 	 # � � � # � & � �%� � � 	 � ! 	$# � � � # � &
will give the desired result.

Definition 5. Let 
 � � ��� � � � 
 � + ��� + � � �%� �	
 �F� �	� � � be a sequence of � Adjunctions. To
each pair 
 � � ��� � � � 
 � � 4 + �	� � 4 + � assign the letter � if � � is a subterm of � � 4 + (in other
words, if it applied in the order given in Equation (2), and the letter � if � � is a subterm
of � � 4 + , i.e. if it is applied in the reverse order. Then the sequence is said to be in normal
form if every application is an � -Adjunction, or every application if an � -Adjunction, or
if �7� � .
So a sequence is in normal form if it always the same side that gets larger.

Proposition 2. Every pair � � � 
 � �	� � � 
 � b1���Xb � can be deduced by a normal sequence
of Adjunctions.

Proof. If we have a two-adjunction sequence 
 � � ��� � � � 
 � + ��� + � � 
 � y ��� y � where there
is a change of direction, for example where the first Adjunction is � and the second one
� then necessarily it looks like (the order of writing the subterms has nothing to do with
the numbers associated to them)


1� � �X{�{F{�� � � ��{F{�{�� � � {F{�{ � �	� �
� 
 � �3� � �X{�{F{�� � � ��{F{�{ � � � ��{F{�{ � �

� 
1���t��{�{�{F� � � �F{�{F{�� � � {�{F{ � � � ���
and two things may happen:

– 
 ��� , so � � � in which case it can be replaced by the zero-Adjunction sequence

1� � �X{F{�{�� � � ��{F{�{ � �	� � .

– 
	��
� in which case it can be replaced by the single � -Adjunction

1� � �X{F{�{�� � � ��{�{F{ � ��� �

� 
 � �3� � �X{F{�{�� � � ��{F{�{ � �
In the same way, if a two-adjunction sequence is an � followed by a � it can be replaced
either by a single � -adjunction or by an empty sequence. So we can repeat these reduc-
tion steps as long as they are possible, and we know that if the result is not empty, then
the Adjunctions will all have the same type, which will coincide with the type of the
first Adjunction of the original sequence.

The following result is obvious from a geometrical point of view. . . but nothing less
than tricky if we demand a proof by induction.



Theorem 1. Let � � � 	 be a reversible term. Then for any 	 # � there is a unique
ordinary term �>W gF	uk � 	�� L�� with � � � 
 	�� L�� ��	 � � 	 .
Proof. We proceed by induction on the number of atoms of 	 � 
 � + ���Xy�� , which is the
sum of the number of atoms of � + ���Xy (in other words, 
XW
��W�� is not considered to be an
atom).

So choose � and assume that the result has been proved for every � � � , and let
� � � 	 be a reversible term with � symbols, and 	 # � . Notice that this precludes the
possibility that � be empty, i.e., that 	 � 
��-���Fb�� for two closed terms �-����b . Then there
are two possibilities: One of them is that �T� 1 , in which case we can rename the
context � as ��� gj	 � ��	 + �F{�{�{F��	 � k and there is a node symbol � # 
 such that

	 � �F{�{�{���	 � � � 	 � � � 
1� � �.	 � � � 
5� + �.	 + � � � �%� � 
1� � ��	 � �
and given that 	 �I	 � for some 
 we take 	 � L�� to be 	 � ��{F{�{ �.	 � *,+ ��	 �

4
+ ��{F{�{��.	 ��� �

� .
Uniqueness is quite trivial.

The other possibility is that �
	 1 , so 	 has at least two symbols. We can ensure
that � � � 	 � 
 � + �	� y � where both � + ��� y have more than one symbol, i.e. neither is a
variable. If it is not the case, just apply Adjunction once and transfer one symbol to the
side which is a variable. So we get �h�
� + � � y with � � � � � �F� 
 � 1O���O� , with both � �
having fewer than � symbols. Without loss of generality we can assume that 	 # � y .
Defining the term 
 by � y � � � � 
 � ��� y � we can apply the induction hypothesis and get
ordinary terms 
 � L�� ��
 � Q�� with

� y � � � � 
�
 � L�� �.	 � � 
 � ��� y � � 
 � � � � Q�� ��{
By induction hypothesis we have �"y � �Xy7��
 � Q�� , and then, by applying Generalized
Adjunction we get

� + �;� y � � 
�
 � L�� ! � #%� + & ��	 � � 
 � + ��
 � Q�� � � 
 � + ��� y �
so the desired 	�� L�� is obtained by taking 	�� L�� ��
 � L�� ! � #%� + & . The uniqueness is obtained by
using the normal form theorem: if 
 � � L�� �.	 � � 
 �Xb5��	 � then the sequence of Adjunctions
that defines this equation can be normalized, and we can only end with a no-Adjunction
sequence, i.e. syntactical identity between � � L�� ���Xb .

Reversible terms can be composed/substituted. If � �6	u} ��� 	 and �T��wS} � ��� 
 are
reversible terms, we define

�'� � � � 	 L � ��

as

� �8� ��� 
 	 � L�� ��
 � � � �,{
Obviously we have 	 L � ��
 ��
��j� L 	 , and for � # �'�8�

� 	 L � ��
4� � Q�� �
� 
 � Q�� ! w # 	�� L�� & if � # �
	�� Q�� ! 	 #�
 � � � & if � # � .

(3)

Using this fact we immediately get the associativity of reversible substitution, which
results from the associativity of ordinary substitution:



Proposition 3. Let �n��
O� 	 be reversible terms such that ����� Q 
 and 
 �F� L 	 are defined
and � ��_w . Then we have

� ����� Q 
4� �j� L 	 � ����� Q ��
��j� L 	 ��{
Remark 2. So another way to define a reversible term � � � 	 with an � -variable context
���I	 � �.	 + ��{�{F{��.	 � *2+ would be as a set g�� � ��{F{�{F��� � *2+ k of terms in the ordinary sig-
nature, with �?W_gF	 � k � � � , these � � being obtained as � � � 	�� L�� � . The Adjunction rule
can then be replaced by the rule given by Equation 3. This approach seems at first to be
slightly less flexible, since it does not allow valence zero, i.e. the possibility of � being
empty. But notice that these “more-than-constants” (terms of arity –1) do not interact
with anything once they have been formed; they are inside a black hole. Therefore they
are not useful for anything, they just are a byproduct of the formalism.

The transformation of an atom with � ports into � function symbols for the sake of
notation is a systematization of the procedure used for interaction nets [33, 43], where
a single atom may have more than one function symbol associated to it, each one ccor-
responding to an “interesting” port.

In addition, the idea of having a variable for the “output port” of a term as well as the
input ports is also present in [14], where term languages for a class of *-automomous
categories is presented. There too, substitution (or rather Cut) is presented as a binding
operator, although the same variable is used on both sides of the cut, i.e. what we write
as � L � � � is written there as ��� L � . Thus, this notation is quite close to ours, and it also
has an ancestor in the “binding” notation for interaction nets [33, 43]. The equivalent of
our operator 
�W
��W�� is simply written as a comma (i.e., W
��W ) in [17]. In [8] a notation
very close to our 
XW
�FW 
 is used for describing proof net graphs.

The idea of treating the output of a term on the same footing as the inputs is also
implicit in another body of work, namely the relational frame semantics inaugurated
(to the best of our knowledge) in [66, 67] and developed by many researchers (for a
textbook introduction see [64]). In this kind of semantics, an � -ary connector is modeled
by an � � 1 -ary relation on a set (more generally by an up-closed subset of a product of

�E� 1 posets).
We now can extend linear order-enriched theories to reversible terms. A reversible

order judgement will be an expression � � 
d� 	 , where 
^� 	 are reversible terms. The
rules of inference are easily modified for reversibility: Reflexivity and Transitivity are:

� � 	 � 	
� � � � 
 � � 
 � 	

� � � � 	
and Congruence can be stated as

� � w � � 
 + � 
 y � � 	 � � 	 + � 	 y
���8� ��� 
 + �j� L 	 + � 
jy �j� L 	 yZ{

Remark 3. It should be clear that if we forbid the premises of a Congruence application
from being of the form 	"� � � � 
<	u� � �&� 
�	"� � � , we get a system which is as powerful, and
on which we can do induction (with this restriction it is impossible to have an infinite
upwards proof search branch).



Definition 6. A reversible (linear, order-enriched) theory
�

is a triple
��Ua� 
C� � 
�� ��� �d� , where ��UV��
�� is a tree signature, and

� 
�� ��� � , the set of reversible
theorems, is a set of reversible term judgements closed under the inference rules above.

As usual, all we need to present a reversible theory is a set of reversible axioms that
generate the theorems. Notice that because of Remark 2 a reversible theory is almost a
particular kind of ordinary linear order-enriched theory, with some constraints added to
the shape of the set of symbols, and with the requirement that the preorder on terms �
defined by the theorems has to contain a particular reflexive, symmetric and transitive
relation, given by

� ����� � iff � � � 
 � ��	 � � 
 � � � � �
which is defined from the signature and nothing else. The only reason that a reversible
theory is not exactly a kind of linear order-enriched theory is that the relation � is
defined between terms that are not necessarily of the same sort.

Given a reversible theory
� �!�<Ua� 
 � � 
�� ���.�E� and a context � we denote by

� �� 
1� � �=� � the set of reversible terms in context � , with the preorder 
 � 	 when
� ��� 

� 	 , and by � � 
1� � ����� the poset obtained by quotienting that preorder.

Definition 7. Let
� � ��Ua� � �	���.�E� be an ordinary linear order-enriched theory. Its

universal reversible extension 
 � � is the reversible theory �<Ua��
C� � 
�� ���.�E� obtained
by:

– For every symbol �u} �D�<	 } �+ �.	 } �y ��{�{F{��.	�}f�� �
# � of arity � , we have one node symbol

� # 
 of valence ��� 1 , with polarity ���^�<���^��
X��� [ � when 1>� 
6� � , and
���O�5���^�	�^� �`[ Y� . Thus, after taking the derived ordinary signature )*�,+��������2� 
 � of
that tree signature, we get that every � in the original

�
of arity � has become � � 1

symbols � � } � �;� +S} �� �F{�{�{��;� � }
�
� of the same arity. Since � � is sorted exactly as � ,

every
�

-term � has a corresponding � � in the derived ordinary signature, obtained
by replacing every symbol r # � of � by its corresponding r � in )*�,+��������2� 
 � .

– For every theorem � � � � � � of
�

we have the axiom �V��	 � � 
�� � ��	 � � 
�� � ��	 �
in 
 � � .
It should be obvious that the map � induces, for every �a�.	u} � a monotone map

� � P L � � �<�V� [D� � 
 � � 
<�V��	 � , that maps � to 
�� � �.	 � . We say that a reversible term 	
is in the image of � if there is � # �

with � � � 	 � 
�� � �.	 � . The terms in the image
of � are the reversible terms where all the orientation tabs of their atoms point in the
same direction. We say a reversible judgement � � � 
T� 	 is in the image of � if
there is 	 # � and is a judgement (not necessarily a theorem) �hW 	 � � � � with
� � � 
 � ��	 � � 
O��
 � ��	 � � 	 .
Theorem 2 (Conservativity). The map � � P L is always an embedding of posets, and if

�
is a disjoint theory it is an isomorphism.

The first statement follows obviously from the following, stronger

Lemma 1. Given a theorem �V��	 � 
 � 	 in 
 � � , if one of 
^� 	 is the � -image of a term
of

�
in context � , then the judgement 
�� 	 is the � -image of a judgement � ��� � �

of
�

which is moreover a theorem in
�

.



Proof. This is done by induction on the proof of 
 � 	 (cf. Remark3 .

– If the last rule is a Reflexivity axiom, the result is trivial to obtain.
– If the last rule is an application of Transitivity, giving � � 	 from the premises
�C� 
 and 
E� 	 , assume that � � 
�� � �.	 � is in the image of � . Then by using the
induction hypothesis on the first premiss and the fact that � belongs to that premiss,
we get that it is of the form 
�� � ��	 ��� 
�� � ��	 � , with � � � a theorem of

�
. This

shows that 
 is in the image of � , and we can apply the induction hypothesis on the
second premiss, getting that if is of the form 
�� � ��	 � � 
�� � ��	 � , for � ��� a theorem
of

�
. But then � � � � � � is a theorem of

�
because of ordinary Transitivity,

and � � 
 is the � -image of that theorem. The other case ( 	 in the image of � ) is
obtained the same way.

– If the last rule is an application of Congruence

��� w � � 
 + � 
 y � � 	 � � 	 + � 	 y
� � � ��� 
 + �j� L 	 + � 
jy �j� L 	 y0�

let �8� 
 �j� L 	 be one of 
 � �j� L 	 � ( 
 � 1O���O� and assume �8� 
�� � � � � is in the
image of � . Because of the symmetry of the formula we can assume without loss
of generality that � is a variable of 	 , i.e., � # � . Then, the definition of reversible
substitution being � � 
�� � � � � � 
 	�� Q�� ! 	$#�
 � � � & � � � (equation 3), we get from the
uniqueness part of Theorem 1 that � � � � 	 � Q�� ! 	 #�
 � � � & , and since both 	 � Q�� ��
 � � � are
subterms of one which is in the image of � , they are themselves in the image of �
because all their atomic symbols have superscript zero. So we can apply induction
on the premisses and get that the left premiss is of the form �h� w � � 
�� � + �.w��
�
�� � y �;w � and the right one of the form �d� 	 � � 
�� � + � � � � 
�� � y � � � , with � � � + � � y
and �8� 	EW � � � + ��� y theorems of

�
. Then we can apply ordinary Congruence

on these terms and get �����$W � � � + ! 	$# � + & � � y ! 	 # � y & and since obviously

�� � � ! 	 # � � � & � � � � 
 � L � � 	 � for both 
�� 1O��� we obtain the desired result.

– If the last rule of the deduction is an axiom (i.e. the image by � of a theorem of
�

),
the the result holds by definition.

We still have to prove the second statement, which amounts to saying that � � P L is always
surjective when

�
is disjoint. But if

�
is disjoint, a reversible term � � � 	 will always

have a single variable 	,} � , where [ is a polarity that appears in the signature of
�

. This
is very easy to show: we know it is the case for atomics, and is proved in the general
case by a trivial induction. Then obviously the term � of the ordinary signature such that
� � � 	 � 
 � ��	 � will be of the form � ��b .
One conclusion that can be drawn from this result is that the world of reversible terms
has more expressive power than the ordinary world of terms (as will be amply shown
below), but it is not too powerful, since the process of universal reversible extension
turns a disjoint theory into a reversible one that does not have more terms/structures
and theorems, only more ways of writing the same objects.

Example 11. The Conservativity result tells us that any ultrabasic theory
�

, like the
ones we have seen above, can be turned into a reversible one without changing anything
except the presentation of the objects. For example, let

� � (3$<$�� 8 7
be the ultrabasic theory



with a single binary operation �XW�� ;&��W�� , and nothing else. Here a term with � variables
can be seen as a rooted binary tree with � leaves. If we take its universal reversible
extension, the ordinary signature associated to it will now have three binary symbols; � �';t+4�'; y , with the expected equations 
�	 ; � � �.w�� � 
 � ; +Zwz��	 � � 
<w>; y 	u� � � , and the
reversible terms will differ in that they will have one additional variable for output. But
this variable will be distinguished by being the only one with polarity o . A term like ��	 ;� � ;aw in

� � (3$<$�� 8 7
will now be represented by 
���	�; � � � ; � wx� - � , with 	�p^� � pD�;wnpD�.- s , but

also by 
3-@; y ��	 ; � � � �;w � , 
��1w ; + - �=; y 	u� � � , and son on, but Conservativity tells us that in
the end there will not be more reversible terms, i.e. � -classes, than in the original theory,
since any reversible term is � -equivalent to one where only the symbol ; � appears. The
geometric meaning ot this is that the trees have a natural root assignment because of the
polarity, in other words “all orientation tabs have to point in the same direction, that is,
towards the root”.
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This is the theory of contexts for Lambek’s original non-associative calculus
� � [37].

Example 12. Suppose now that we change only one thing: we decide there is a unique
polarity i . We get a reversible theory 
 � q� (3$<$�� 8 7 � that has more reversible terms (e.g.,

���	�; � � �); y wx� - � could not be constructed before), because the polarity discipline is
relaxed.

A term now is still a binary tree, but since the “orientation tabs” of their nodes can
point in any direction there is no way of assigning a root to an arbitrarily chosen term
without making an arbitrary choice.
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Example 13. To 
 � q� (3$<$�� 8 7 � we can add the axiom
�����

given by 
�	�; � � �;w �Z� 
�	�;x+ � �.w�� .
We can then deduce


<		; y � �;w � � 
<w ; + 	u� � �a� 
<w ; � 	u� � � � 
<		; + � �.w��



So we get that 
<	@; � � �;w � are equal for 
a� �x�%1^��� which allows us to drop these super-
scripts. In other words the “orientation tab” has disappeared, and we have the theory of
non-rooted binary planar trees, which is the theory of contexts for the system NCLL of
non-associative Lambek calculus, discussed in [17] and also in [61]. There is still some
rigidity in these trees because they have to be thought of as embedded in the plane and
they are still somewhat oriented.
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We know that every reversible term � � � 	 is of the form � � � 
 �Xb1�;w � for ��b a term built
with the three symbols of 
 � � , but in addition we can prove that � � � 
 �Xb5�;w �Z� 
 �Xb b5�.w�� ,
where �Xb b is obtained from �Xb by replacing every occurence of ;x+ and ; y by ; � . So we
get that the composite map


 ��� (�$<$�� 8 7 � 
<� � // 
 � q� (3$<$�� 8 7 � 
1� � // 
 � q� (3$<$�� 8 7�4������ � 
<� �
is a bijection of sets (here the posets are discrete since all the axioms are equalities), the
first map being the inclusion of the “rootable” trees into the larger set of “unrootable”
ones. So the quotienting introduced by the Cyc axiom has the effect of “cancelling” all
these new terms that were added by the switch from ultrabasic to

�
-sorted.

Example 14. To the example above we can add the axiom 
�	�; � �.w��
� 
 � ; 	u�;w � , in
which case we get the theory of non-rooted binary trees without any orientation, i.e. for
which all possible permutations of the ports of an atom are valid rules, (in other words,
do not change the context structure). This is the theory of “mobiles”, which is discussed
in [61].

Example 15. Now look at
� �2�3�

, the theory of semigroups (one associative binary oper-
ator � ). The universal reversible extension has for signature g � � �=�O+4�=� y k , and Conserva-
tivity tells us that any reversible term will have the normal form 
<	 + �

� 	%y?� � {�{F{ � � 	 � �.w�� ,
i.e. a string of 	 � and a w to mark the output. If we now replace the set of polarities by

�
, we get the theory

� q�2�3� , where there are many more reversible terms. It is not hard
to find a geometric representation for these, and we will leave this as an exercise.

The axiom
��� �

above can also be added to the theory, and the same argument gives
us 
�	"� � � �.w�� � 
�	"�D+ � �;w � � 
<	 � y � �.w�� . From this it is easy to prove that in general
a reversible term has the form � � � 
��%� � � , where �z� � # ��� are words such that every
variable of � appears exactly once in the pair, subject to the equations


���� � ��� �(� 
	�%� � � � �(� 
����
�%� � ���



in other words where the reversible term 
	�%� � � is the equivalence class of the word � � �
modulo all cyclic permutations (see Example 22). These objects are sometimes called
cyclic words. Here also the composite map:


 � ����� � 
1� � // 
 � q�2�3� � 
<� � // 
 � q�2�3��4�� ��� � 
1� �
is always bijective (a more proper, although more cumbersome, notation is 
 � q�2�3� � 4������ ),
since it is the correspondence � � 
��%�.w�� , where � # � � is a non-repeating word and
w is a new variable: if you pick out a single letter from a cyclic word the other letters
form an ordinary word.

This is the theory of contexts for Yetter’s cyclic linear logic [73].

Example 16. There are interesting theories that fall between 
 � q����� � and 
 � q������4������ � .
A simple example is the one axiomatized by


���	�� � � � � + wz�.- �(� 
<	u�F� � � � wn��� + - ��{
A complete study of all such reversible theories is an interesting problem, but beyond
this first paper.

Remark 4. In Display Logic the function of reversible terms is taken up by what is
known as display postulates. But as their name implies, display postulate have a logical
rôle as well as an algebraic one, while at this stage we are still purely in the algebraic
realm. In our approach the logical function of display postulates is taken up by the
orientation function )*� defined in the last section.

The reader may think that this distinction is mere hair splitting, since the expressive
power of our approach is pretty much equivalent to that of Display logics. But this sepa-
ration of the algebraic and logical functions greatly increases our abilities to understand
these systems. For example the examples at the end of this paper all seem to be new
systems. Also, the author has found structads to be a great tool for investigating the
relationship between a non-involutive negation and non-commutativity (as in [2])

4 The Algebraic Approach

There is some amount of independence between this section an the one that follows, and
we do not think that it is necessary to master everything here to be able to understand
the final chapter of this paper.

In the present section we define the concept of structad, which is a precise descrip-
tion of the algebraic structure possessed by a reversible theory. Thus every reversible
theory gives rise to its canonical associated “concrete” structad. A reversible theory
should be seen as a presentation of a structad, the same kind of presentation that can be
given to a monoid: generators and relations. The generators are the elements of the tree
signature and the relations the axioms of the theory. We will end up showing the natural
converse, namely that from a given structad we can always extract a tree signature and a
set of and a reversible theory on it, such that the concrete structad thus constructed will
be isomorphic to the one we started with. The most important reason that we introduce



abstract structads in addition to the concrete ones (which, arguably, have already been
defined in the preceding section) is not the desire to align our approach with conven-
tional abstract algebra. The real reason is that there are many examples of structads that
do not come pre-equipped with a signature and an accompanying theory, as we will see.

We have already been using the fact that renaming commutes with repolarizing: in
other words if

� ��U8��U�b is an involution-respecting map, and ���.�$� � a renaming
in
�a�.� ��U�� , then

� � �Z�1� �.� � �Z� � �1� �.� . One quick way of establishing this is to recall
the remark that an algebraic context � can be seen as a finite set of pairs �$� v�� U ;
then � acts on the first components and

�
acts on the second components.

In the following definition, the presence of an involution on U is not needed.

Definition 8. A U -sorted poset species is given by the following:

– For every � # �a��� ��U�� a poset ��� 
<� � �F�
� . We call an element of � 
1� � a structure
on � .

– for every bijective ���.� � � an isomorphism of posets � 
 ��� ��� 
<� �E��� 
1� � ,
that respects the composition and identities: for �%�;�)��� we have � 
���o ��� �
� 
	���uo
� 
 ��� and � 
	��+ � �(����+�

� ��� .

This definition is a natural (in other words, not adventurous at all) generalization of the
concept of U -sorted species of structure [29, 6], due to A. Joyal. The added generality
is due to the fact that we allow the sets of structures to be ordered and not necessarily
finite. The category-inclined reader can reformulate this by saying that � is a functor
from the groupoid2 of U -contexts and renamings to the category of posets and monotone
functions.

Example 17. Let U�� �
. Given a set � we take � 
<� � to be the set of all order (poset)

structures on � . In other words, an element � # � 
<� � is a subset � �'� � � that obeys
Reflexivity, Transitivity and Antisymmetry. The order on � 
<� � is the inclusion order,
in other words given �a��� # � 
<� � we have �`��� when �`��� . Given a bijection
���.����� and � # � 
1� � , we take � 
 ��� ����� # � 
1� � to be the binary relation � on �
defined by

	7��� � ��� � *2+ ��	�� ��� � *,+ � � ��{
It is easy to see that this definition ensures that � is an order structure on � and that
� is an isomorphism of posets ���j�<�V����� � �5� ���"� . It is also easy to see that the map
� 
 ��� � � � 
1� � ��� � � � � 
5� � ��� � is also an isomorphism of posets, these two posets
being quite distinct from the previous ones.

Naturally, instead of all order structures on � , we could have taken total (linear) or-
derings, or just plain preorders (i.e., removed Anti-symmetry), and obtained different
species. This example illustrates well what a species is about: it is way of describing a
type of structure that can be put on a finite set, by the means of “enumerating” all pos-
sible instances of it on all possible finite sets3. The concept of a mathematical structure

2 Groupoid in the category-theoretical sense, of course.
3 It should be clear that by “all” finite sets, we actually mean “enough finite sets to have a

representative for every cardinality class”, in other words “at least one set per cardinality”. In



is very broad, and is probably the kind of idea that will never be pinned down exactly,
since this may mean the freezing of progress in mathematics. For example many kinds
of structures (like the three above) can be defined by the means of first order logic,
which is already a very general set of techniques for defining structures. But first-order
logic has well-known limitations. Species are based on the idea that if you know what
a structure on a set � is, you have to know how to transport it to another set � via a
bijection.

It often turns out that, given a type of structures, the set of all structures of that type
that can be put on a chosen set can be naturally ordered, as is the case above. We have
said that the importance of this ordering for us is that it allows the calculi derived from
structads to have entropy rules.

We do not have time to say much about the theory of species, but we want to mention
the following.

Definition 9. Let � be a
�

-sorted Joyal species, in other words it is a poset species
as above, with the restriction that � 
1� � is always a discretely ordered finite set. For
every � # � let � � be the cardinal of the set � 
1� � when � has � elements. It should
be obvious that the value of � � is independent of the choice of � . The generating series
associated to � is the formal power series in one variable.

�7��	%�V� ������ � � �
�
� 	 �

Species were invented as a foundational tool for enumerative combinatorics. Gener-
ating series have been around since at least Euler, and are used to count how many
structures of a given type (traditionally: graphs, trees, permutations, partitions. . . ) can
be put on a finite set of cardinality � . A Joyal species � should be seen as a “beefed
up” power series, an object which contains more information than its associated gener-
ating series. It turns out that a great number of the operations that can be done on power
series (addition, multiplication, substitution, derivation. . . ) can be lifted to the world of
species and be given a direct combinatorial meaning. We find it obvious that problems
of proof search complexity in substructural logics would benefit from the availability of
this powerful combinatorial tool.

We have to broaden the idea of structure on a set to include the possibility of more
than one sort. For example:

Example 18. Let now U
� l . Obviously any U -context � can be split into two sets
��� � p �>� s , according to the polarity of its elements/variables. Given any context
� we define � 
1� � to be the set of functions � p ��� s . Given a renaming of contexts

this paper we have chosen our universe of finite sets to be all subsets of a given infinite set � .
We find this approach to be the most natural, given the intended meaning and the constructions
we want to make. But the reader can also imagine that we are working in hereditaty finite sets,
a very standard was of constructing a world of finite sets. Another approach, which is favored
by practitioners of the theory of operads, is to keep a single isomorphism class for every finite
cardinality. So in this case, for every natural number � we would have a single given context�
	�� 
���	��������������	����� , and two contexts end up being disjoint if their cardinalities are distinct. All
these approaches are equivalent in the end, but require more or less technical ingenuity if we
want everything to be completely explicit.



���.��� � , it naturally splits into two bijections ��}j�.�
}d� �E}j� [ ��mS� o . Given � #
� 
<� � we define � 
 ��� �1�,� to be the function �3s"o�� o � �2pj�3*2+ . We denote that species by
� ���%7 � 9

.
In other words, if a function between a pair of finite sets is thought of as a species,

it is naturally a two-sorted species, one sort for the source and one for the target. This
is another example of species that has many variations: we can take � *�� (�� to be the
subspecies that has only the surjective (onto) functions, or ���

7 �3$ �
, which has only the

injective functions. . .

The generating series associated to multi-sorted Joyal species are power series in
many variables, one for each sort/polarity.

In general, given a poset species � , when we say a structure in � we mean a pair
�<�V����� with � # � 
<� � ; we will also say things like “let � # � 
1� � be an � -structure”
to mean the same thing.

Definition 10. Let � be a poset species, and � # � 
1� � ���Zb # � 
1� b � be two structures.
An isomorphism ���F�<�V����� � �1�a� � b � is a renaming ���;�`� � b such that � 
 ��� �	��� �
�"b . An automorphism is an isomorphism ���F�1�a� ��� � �1�a� ��� from a structure to itself.
We say two structure are isomorphic if there is an isomorphism � between them.

For example, we have already seen that if � is the species of posets, to say that two
orderings � on � and ��b on � b are isomorphic by the definition above iff they are
isomorphic as finite posets. In general, if a species is defined by the means of first order
logic, this purely formal notion of isomorphism will coincide with the one prescribed
by logic. Naturally this definition works without the need for a specification language
like first-order logic.

The following are proved by easy computations:

– the identity renaming on � is an automorphism for any �1�a� ��� .
– isomorphisms compose: if ���F�1�a� ��� � �1� b � � b � and � b �j�<� b ��� b � � �1� b b ��� b b � are

isomorphisms then �2bno ���j�<�V�����a���1� b5����b b�� is an iso.
– If ���j�<�V�����C���<�V��� b � is an isomorphism then � *2+ �j�<�V��� b �E���<�V����� is also an

isomorphism.
– Being isomorphic is an equivalence relation on structures.

We can now introduce the main concept of this section

Definition 11. A structad is a poset species � which in addition is equipped, for every
pair � � 	,}4�;��� wt} � of contexts, with a composition operation,

�XW�� L � � �XW��?� � 
<�'� 	 � � � 
1� � w��Z� � 
1� � � �
monotone in both variables, which is subject to three laws, described very soon. These
laws are associativity, unit(s), and agreement with transport.

Before we state these laws, let us say that the strictest reading of the diagram above, the
first one that will come to many readers, makes us assume that � and � are disjoint sets,
but that 	 may belong to � and w to � . This is correct, but there is also a more relaxed
way of seeing things, where �V�;� can be any two sets of variables. This approach may
be more natural for some readers, but for the time being we will stick to the “strict”
reading of the definition of composition. The first two laws are as follows:



– Associativity: ��� L � � �"� Q � ���'� � L � � ��� Q � ���2� , whenever this is defined, which
implies in particular that � ��_w and both � L � � � and � Q � ��� are defined.

– Unit: for every polarity [ and every two-variable context 	u}j�.wt} � there is a structure1FLOP � � 1 � P L # � 
�	u�;w � (“the 	 - w -wire”, which naturally can also be denoted 
�	"�.w�� )
which obeys the usual identity law: for � # � 
1�`�Tw } � � and � # � 
1���_	�} �
we have � �j� L 1FLOP � � � and � L � � 1jLOP � � � . The very-well-known argument for
monoids applies here to show that 14LOP � is uniquely defined.

Let us introduce an improvement in notation that will make the agreement law look
very natural. Let there be ���;�`�/� b and �,�;� �e��b along with � # � 
1� � ��	,} # �
and � # � 
5� � �.wt} � # � . Let us denote by � L�� �2� the set �'W gj	2ka� ��W gjwxk . So, in
accordance with our “strict reading”, this assumes that ���C� �?gj	u�;w k . If, in addition,
we have � b	� � bu�?g ��	u�
� w k , we can define

� L�� ���6� � L�� ��� �W�� � b�
 L���� ��� b
in the obvious way. The agreement law is the requirement that

� 
 � L�� ����� � � L � � � � � � � 
 ����� � 
 L � � � � � 
���� � � {
Naturally this has to hold whenever we can transport composable structures �V��� along
compatible renamings ����� .

Now that the three rules are stated, they can be combined in interesting ways, that
permit the “relaxed” reading we have alluded to. The following discussion can be omit-
ted if the reader is perfectly satisfied with the way we have defined things; it is the
outcome of conversations with people who were puzzled by remarks like (just before
Definition 3) “if the union of contexts is not disjoint just rename to satisfaction”.

We have defined an algebraic structure, but its operations can only be applied when
some constraints are respected, and these constraints do not look very algebraic them-
selves. Let � # � 
1� � and � # � 
1� � and 	 # �a� �T# � be given. If we want to
construct � L � Q � , a necessary (and natural) condition is that 	u� � have opposite polar-
ities, but there is also this need that the only variables common to � and � be 	u� � .
Suppose this were not the case. We could construct � L � Q � (or something absolutely
equivalent) if we renamed one of the contexts, or both: we can always find sets ��b<�3� b
along with bijections ���;� � � b and �z�3�e�0��b such that � b�� ��b���� , (this is
stricter than what we have asked in the definition, but very easy to achieve) ��	 �_	 and
� � � � . Then we could transport � along � , getting ��b # � 
<� b�� and � along � , getting
�ub # � 
5� b � , and in this new context the structure �Zb L � Q �ub would be legal. As a matter
of fact we wouldn’t even have to force ��	 �_	u� � � � � , since � b 
 L � � L � b would do just
the same as an alternative definition of the composite, but for the simplicity’s sake we
will not follow this added possibility of generality.

The reader is allowed to think that if we decide to loosen things up this way (if
you can’t compose two things in a context, define their composite in a suitably chosen
pair of isomorphic contexts, where composition is allowed) then anything goes and the
operation of composition has become some kind of unstructured, soft camembert-like
affair.



But this is not true. Such a seemingly “loose” composition is just as strict as the
one we started with. The reason why: let �2b5�;� � � b b and �Sb1�;� � � b b be two new
isomorphisms, such that � b b ��� b b � � and � b 	 � 	 and � b � � � . Then again we can
transport �V��� along �,b1���Sb and get ��b b # � 
<� b b�� and �ub b # � 
5� b b � . We obviously can
construct ��b b L � Q �ub b in the strictest sense. We now have two alternative choices for the
composite � L � Q � , and we claim they are linked by a very important property: there is
a canonical isomorphism

�,�.� b L�� Q � b � � b b L ��Q � b b
obtained by taking �C� � �2bto ��*,+ � L � Q �	�nbSo �x*2+ � and it has the property that

� 
������	� b L � Q � b �(� � b b L � Q � b b {
The proof is an immediate consequence of the property of agreement with transport.
So we conclude that we can define � L � Q � whenever we want, provided we change

to suitable contexts and keep track of the change of context, that is, keep record of the
isomorphisms we have used to change contexts and transport things there. There is a
canonical way of relating the composite defined in one choice of context with the one
defined with another choice, and it is a uniquely defined isomorphism of structures.

We can apply this idea to more complex cases. For example let � # � 
1� � � , � #
� 
<��� � and � # � 
<� � � be given. If we want to construct ��� L � Q �"� �j� � � , the conditions
that really matter are that 	 # � �u� � �.w # � �2�.- # � � and � ��?w , along with the obvious
polarity conditions. We can always find a large context � and three polarity-respecting
embeddings � ��� � , � ��� � and � � � � , such that � is the union of the images
of the three embeddings, and that the construction of ��� L � Q �"���j� � � in that context is
correctly defined according to the strictest standard. Moreover if we find another context
� b , along with embeddings of the same kind as above, there will be a unique bijection
� �/� b that will respect the embeddings. Then the associativity law can be stated in
any suitable context, whether � or �Eb or whatever. The canonical isomorphisms allow
the coherent transport not only of structures, but of equations between structures.

In the same way we can use transport to get a more general form of the unit law:
given � # � 
<�>�8	 � then for any variable � } not in � , we have � L � � 1 LDP Q � � 
 ��� � ,
where � is the unique bijection of contexts �8� 	 ���8� � which is the identity on � .
This is the unit law, expressed in such a way that the variable � in the wire 1 LDP Q which
is not cancelled by composition does not have to appear in the context of � .

The main conclusion the reader should draw from this discussion is that when we
write a complex expression, there are obvious constraints that the variables that are not
explicitly mentioned have to obey with respect to the ones that are explicitly mentioned.
But these constraints do not have to be stated in details, and if a clash occurs, it can
always be repaired by the means of tranport. What matters is not the exact names of the
variables, but the way they are distributed with respect to the ports that they name. One
way of saying things is that the exact naming of variables is the burden of the “system”;
getting new variables is a result of a system call, and it is the system’s job of ensuring
that these variables do not clash with the ones we have before; the formal machinery
of renaming and transport tells us that this can always be done correctly and that the
reader, who uses a higher level language, can forget about these details.



Definition 12. A structad � is said to be discrete if � 
<� � is discrete for every � . Given
any structad � its opposite �E9;: is defined by �E9;: 
<� �(� � � 
1� � � 9;: .
Example 19. It is not clear how to endow the species � +n9 � $ 9 of orderings (Example
17) with a composition operation; but we will see that this poset species has a nice
one-sided structad completion in the form of ��� (�#���� ( (Example 27).

Example 20. The discrete species � ���%7 � 9
of functions has a natural structad structure.

Assume for ease of notation that �I� � � � 7 � 9
. Let � # � 
<� �C	�s	� and r # � 
5��� � p � .

By definition � L � Q r should be a function
� �.�%pa� �dp ��� sa� ��s . It is given by

� �<wSpF�V�
�� 	 ���1wn� if w # � and ���<wS� ��>	
r,� � � if w # � and ���<wS�Z�>	
r,�<wS� if w # � {

The unique structure on a set of the form gj	,pD� � s-k can easily be seen to be a unit for
composition. We will leave it to the reader to check the rest of the structad axioms.

Example 21. Let
� ���<Ua��
C� � 
�� ���.�E� be a reversible order-enriched theory. It is

now only a formality to show that it defines a structad � , where, given a U -context � ,
we take � 
<� �(� � 
1� � . We will let the reader check the details, only pointing out that
the bimonotonicity of composition has for syntactical counterpart the Congruence rule.
By tradition it is natural to call it the term model structad of

�
. Since we keep our

habit of using subscripts to distinguish particular cases, we can transfer the subscripts
for the theories we already have defined to the corresponding structads. For example,
the structad associated to the reversible theory 
 � � (3$<$�� 8 7 � (Example 11) will be denoted
� � (3$<$�� 8 7

, the one associated to 
 � q� (3$<$�� 8 7 � (Example 12) will be denoted � q� (3$<$�� 8 7 . . .
but it will also be useful notational practice (when no subscripts are available) to identify
a reversible theory with the operad it determines, e.g. to consider that 
 � � is a structad.
Notice that to say that two terms are isomorphic in the term model structad is equivalent
to saying that they are provably equal modulo a variable substitution.

Example 22. Let U � �
and for � # �a�.� ��U�� let � 
<� � be the set of all cyclic per-

mutations over � . We recall that a cyclic permutation over a finite set is a bijective
function �V�.��� � such that for any pair of elements 	"� ��# � there exists an � such
that � � � � �<	%� . If ���.�
�!� b is a renaming bijection, with � # � 
<� � and 	 # �
b we
define � 
 �����	��� by

� 
 �����	���a� �Eo � o � *,+ �
which is the natural way (i.e., transposition) of transporting a cyclic permutation from
set to set. Let us take the usual notation for cyclic permutations: the expression � �
�	� � � + � �%� � � � means that �V��� � � � � � 4 + � �V��� � � � � � . Given contexts �a�3� and cyclic
permutations ���h�	� � � + � �%� � � 	�� # � 
<� � and �6� � � � � � + �%�%� � � � # � 
1� � , we define
� L � Q � as the cycle �	� � � + � �%� � � � � � + �%� � � � � . Notice that composing a cycle of length

� with a cycle of length � gives a cycle of length � � ��W � ; in particular if � � 1
(we have a fixpoint) then we get a cycle of length ��W 1 . We denote this structad by
� ����� + $<( � .



Example 23. As a matter of fact this composition is defined if �a��� are any two per-
mutations, so we get another, larger structad � + $<( � that way, whose value on � is
the set of all permutations of � . In general a permutation can be written as a set
� G � � � G +F�2�%� �F� G � � of cycles, where every

G � is an abbreviation for a word
G � �

� �� � � + �%� � � �� � . Given �8�I� G � � � G +F�2�%� �F� G � 	%� and �8�`� � H � � �<Hd+��)�%�%�j�<H � � then their
composite is defined by

� L � Q �7�h� G � ��� G + �2� �%��� G � H � � �1H + �2�%� �F�<H � ��{
Checking the axioms of a structad is very easy.

Example 24. In the two structads above, we can add the restriction that a permutation
(or cyclic permutation) cannot be allowed to have fixpoints. This gives us “substructads”
� + $<( � * �?8 � � � ����� + $<( � * �?8 � of the ones previously defined, (this rather intuitive concept
will be formalized below). Then it is natural to assume that � 
 ��� � � for both these
structads.

Example 25. Let � + � ( 9 be the structad that associates to every � the set of all partitions
(or equivalently, the set of all equivalence relations) on � . It has a natural ordering, if
we say that �'��� if � is a finer partition than � (or, equivalently, that the equivalence
relation associated to � contains the one associated to � . Given � on �>�'	 and � on
�8� � we define � L � Q � as the partition on �7�7� that fuses the class of 	 together with
the class of � and leaves the rest undisturbed. The axioms of a structad are very easy to
verify.

Example 26. An operad is a structad � over l such that every context � with � 
1� �
nonempy has a unique 	�s # � . So we already have seen quite a few operads: every term
model structad associated to the universal reversible extension of an ultrabasic theory
is an operad.

Operads were introduced by P. J. May in the context of homotopy theory [48]. They
have recently been the subject of much interest from geometers and physicists [45, 44].
Our definition of an operad as a special kind of structad is actually a bit simpler than
the standard definition, which does not take the output port into account. As a matter
of fact, in [20] the concept of a cyclic operad is defined, as an ordinary operad with
additional structure; this definition turns out to be equivalent to that of a structad over

�
.

Our operads are enriched in posets; May’s operads were enriched in topological spaces,
and abelian-like structures like graded modules are a very standard way to enrich a
discrete operad. A. Joyal has shown how to define operads in the context of the theory
of species, that is, by the means of the rich set of operations that are available in there,
this is can be found in [69]. Structads over

�
, like that of total cyclic orders, are first

ones that were found in the context of linear logic. This is because the “natural” calculi
associated with proof nets are one-sided; such structads are visible in filigree in the
work of Andreoli [4]. But the recent work of Puite [61] gives theories of proof nets for
two-sided calculi, and defines two-sided structads. There is a standard way of turning a

�
-structad � into a two-sided one; one simply takes � � l �

, where
�

is the categorical
product of structads, and l �

is defined in Example 28. The experienced reader can
check what this means, but there is also a quickie definition: if � is any structad on any



polarity structure U , then � � l �
is the structad � b over U � l �

such that a structure
�Eb 
<� � is a pair �	�V�;�,� where � # � 
<� � and � is a function ���.� �el . The structad
used in Puite’s work on two-sided cyclic linear logic is exactly ��� 9

9 ����� � (3# � l �
.

Example 27. Let � be a (finite) set. Given a ternary relation � on � we define the
following properties, that � may or may not have:

Cyclicity � ��	"� � �.wS�'� � � � �.wz��	��
Anti-reflexivity �V�<	u�.	u� � �>� � �O���	

Transitivity � ��	u� � �.wS� ��� �<wz��� �.	%�>� �V� � �;wx�	���
Spread � ��	"� � �.wS�'� J�- � �3- � � �;wn��� � ��	"�.- �;wn��� � ��	"� � �.- �
Totality 	"� � �.w�+ ��� � ��� � � � �V�<	u� � �;wn�	� � ��	"�.wz� � � .
Let us show that Totality together with the first three axioms imply Spread. Assume
that these four axioms hold for � , and that � ��	u� � �.wS� is true. Let - # � . Because of
Antireflexivity we know that 	u� � �;w are distinct. Then either

– - is one of 	"� � �.w and then � �3- � � �.wS�
� � ��	"�.- �;wn��� �V�<	u� � � - � holds trivially.
– or - is a new, distinct element. Then since 	u� � � - are distinct, we get �V�<	u� � � - ���
�V�<	u� - � � � . If the first case is true, we have proved Spread. If the second case is true
we also know that � � � �.wz��	�� by Cyclicity and and applications of Transitivity:

�V�<	u� - � � � � �V� � �.wz��	%�_� � �3- � � �;wn�
shows that � is Spreading.

A ternary relation � on � is said to be a cyclic order [57] if it is Cyclic, Anti-
reflexive and Transitive; it is called an order variety [68] if it in addition it is Spreading,
and it is called a total cyclic order if it is Total.

Proposition 4. Let �V��� be two ternary relations over the sets �E� gF	uk , �7� g � k respec-
tively. Let us define � L � Q � as the ternary relation � on �>�'� , where in what follows
the variables � � � � denote elements of � and the variables

� � � � stand for elements of � :

�Z�	� + � �nyO� � � � ��� � �	� + � �SyD� � � � �Z� � + �
� yO� � � � ���
�a� � + �

� yD� � � �
����� + � �SyD�

� � ��� �V��� + � �SyO��	%� �Z� � + �
� yO� �t� ��� �V� � + �

� yO� � ��{
If both �V��� are a cyclic orders, (resp. order varieties), (resp. total cyclic orders) then
� L � Q � is a cyclic order (resp. order variety) (resp. total cyclic order).

The proof is a mechanical case analysis.
From this we can define three structads, � � ��� � (3# ��� � (�#���� ( ��� � 9 95� ��� � (3# by taking

� 
<� � to be the corresponding set of ternary relations over � . Notice that the first two
of these are not discrete: we define � ��� if �'� � as ternary relations, i.e. as subsets
of � � � � � . It is easy to see that the elements of � � (3# ��� ( that are maximal for this
order are the total cyclic orders, and so we get that � � 9

95� ��� � (3# is a discrete structad
with the induced ordering.

Let � # � � (�#���� ( 
1� � g4w k � . Define the binary relation 	 � � P � � on � by:

	 ��� P � � if � ��	u� � �.wS� {



It is easy to show (or see [68]) that 	 � � P � � is a strict (antireflexive) order on � . What
is very interesting is that the converse is true, in a certain sense: in [68] it is shown how
to complete any order structure � on � to a cyclic order � on ���6w , in such a way that
	 � � P � � iff 	 � � . This is why an order variety should be seen as a “cyclic one-point
completion” of an order structure. . . and where the name order variety comes from.

Given a total cyclic order � on � , and w # � , the axiom of Totality implies that
the order ��� P � is total. Thus it has a smallest element, call it � �<wS� . One can then show
that the function w \� �V�1wn� is a cyclic permutation; conversely a cyclic permutation
always gives rise to a total cyclic order: say � ��	"� � �.wS� whenever the cyclic permutation
can be written as �	�n	 � � ��w��S� , where �z� � ���D��� are nonrepeating words of � . Because of
this certain authors will define a cyclic order as what we call a total cyclic order. The
observation that cyclic orders can be profitably studied from the point of view of Joyal
species appears in [68].

Example 28. One special class of structad is constituted by those where � 
1� � is either
empty or the one-element set, whatever the context � . Let us call such structads flat
structads. Naturally there are two extremes: let ��UV�F�XW��3YZ� be given. There is a “mini-
mum” (or “initial”) U -structad U�� such that

U � 
1� �a�
� g �nk if � is of the form gj	,}j� � }

�
k

� otherwise

and a “maximum” (or “terminal”) one which we denote by U �
where U � 
<� �C�!g �Sk

always. It would be interesting, given an arbitrary ��UV�F��W�� Y � , to have a general descrip-
tion of everything that fits between these two extremes, in other words to describe all
the flat structads over U . For the time being we can observe that if � is flat, the fact
that a context �?� gj	 } �� �.	 } �+ ��{F{�{��.	�}X�� k is inhabited or not only depends on the multiset
(bag) [ � � [ + � {�{�{�� [ � of polarities it determines. So a flat structad over U is entirely
determined by a set � of multisets in U , subject to the conditions

[&�>[ Y # � for all [ # U , and �$�>[n� �E�_[ Y # �$� �`� � # � {
Let us identify flat structad structures over U with these sets of multisets. This gives
us an ordering on the set of flat structad structures, determined by inclusion. The least
element of that ordering is U � �$gO[��>[DY��z[ # U(k and the largest U � �	��
x� � ���	
 � ��U�� .
Flat structads are the theories of contexts for commutative forms of linear logic.

One very important case of flat structad is � , given by

� 
<� �(�
� g �nk if � contains exactly one 	,s

� otherwise {
It is the “theory of (linear) intuitionistic contexts”. It has a big brother 
���� :


 
1� �(�
� g �Sk if � contains at most one 	�s

� otherwise {
This is the theory of polarities/contexts for Girard’s calculus LC for classical logic [21].



Remark 5. The definition of an operad ensures that if � is an operad, then � 
 ��� is
guaranteed to be empty. Things can be quite different when the polarity structure over
which a structad is defined contains fixpoints for the involution. For example suppose
that � is defined over

�
and that � # � 
�	 � . Then we get � L � Q � # � 
 ��� . As we have

said in Remark 2 this is not really problematic since elements of � 
 � � should more
be seen as artifacts of the formalism than as entities that carry actual information. We
already have seen the case with � ����� + $<( � and � + $<( � : composing the fixpoint with
itself gives us the empty permutation, (see Remark 2).

Definition 13. Given a pair � ��� b of structads, the first one over U and the second one
over U"b we define a map (or homomorphism, or plain morphism) cd���$� � b to be

– a map of polarity structures ���O�5�<c � ��U�� U�b . We say that ���^�1�<c � is the restriction
of cd� ����� b to the polarities. If ���.U'�eU�b is an involution-respecting map we
say c is above � if ���^�1�1c �V�T� . The function ���O�5�<c � ��U6��U�b induces (recall the
discussion just below 1) a function ��\� c
� � �a�.� �<U��(� �a��� ��U�b�� ; notice that the
notation is simplified, to avoid syntactical excesses. In addition, for every renaming
���.�T�!� we get a renaming c����;c
�EW%� c � , whose definition should be obvious.

– for every � # �a�.� �<U�� a monotone map c � � � 
<� �(� �Eb 
<c
� � , such that for every
renaming ���;�T� � we have that

� 
1� � 
�� 
 �
//

���
��

� 
5� �
� �

��
�Eb 
<c
� � 
���� � 
 �

// � b 
1c � �

commutes, in other words c���o
� 
 ���a� � b 
<c����uo c � .
– Given � # � 
<� � 	,} � and � # � 
5�T�8wt} � � we have

c � 4 � ��� L � � �"�(�?c � 4 L �	��� L � �"c � 4 � �	�"��{
Notice that the polarities of 	"�.w differ in the left and the right sides. In addition
we require that c respects wires: c�� LDP �	� �'1FLOP � �7� 1jLDP � for any 	"�.w of opposite
polarities.

In standard categorical terminology, in addition to ���O�5�<c � �.U���UZb a map is defined by
a natural transformation ��� � bxo�c that respects the composition operation, where
cd� �a��� �<U��Z� �a��� �<U"bK� is the “repolarize” functor of the groupoids of contexts.

Since a map of structads is first and foremost determined by a class of monotone
functions, all possible qualifiers for monotone functions can be transfered to maps of
structads. In other words we can say a map c of structads is g injective, surjective, bi-
jective, an embedding. . . k when, for every context � in the source contexts, the map
c � is g injective, surjective, bijective, an embedding. . . k . We can also say what a sub-
structad ��� �Eb is: it is a map � � � b of structads above identity such that for every
context � the monotone � 
1� �(� � b 
<� � is an inclusion of posets; in this paper we will
suppose that in particular it is an embedding, in other words that the order on � 
1� � is



induced by the one on �Cb 
<� � . Notice that there is an “orthogonal” concept, when the
sets � b 
1� � � � 
1� � are identical, but the left order is a suborder structure of the right
one.

Proposition 5. Given structads � above U , �Cb above U"b and � b b above U�b b , along with
maps cd� � � � b and �d���Eb � �Eb b the composite �
o�c defined by ���^�<���
o c � �
���O�1��� �zo(���O�1�1c � and ���8o(c � � ��� � � o�c � is a map of structads. Furthermore every
structad � has an identity map ��+ 
 , which is above identity and whose value on every
context is the identity map.

The proof is totally straightforward. So we get that yes, structads and maps form a cat-
egory. In other words we have the following properties, very easy to check: we always
have ��oa���6ouc �a� ���
o�� �So2c (given � � � b bz� � b b b ) and c6o���+ 
 � ��+ 
 � ouc �_c .

Notice also that if c ���d� � ��� b are structad maps such that ���O�<�1c � �I���O�1��� � ,
then they are comparable for the structures order; that is, given c ��� as above we say
that ch��� whenever, for any context � and � # � 
<� � , we have that c � �	��� ��� � ����� ,
or in other words, we have that c � �	� � for the pointwise order on monotone maps.

Proposition 6. Let c �.c b1� ��� � b be structad maps above the same map of polarity
structures such that cI�_c b . Then given any �d� �Cb,� � b b and � � � b b b2� � we have
c o
�)� c
b^o
� and �_o ch���>o c
b .
Proof. This will be left to the reader.

There is one kind of map which deserves special treatment:

Definition 14. a map cd���`� � b is said to be an isomorphism if

– ���O�5�<c � �.U`� U"b is bijective (and therefore has an involution-respecting inverse
���O�5�<c �3*2+ )

– for every � # �a�.� ��U�� the function c � ��� 
1� � � �Eb 
<c
� � is an isomorphism of
posets.

The reader who is new at this kind of game should check that this definition is equivalent
to saying that c has an inverse morphism cE*,+ , i.e. such that c oZcd*2+ and c�*,+"o�c are
the identity structad maps.

So it is time for examples. The first ones will be above identity.

Example 29. We already have given a few examples of inclusion maps of substructads,
e.g. � � ��� + $<( � � � + $<( � � � � 9 95����� � (�# ��� � (3# ��� ( . . .

Example 30. Any map of ordinary order-enriched theory
� � � b (see Examples 7–

10) gives rise to a map of the operads obtained from the universal reversible extension.
All the examples we have given are disjoint theories, but this is not really necessary.

Example 31. The reader can show that the three structads

� ����� + $<( � (Example 22), � � 9
95� ��� � (3# (Example 27), � q�2�3��4�� ���'4)627%8 9 (Example 15)

are isomorphic, and all this above identity. Each of these is also equipped with an invo-
lution 	����$� � ��	 o 	T� ��+ 
 , given by reversing the cyclic order/permutation.



Example 32. There is a morphism � + $<( � � � + ��( 9 between the structad of permuta-
tions (Example 23) and the structad of partitions (Example 25). If � is a permutation
of the set � then its sets of cycles determines a partition of � . Notice that the source
structad is discrete while the target is not.

Example 33. If U is given, and � ���Cb are flat structads over U , then to have ��� �Cb by
the definition given in Example 28 is equivalent to having a (necessarily unique) map
� � � b . A map either exists or not because all the sets of structures are either empty
or singletons.

Example 34. Recall that U �
is the “largest” flat structad over U (Example 28). It is easy

to see that, given any structad � over Ua� there is a unique map � �)U �
above identity,

since every U � 
1� � is the one-element set. This map determines a flat structad � which
is its “direct image”: for every � we have

� 
<� �(�
� g �nk if � 
1� � is nonempty

� otherwise {
and we get a diagram ����� � U �

, where the first map is surjective. This is the
“flattening” of the structad we have started with, its “universal commutative collapse”.
We can give an interesting example of this direct image construction: the direct image
of � ���%7 � ��l �

is the flat structad

� 
1� �(�
� g �nk if � p nonempty implies �
s nonempty

� otherwise {
This is a new regime of polarities, which can be compared naturally with � and 
 : we
get �6��� but 
 ���� . So the logics associated to the structad � ���%7 � 9

are too general
to be intuitionistic, but too restricted to be fully two-sided classical.

Example 35. Given any ultrabasic theory
�

, if we decide to replace its polarity struc-
ture l by

�
, as in Examples 12,15, we will get a morphism 
 � �a� 
 � q � .

Example 36. Notice that from Example 15 we have seen that the map

 � �2�3� � � 
 � q����� � 4�� ��� is bijective, but it is not an isomorphism because of the change
of polarity structure.

Example 37. Notice that the flat structad � is isomorphic to 
 � �
9���� 4)627%8 9 � .

Example 38. Take a version of linear logic that has a theory of proof nets; to fix things
let us assume it is multiplicative cyclic linear logic (without constants), whose theory of
proof nets is discussed in [35, 3, 49–51]. The salient feature of cyclic linear logic [73]
is that the formulas in a sequent are arranged in a total cyclic order. Let U be the set of
formulas for that logic, with the involution being negation as it is ordinarily defined in
one-sided linear logic. Define a structad � as follows: if � is a set of polarized (i.e.,
typed) variables, then an element � # � 
<� � is a pair ���-���6� where � is a total cyclic
order on � and � a cutless proof net structure on the sequent given by the formulas
and that total cyclic order. Given � # � 
<�V��	 N � and � # � 
1� ��	 N � � then � L � Q � is



obtained by doing cut elimination on �V��� via the pair of formulas
G � G Y . The reason

this defines a structad is because cut elimination in proof nets is associative (e.g., [7]).
So the conclusion is that there is an obvious “forgetful” map � � � � 9

95����� � (�# , that
keeps only the total cyclic structure of the context, i.e. that sends ���-���6� to � . This shows
clearly that the notion of polarity is very general, and that a polarity structure can be a
big set, with additional structure.

Example 39. Let � be a structad. We define a two-sided structure over � to be a mor-
phism of structads � � ��� l �

. The map � determines a map ���O�5� �(� ��U?� l of po-
larity structures, and the converse is true: once we know ���O�5� �(� , the fact that l � 
<� �
is always a singleton entirely determines the maps � 
<� � � l � 
 �(� � . So a two-sided
structure is simply the choice for every polarity [ # U of a side �&�X[-� # g-oS�3m^k , such
that � �f[DY(� � � �&�X[-�.��Y . We can read this as saying that � tells us, for every structure
� # � 
<� � , if 	 # � is to the left �5mO� or to the right �5oO� of the turnstile. Naturally this
precludes U from having any fixpoints for the involution. The same way we can define
an intuitionistic structure for � to be a map ��� � . This time, not only do we know
what’s left or right, but we are assured that there is always a unique thing at the right.

A (poset-enriched) typed operad (also called a colored operad or a multicategory
with permutations) is a pair � � � �(� where � is a structad and � an intuitionistic struc-
ture. What we are doing is defining a very standard concept by the means of our new
technology. In other words, Let ���hU (the set of types, or colors, or objects) be the
set � � � *2+-�Xg-m^k-� , ie., all polarities [ such that4 � �f[D����m . Then if � # � 
<� � ,
the map � tells us that there is a unique w } � # � whose polarity is not in � . So if
� W w ��gj	 } �+ ��{F{�{X	,} �� k , we can view � as an ordinary term judgement 	 } �+ �F{�{F{���	,} �� � �Z} .
Because of the polarities a permutation of � has to leave w fixed. This observation is at
the root of the traditional definition of typed operads.

So traditionally linear algebraic theories have been associated with the pair: ordi-
nary term/typed operad, where the left side represents syntax and the right side algebra.
We argue that the pair: reversible term/structad is the more fundamental concept, being
technically simpler and more general. Moreover we have just seen that the traditional
pair can be recovered by the means of a simple map of structads.

Example 40. A multicategory is a pair � � � �(� where � is a structad and � a map
�I� � �2�3��4�6�7 8 9 . The target structad being an operad, � inherits an intuitionistic struc-
ture, and a multicategory is a typed operad in the sense above. But, given � # � as
above, the intuitionistic sequent 	 } �+ ��{F{�{F��	�}X�� � ��} that it defines is such that the set
of variables has a total order structure on it in addition. So it is only natural to num-
ber/write these variables in that order. Multicategories were defined by J. Lambek more
than thirty years ago [38, 39] as the algebraic counterpart of substructural deductive
systems that were around at the time. He also remarked that the set of deductions in a
context-free grammar has a natural multicategory structure. The study of typed operads
and multicategories is in full expansion [19] (for an up-to-date survey, see [42]), one
direction of research being the “quest for higher order”, which is of great interest for
homotopy theory and mathematical physics. Higher-order concepts have recently been

4 it would be more in keeping with tradition to use �������

	� ��
 �
� instead, but this is consistent

with our convention of putting the variables “inside” the contexts.



given a proof-theoretical meaning by G.-F. Mascari [47], and they were proposed as a
general framework for the foundations of mathematics by Makkai [46]. Another related
area of pursuit has been axiomatization in a general categorical framework, which orig-
inated thirty years ago [10] and has been twice rediscovered independently recently [41,
27].

Let 
 be a tree signature over polarity structure U . We write �
� 
�� to denote the free
structad generated by 
 , i.e. the structad whose structures are the reversible terms over

 , without any additional (in)equations.

The following result is the standard way (known as a “universal property”) of ex-
pressing by the means of algebra the fact that reversible term structads are free, i.e.
without constraints/axioms.

Theorem 3. Let 
 be a tree signature over U , and � a structad over U . For every
� # 
 suppose we have chosen a pair �<���-����� � , where ��� # � 
<��� � and ��� is a context

of the form ����� gF	 +^9�� � �3P �
	� ��	 +n9�� � �3P + 	+ �F{�{�{���	 +n9�� � �3P � 	� k . Then there is a unique morphism
cd���
��
��a� � above identity that maps every � # 
 to ��� . Furthermore, if �	�
� ���3M�� is
another family �
� # ��� such that ��� ����� for every � , then the unique �d���
� 
�� � �
that maps every � to �
� is such that ch��� .

Proof. Let us rephrase the phrase “mapping every � to � � ” into a more precise, if
perhaps pedantic way. The defining property of c is that for every context � � of the
form above, the unique element �4b # �
��
�� 
<� � � which is obtained by putting the vari-
ables into the atomic symbol � according to the port numbering, is mapped to � � , i.e.
c � ���jb �(� � � .

The construction of c is by induction on the number of symbols of 
 on the re-
versible terms 	 that inhabit �
� 
�� . Suppose 	 is given, in context � . If it has a single
symbol, there is a unique � # 
 and a unique renaming ���.����� � respecting the
port numbering, and this forces the value of cE� 	 �a� � 
 �����	���F� . If it has more than one
symbol, we can write 	 ��
 L � Q � where 
^� 	 have strictly fewer symbols, and this forces
cE� 	 �V�>cE��
4� L � Q cE� �-� . Uniqueness is proved as follows: if 	 ��
4b �j� � �4b then due to the
tree structure of reversible terms there either will be

– a decomposition of the form 	 ��
4b��F� � 	 b L � Q � with 
 ��
Fb��F� � 	 b and �-b%� 	 b L � Q �
– or a decomposition of the form 	 � 
 L � Q 	 b b �F� � �-b with 
jbz��
 L � Q 	 b b and � � 	 b �F� � �-b .

This is proved by choosing a variable � # � and using pattern-matching on the terms
	�� � � � � � � � ��
 � � � , etc. If 	 b or 	 b b is empty, there is nothing to prove. If 	 b or 	 b b is nonempty
then we can use induction hypothesis on the smaller words to show that cE� 	 �a�>cE��
j� L � Q
cE� �D�a�?cE��
 b � �F� � cE� 	 b � and we get that c is uniquely defined. The proof of the second
part, that c���� is done with the same induction steps, using the Congruence rule.

Definition 15. With everything as above, if the family �<� � ��� � � � above is such that c is
surjective we say that �1� � ��� � � � is a family (or set) of generators for � .

Let cd� �I� � b be any map of structads, and for simplicity let us assume c is above
identity on the polarities. Let � # � 
<� � be a structure in � and � be an isomorphism
���F�<�V�.c � �	�����V���1� ����� . The definition of a map forces

c ��� � 
 ��� ����� � � � b 
<c���� � c � �	��� � � � b 
 ��� � c � �	��� � � �E{



In other words, if a structure is in the image of c , then any isomorphic structure is also
in the image of c . So a family of generators can be chosen in such a way that two
isomorphic structures in it are necessarily equal, which eliminates quite many redun-
dancies.

Lemma 2. Every structad � has a set of generators.

Proof. We can always use the “brute force” method and choose one representative for
every isomorphism class of structure, ranging over all the structures �1�a� ��� in � .

We can immediately make use of the two results just above. Let
� � �<Ua� 
 � � 
�� � � �

be a reversible order-enriched theory. For every axiom
G # � 
���� � there is a unique

number �2N which is the number of variables needed to express it, and the axiom
G

is
of the form

�2N��>	 }��� ��	 } �+ ��{�{F{��.	 }f���� � � � 
FN�P + � 
FN�P y��
where 
jN�P + ��
jN�P y # �
� 
 � 
<�2N � . Let 
 b be a new signature, obtained by taking, for everyG # � 
�� � � a unique � N # 
 b with valence � N and sort

	 } �� �.	 } �+ ��{F{�{��.	 }X���� � ��� � NC{
The previous theorem allows us to define two maps c + �;c y ���
� 
 b �(� �
� 
�� , simply by
specifying that c ��P � � � � N � � 
 N�P � for 
 � 1O��� . Let now � be the structad associated
to the theory

�
. There is a map �d���
� 
�� � � that sends every atomic � # 
 to its

equivalence class in
�

, and thus every � # � 
<� � is also mapped to its equivalence
class in

�
. For every axiom

G # � 
�� � � we do have that � N � � 
 N�P + � 
 N�P y in � 
<� � N .
Therefore since c �<P � � � � N �a��
 N�P � the preceding theorem tells us that � o"c + ����o"c y .
Theorem 4. The map �d���
��
�� � � has the following universal property: for any
structad � b and any map � ���
� 
 � � � b above identity such that � o&c + � ��o c y
there is a unique

� � �I� �Cb with
� o
� ��� .

Before we prove this we need the following

Lemma 3. Let � � � 

� 	 be a theorem of
�

. Then � ��
4� ��� � 	 � in � b 
1� � .
Proof. This is just a simple induction on the proof of � � � 
 � 	 .
The proof of the theorem proper can begin. Let � # � 
1� � be given. Since � is an equiv-
alence class of reversible terms in �
��
�� we can choose 	 # �
��
�� 
<� � with �E� 	 � � � .
Therefore � � 	 � is a likely candidate for

� ����� . Suppose ��b�� � and 	 b # �
� 
 � 
<� � is
a representative of ��b . By definition we have � � � 	 b�� 	 , by the Lemma above we get
� � 	 b � �	� � 	 � and this shows:

– That
�

is uniquely defined, because �Fb�� � iff � � � �_� ��b and � � � ��b(� � in
�

.
– That

�
is monotone.

There is a little more to check to show that
�

respects all the properties of a map of
structads.



Notice that to have a pair of parallel maps c + �;c y ���
� 
 b���� �
��
�� above iden-
tity between free structads is absolutely equivalent to having a reversible theory with
signature 
 : we have shown how to go from the latter to the former, and the reverse
direction is just as simple: every � # 
�b can be assimilated to an axiom, given by
��� ��� c + � � �&�'c�yO� � � .
Definition 16. Let � be a structad. A presentation for � is a pair c + �;c y ���
��
 b � �
�
��
�� of parallel arrows between free structads such that � is isomorphic to the term
model of the theory defined by c + �;c y � ��� � b .
In other words a presentation is the algebraic way of defining the concept of a reversible
theory inside the world of structads.

Theorem 5. Every structad admits a presentation, i.e, every structad is isomorphic to
the term model structad of a reversible theory.

Proof. Choose a set of generators for � , getting a signature 
 and a surjective map
� ���
� 
 � � � . Let now

�
be the structad defined by: a structure 
 # � 
<� � is a pair

��
 + ��
 y � of reversible terms in �
� 
�� 
<� � such that � � ��
 + � � � � ��
 y � in � 
1� � . If 
 �
��
 + ��
 y � #

� 
<� � 	 � and 	 � � 	 + � 	 y � #
� 
1� � w�� we define 
 L � � 	 as ��
 + L � � 	 + ��
 + L � � 	 y � ;

it is very easy to show that � ��
 + L � � 	 + � � � ��
 y L � � 	 y � in � 
1�'�'� � . The rest of the
proof that this is a structad will be left to the reader, as well as the fact that there are two
maps of structads

�
+ �
� yO� � � �
� 
�� , defined by

� � � ��
 + ��
Fyj�(��
 � . Now choose a set
of generators for

�
, getting a new tree signature 
 b and a map cd���
��
 b � � �

. If we
define c + �

�
+ o c and c�y
� � yVo c , we get a pair of maps c + �;c"y^���
� 
 b�� � �
� 
 �

between free structads, thus defining a reversible linear order-enriched theory. Let �(b
be the term model structad of that theory, and �d���
� 
�� � �Cb the universal map of
Theorem 4. By definition we have that � o � + � ��o � y and thus (Proposition 6)
��o c + � ��o c_o � + � ��o c?o

� y � ��o c y . Therefore by the universal property
of Theorem 4 there is a map of structads ��� �Cbx� � with ��o
� ��� .

�Eb

�

��

�
��
 b � � // �
�
� //�
�

// �
� 
��

� <<yyyyyyyy

�
""EE

EE
EE

EE

�
If we show that � is an isomorphism of structads we have proved our claim. This map
is necessarily surjective, since � is by definition and �'o �@� � . So all is left to
prove is that if ����� are structures in � 
<� � then there are ��b � �ub in �Eb 
<� � with
���	� b �&� �V��� ��� b � � � ; this will show monotonicity and injectivity in one fell swoop.
Choose 
O� 	 # �
��
�� such that � ��
4�(� �a��� � 	 �(��� . By definition we have ��
^� 	 � # �

.
Since c is surjective there is � # �
� 
 bK� such that cE� �D�7����
O� 	 � . We know that a
generator � # 
�b in context � is interpreted as an axiom of the theory that constructs
�Eb , namely � � � cE� � + � � �.� ��cE�

� y � � �.� . By induction on the atoms of � , we will
get � � � cE� � + � �D�.� ��cE�

� y � �D��� , in other words � � � 
�� 	 . Then by taking ��b��
�E��
4� ���"b%���E� 	 � we have proved our claim.



The moral of the story is that the two ways of seeing structads, the “logical-syntactical”
and the “algebraic-semantical”, are complementary and partially interchangeable. Some
structads we encountered, like the ones associated with order varieties, were first ob-
served in what mathematicians call “the real world”. Other structads, like the ones that
interest linguists, are built from syntax, with generators and relations. But it is very
profitable to have access to both ways of seeing things. As a matter of fact, from now
on we will freely mix the notations we have kept separate before, when we wanted to
distinguish the “logical-syntactical” objects from the “algebraic-semantical” ones, so
we now allow ourselves to write things like � L � Q 	 and � � L�� .

Naturally, for most logical applications we will like to our structads to be presented
by a small (i.e. finite or recursive, or maybe recursively enumerable) set of generators,
and to be decidable. It is well-known that a good way, perhaps the best, to give a deci-
sion procedure for an algebraic object defined by sets and generators, is to describe that
object by the means of semantics. For example, a group presentation gets much more
meaningful when it is interpreted as the set of permutations of some set-with-structure.

Example 41. Let � + $<( � be the structad of all permutations. It is easy to show (cf. Ex-
ample 31) that the three-element cyclic permutation ��	 � wS� generates the substructad
� ����� + $<( � * � 8 � of all cyclic permutations over sets of more than two elements (the 2-
cycle does not need to be counted as a generator, since it is the identity). If we add the
fixpoint �<	%� , we get � ����� + $<( � , all cyclic permutations over all finite sets. If we add
the two-fixpoint permutation ��	�� � � � , let us show that with these three we can generate
the whole � + $<( � . For ��� 1 let � � denote the � -transposition permutation, in other
words � � � ��	 + 	%b+ ����	%y�	%by �2� �%�j��	 � 	zb� � . We have that ��y � ��	 + 	%b+ wS���j� Q � � 	zy 	%by � , that� + is identity, and that � � 4 + � �.��� � *2+ ����	 � wn� � �j� Q �;� � 	zb� ����	 � 4 + 	zb� 4 + �.� , where the
first permutation is obviously isomorphic to � � and the second one to ��y . So all the� � are generated by ��	�� � � � and the three-cycle. Let now � ��� G +��,{�{�{j� G � � be an ar-
bitrary permutation, with its decomposition in cycles given by the � G � � . Since every
cycle is nonempty, by renaming we can ensure that

G � contains the variable 	 � but not
the variable 	%b� . If H � is the cycle obtained by

G � ! 	 � #-	zb� & it is easy to see that

� �
�
{F{�{ � ��� � L � � L � � H + � L � � L �� H y � {�{�{ � L � � L �� H � {

A corollary of this is that �<	%��� � � and the three-cycle generate all permutations without
fixpoints, wich cannot be obtained without the one-element fixpoint.

Notice that ��y generates the substructad of all involutions without fixpoints, and
g�� y �F�<	%�3k the substructad of all involutions.

The interested reader can try to find the relations that hold between the generators
of � + $<( � , which is not very hard.

Example 42. Let � � � 7 � 9
be the structad of all functions (Example 20), so a structure

� is a function � �;�
��� , living in context � # � ���%7 � 
1� �'� � , with everything in
� of polarity m , everything in � of polarity o . Define the following (we do not bother



to name the elements/variables of the sets, only their polarities):

W	� the function gDmn�3m^k �@g-o^k
W H the bijection gDmn�3mSk��@g-on� onk
W�� the function gDm^k � g-on� onk
W'A the function � � gDo^k

When we say “the” function, what we mean is that any choice of a function satisfying
the specification above will do, since any two choices will necessarily be isomorphic
structures. Then it is easy to see that

– The substructad of � ���%7 � 9
generated by H is the structad of all bijections between

nonempty sets.
– The substructad generated by H ��� is the structad of all injective functions between

nonempty sets.
– The substructad generated by HC� � is the structad of all surjective functions.
– The substructad generated by HC� ����� is the structad of all functions with nonempty

domain.
– The substructad generaded by H � �����z�.A is the structad of all functions with nonempty

codomain.

And if we want the empty function to be part of our structad, we have to add a struc-
ture/generator in � 
 ��� .
Most structads of interest turn out to have “natural” sets of generators.

Definition 17. Let � be a structad. A prime structure is a structure � # � 
<� � which
is not identity, and such that � � � L � Q � implies that �'� � or � � � . A structad is
said to be prime-generated if its prime structures form a set of generators.

Example 43. It is very easy to see that every one of ��	 � 	�� �F�<	%� �F��	�� � � � in � + $<( � and
H ���z� �Z�.A in � � � 7 � 9

in the two examples above is prime, and so that the structads
involved are prime-generated.

Example 44. We have also seen that �<	 � � �1w - � generates the substructad � �
7��
9���*

�?8 � �
� + $<( � of involutions without fixpoints. In that structad it is prime, while it is obviously
not in � + $<( � .

Example 45. All free structads are prime-generated, the primes corresponding exactly
to the elements of the signature.

Example 46. Here is an example of a structad which is not prime-generated: take l as
the set of polarities. Let � be a group, with composition denoted multiplicatively. Let
� be the structad defined as

� 
<� �(�
�
� if � is of the form gF	�pO� � sDk .
� otherwise.

Composition is defined by the group law: r L�� � Q	� � �'r � . Then since rE�
� r y � L � Q � r%*,+��
the primeness of r would imply that either r �Tr y , in other words r � 1 , or r �Tr�*,+ ,



in other words r y � 1 . But if 1 is prime the group is necessarily trivial, so this forces
r to have order � . We will let the reader show that in that case r can indeed be prime
but the group � has to be the two-element group, which leaves an ample selection of
structads that are not prime-generated.

Example 47. Except for � � 9
95����� � (3# which is isomorphic to � ����� + $<( � , we do not

know much about the prime structures in the structads associated to cyclic orders and
cyclic order varieties. We conjecture that all these structads are prime-generated, but de-
termining the set of all these primes is an open problem. This is the reason that prompted
the invention of series-parallel order varieties [68], which profitably can be seen as the
substructad of � � (�#���� ( generated by the three-element cycle � , (i.e. such that � ��	"� � �.wS�
holds in the notation of Example 27), the three-element discrete (empty) order varity
� , and the unique order variety structure � one the one-element set. There is still an
open problem in the much smaller world of series-parallel order varieties: if the axiom
	u� � �;w � � � � � sufficient to axiomatize that structad?

5 Formal systems and cut elimination

In this section we will show how to build a multiplicative linear propositional deductive
system out of a given structad, and some additional information having to do with the
choice of connectives. But before we begin we will give a summary of the correspon-
dence between structads and reversible theories, in the hope that sine readers will be
able to read this section without fully mastering the previous one.

Structad �d� Reversible theory
Structure in a structad ��� Reversible term
� 
1� � ��� The set of reversible terms in context �
Map of structads �d� Interpretation of a reversible theory

into another
The free structad �
� 
 � over a tree
signature 


��� the theory generated by 


A map �
� 
��(� � �d� A choice for every symbol in 
 of a
term of � of the right type

The structad � �d� The associative-commutative theory
with unit

Interestingly nothing in the work requires that the structads/theories involved be
decidable, although the reader can add that assumption, which is quite normal for a de-
ductive system. We use the sequent calculus, which is by far the most popular approach
to defining substructural logics, although there are examples of the use of natural de-
duction [59, 60] in the non-commutative world.

Given two polarity structures UV��U�b it is quite obvious that their Cartesian product
U � U�b is also a polarity structure, defining the involution by �X[ �n� Y?� �f[DY �SY(� . Also,
the projections U � U�bx�)U , U � U"bx��U"b�� obviously respect the involution.

Let � be a structad on the polarity structure U and � # � 
<� � a structure. Suppose
we want to associate a logical connector to � . One thing which we certainly have to



do is to decide which port of � (equivalently, which w # � ) is the conclusion (or
principal port, in the standard terminology), which will then immediately mark all the
other ports/variables as premises. In order to do this we introduce a new set of polarities� �
g��S���xk , with �-Y ��� , along with the flat structad �h� � �

defined by

� 
<� �(�
� g �Sk if � contains exactly one 	��

� otherwise {
So � and � are isomorphic, with the correspondence o � �x� m � � . The reason for the
distinction is that these two structads are used in different ways; � is used for the proofs
of the formal system, and is needed only if we want that system to be intuitionistic,
while � is used for the types of the system and cannot be done without.

So the natural polarity structure for a primitive � associated to the structure � above
will be U � � .

Definition 18. Let U be a system of polarities. A framework 	 above U is a diagram
of structads

�
��
�� � ( //



��

�

�
where � is called the structad of contexts, 
 is a tree signature over U � � called
the choice of primitives, and

� �,)*� structad maps. We require that
� �,)*� be above the

projections U � � �)U and U � � � �
respectively. We say that a framework strongly

covers � if
� � ���
��
�� 
<� � � � 
1� � is surjective whenever � �� � ; let us call this very

slightly weakened form of surjectivity quasi surjectivity.

So a framework can be defined more pedantically as a quadruple � � � 
 � � �,)*�3� .
We have to think of )*� as a function which assigns to every primitive � # 
 its

orientation, i.e., its choice of conclusion port. From now on until said otherwise we
assume we have a strongly covering framework 	 , with the same notation as above for
its constituents.

So because of )*� a primitive � # 
 of valence � � 1 , i.e.

	
� } � � 	� ��	

� }���� 	+ �.	
� } � � 	y �F{�{F{���	 � }f�
� 	� ��� � (4)

can be seen as an ordinary � -ary function symbol, and we can dispense with the
�

information, so this can be abbreviated to an ordinary term:

	 }��+ ��{�{F{ ��	 } �� � � }
�
� ��	 + �F{�{�{���	 � � { (5)

We will denote its projection
� �5�,� on � by � � . But now there is no intuitionistic

structure left in general and we have to write

	 } �� ��	 }��+ �.	 } �y ��{F{�{ �.	 }X�� � � � � (6)



So the free structad �
��
�� has a split personality. Its structures have to be reversible
terms because it is mapped to � . But because of )*� they can also be seen as an ordi-
nary terms. This is what makes the best choice of notation for its terms/structures (e.g.
boldface vs. ordinary vs. Greek) rather problematic.

A primitive is not a connective yet. To each primitive we have to associate a pair
of connectives, i.e. a positive-negative, or tensor-par pair. Given � # 
 of arity � its
associated positive ��� will always have an � -ary introduction rule while its associated
negative � � will always have a unary rule. So we get two new tree signatures 
��&��
��
over U � � , with the same cardinality and valences as 
 , and the following polarities:

– The signature 
�� is isomorphic to 
 . In other words for any � # 
 the associated
� � # 
�� has exactly the same polarities as � , so we can reuse the presentation of
(4,5), e.g.

	 }.�+ �F{�{�{���	 }X�� � � }
�
�� �<	 + ��{F{�{��.	 � � � (7)

this allows us to define the equivalent of
�

on the pars, so we get � �� �_� � , as in 6.
– For every � # 
 , also assumed to be as in (4,5) we associate a ��� # 
 � , with the

following signature:

	 }
�
�+ �F{�{�{F��	 }

�
�� � � }��� ��	 � ��	 � *,+ ��{�{F{��.	 + ��{ (8)

In other words the U -polarities are the reverse of those of � and �	� , the
�

polarities
are the same, and the order of the operands of �	� is the reverse of that of ��� . This
last stipulation is purely a writing convention, whose usefulness is well known
when dealing with non-commutative calculi.

As we did for context variables, we will assume a set of unpolarized type vari-
ables; they will be denoted by letters like �7�.��b��.�V��
 ��������{�{F{ and we assume that to
every type variable � there exists a negated version � Y . So our set of type vari-
ables looks like � �
� �	� � � � ��� �	� � Y . Then we take the set of atomic types to be� � � � � �
� �	��� � � �
� �	� � Y � � U . This set is equipped with an involution, given
by ��� } ��Y�� �6Y�} � �F����Y"}3��Y ����} � . Notice that an alternative approach, more in
line with what we have done with the context variables, would be to define � � �
� �
� �	��� � U , with ����} ��Y �>� } � , but this would create the possibility of type variables
that are their own negation, e.g. �<� q ��Y'�T� q ; there is nothing wrong with this from a
formal point of view, the problem is more that it clashes with tradition, people not being
very enthusiastic about a negation operation that does nothing.

As we have seen in Example 38 the types are to be seen as an expansion of the
polarity structure U , and form a polarity structure by themselves: the set � �
� 
 ��� 	_� of
types associated to a framework 	 is given by the closed ordinary terms associated to
free structad �
��
���� 
���� � � � . There is an obvious map

� �1� �
� 
 �V�)U that assigns
the polarity of the last connector/variable as an ordinary term (7,8), and that we also
denote as

� � G �a� G � , along with an involution on � �
� 
 � defined as usual as

���z� G + ��{F{�{ �
G � � Y �����z� G Y� ��{F{�{�� G Y + ����z� G + ��{F{�{ �
G � �.Y �����z� G Y� ��{F{�{�� G Y + � �



and by the just-defined involution on type variables. So we get that
�

is a map of
polarity structures.

The definition of a framework is very general, and its real advantage is not that
generality, but its simplicity: it is all which is needed to define the sequent calculus
and prove cut-elimination. The frameworks we will encounter in practice will be more
specific. But we contend that the concept of a framework can profitably be made more
general, by replacing �
� 
 � by a structad which is not necessarily free; we will not
pursue that line of thought in this paper.

To see what frameworks are about, let us look at them from the point of view of the
structad � . If � # � 
<� � is an � -structure, and � # � a structure/term in �
��
�� such
that � and

� � ��� are isomorphic, we can always transport � to a �;b # ��b with
� � �Xb �(� � .

So we can arrange that the symbols � # 
 such that
� �1�,� is isomorphic to � have their

chosen contexts such that
� � ���(� � actually, and we can define the subset

� *,+-����� � 

of primitives that are mapped to � . Notice that if � �;�Eb are U � � -contexts such that� ��� � � b �_� , their unsorted variables will coincide with those of � , but they do not
have to be identical contexts, because of the presence of

�
-information. All we know

is that there will be unique 	 # � ��	�b # ��b with 	 � } � 	 ��	zb � } � � 	 , the ports of � which
are considered to be the conclusion of the connector ���x����� � respectively. Suppose that
	���	%b (forcing �@����b ), then we will see below that the connectors �	�x����� � and
��� � ��� � have the exact same introduction rules, so they will be provably equivalent in
the deductive system assigned to 	 , in other words this particular 	 has redundancies
and one of �%�3��b can be removed without any real changes.

So we can make a stab at removing redundancies.

Definition 19. Assume
G

is a set of generators for � that does not contain isomorphic
pairs (see Definition 15), and let 
�b be a tree signature which has a single symbol � �
for every � # G (with the same context, need we say). An

G
-regular framework is a

framework 	 such that its signature 
 , seen as an ordinary term signature, is a subset
of the derived signature of 
�b .
Since

G
is a set of generators, it is a necessary condition that every � be represented by

a symbol in 
 , or else
�

will not be quasi-surjective. But this is not enough to ensure
the quasi-surjectivity of

�
, as we will see. The meaning of the strong covering condition

is that it ensures that � is really the natural structad associated with 	 ’s logic. In other
words, if

�
is not quadi-surjective, we have the possibility that some structure � # �

does not appear in the sequent calculus associated to 	 , meaning that we could have
used a smaller structad and generated the same logic.

So, if it is seen as a tree signature, 
 will be the universal reversible extension of a
subset of the ordinary signature associated to tree signature 
db .
Example 48. There is always a largest

G
-regular framework, obtained by taking the

full ordinary derived signature. In particular, if � has a “canonical” set of generators
(for example if it is prime-generated), then this full framework is “the” logic associated
to the structad � . But the concept of a (strongly covering) framework gives a precise,
algebraic definition of a concept of fragment of a “full” logic, and so allow us to do a
systematic search for all these fragments.



Example 49. Let � be � q� (3$<$�� 8 7 , in other words the free structad over i with one gener-
ator of valence three (Example 12); choosing a context 	 � ��	 + ��	 y � � � for this generator,
let us recall the reversible term notation associated with the derived signature:

	 � ��	 + ��	 y � � ��� 
�	 � ; y 	 + �.	 y � � 
<	 + ;
� 	 y ��	 � � � 
�	 y ; + 	 � ��	 + �

We claim that the only possible g �(k -regular framework is the one with the full derived
signature, 
��`g0; � �'; +4�'; y k . This is because of what we have already remarked in 1 � ,
that the orientation tabs of an arbitrary structure in � q� (3$<$�� 8 7 can point in all direc-
tions. In other words, let 
 be a signature that makes

� ���
� 
 � � � an g �ak -regular
framework. Let � � � � be an arbitrary structure in � � (�$<$�� 8 7

. By assumption there is an
ordinary term ��bSW gj	2k � � in �
��
�� with � � � � � � � (here ��b only differs from � by
the polarities of its variables). In other words � � � �6� 
 � �.	 � . So � is actually � � L�� . But
we know that because � has been arbitrarily chosen, any of the symbols ; � �<;x+4�'; y can
appear in � . So 
 has to contain all three.

So the conclusion is that the logic associated to � � (3$<$�� 8 7
has to have three binary

pars and three binary tensors.
This argument applies when � is any free structad over

�
. In other words in general

such a structad can have a unique regular framework associated to it.

Example 50. Let now � be � q� (3$<$�� 8 7�4������ (Example 13). This being a quotient of the
previous example, it has a single generator, and we can use the same notation as before.
But this time we have

	 � ��	 + �.	 y � � 
<	 + ;
� 	 y ��	 � �a� 
�	 + ; + 	 y �.	

� �(� 
<	 + ; y 	 y ��	
� �

so in order to make
�

surjective we have to choose only one of ; � �';t+-�'; y to define

 . More than one symbol will be redundant. The logic defined by this 	 is the one
described in [17, 61].

Example 51. Let � be equipped with an intuitionistic structure � � � � � . Then there
is an additional “canonical” regular framework structure associated to a generating setG

: the one where, for every � # G a single primitive is chosen for 
 , the one whose
� -port corresponds to � ’s o -port. The logics associated to these frameworks are the
“tensor-only” fragments of intuitionistic calculi, which are studied by category theo-
rists, because models of them abound in nature.

Example 52. Let � � � �2�3� , the ordinary (intuitionistic) theory of a associativity
(semigroups). We already know two frameworks associated to it: one is the full one,
whose logic is the original Lambek calculus � : remember that since we do not have a
unit, all contexts must have at least two variables; since one of these has to have po-
larity o (i.e. be the conclusion), we will have a calculus where the left part of sequents
cannot be empty, just like the one Lambek defined for linguistic purposes. The other
framework we already know is the tensor-only fragment as described above. But there
are other sub-frameworks of the full one. If � � �=�D+-�=� y are the operators of the ordinary
signature, with, as usual

	 p � � p �.w s � � 
�	�� � � �.w�� � 
�	"� � � + w�� � 
 � �;w/� y 	 � �



(we have used rule Perm to makes things more in line with practice). We know that
every structure can be written as

	 p + �.	 py ��{�{F{��.	 p� *2+ �;w s ���
� 	 + �

� 	zy � � �%� � � � 	 � *2+ �.w �
where the bracketing can be dropped because of associativity. But this can be rewritten
as (by repeated use of the first equation just above):

	 p + ��	 py �F{�{F{���	 p� *,+ �.w s � �
� 	 + ��	 y � + � �%�%�.	 � * y � + �<	 � *2+ � + wn�2� �%� � �

wich shows that �^+ is enough by itself to make a regular framework since every structure
can be presented using only that primitive; the logic generated this way is the B -only
fragment of the Lambek calculus.5 The same way, by choosing � y as the only primitive
we can get the # -only fragment, and any nonempty subset of g � �3BS� #nk will give rise to
a framework.

To all the examples we have just given we can add a unit; our logic will then have a pair
of constants, which by tradition can be denoted

�
(positive-tensor) and � (negative-par).

Notice that we can use such a structad with units with a language that does not have
the constants; this is standard practice. This mean that the concept of strongly covering
framework is a little too strong to catch all conceivable fragments of logic. It can be
weakened slightly but more conditions have to be added to the structad � .

Remark 6. Suppose � is equipped with a two-sided structure � � �`�)l �
, not necessar-

ily an intuitionistic one. Then we can use a more traditional notation for the connectives
and types, and have, say a “real” implication symbol. We still want an involution �XW�� Y
because we want a polarity structure � and a map of polarity structures �?�@U to the
set of polarities of � , but we can work in such a way that this involution will not have
to be defined by structural induction on the set of types; instead, for every primitive
� # 
 assign a single connective � � instead of the two, and define the set of types as
being built from these connectives, using only the set � �
� �	� � of positive type variables
(no negavariables anymore). Now define � by � � � �
� �	� � � l , and the involution by
� G [D� Y �h� G [ Y � . There is a correspondence with the ��W � set of types (which is more
general) that the reader can work out. Notice that if a negation is present in the system
it will have to be defined via a logical symbol, with the standard introduction rules of a
two-sided system.

Definition 20. A (logical) sequent is an expression of the form

� � 	 � � G � ��{�{F{��.	 � � G �
where

G � �F{�{�{F� G � are types, for every ����
a� � , 	$� is an algebraic context variable of
polarity [ � � G �� , and � is an element of � 
�	 � ��{F{�{��.	 � � , in other words 	 � ��{F{�{F��	 � � � � .

So � is the context structure on the formulas
G � �F{�{�{F� G � . This approach allows us to

put the formulas
G � in any order we want, since the structural information is contained

in � and the assignment of variables.

5 If we use the most frequent way of writing its introduction rule, but some people would say it
is the � -only fragment.



We will abbreviate such a context as � �'� , and use the notation � � for the restric-
tion to its context variables, i.e. � � � � � .

Given a sequent � � � we use the standard notation W � � to represent the assertion
that � �`� is provable. We define the sequent calculus6 associated to our framework
by:

W � LOP Q � 	�}4�.��}F� � }
� �.�6Y"} � �

�
W
� � � 	"��� � � G + �F{�{�{��

G � �
W � ��� ��� P ��� � L � P������ P L � 	 � � �x	 + �

G
+ ��{F{�{ �.	 � �

G �
� �

W � Q4P � � � � � � � �� P	�����fP � � � � �� 	 � � ��� � � G � � G � *2+ �F{�{F{ �
G
+ � �.� + ��{�{F{��;� �

� �W � � � + �t	 + �
G
+ �%�%� W � � � � �x	 � �

G �

W
�'� ��� � � � � � 

� � �.� ���

W � �
W � �a�.	u� G W � � � � � G Y � 
 �W � L�� Q � �a�3�

Example 53. Sometimes the structural structad is simple enough for an approxima-
tion of traditional notation to be used. For example let � be the permutation struc-
tad � + $<( � . It has three canonical generators (Example 41), namely �<	 � wS� �F�<	%��� � � and
��	%� . Since ��	 � wn� obeys the axiom of Cyclicity, because of Example 50 we know that
it can be assigned a single pair of binary connectives, call them � � � . By the same
kind of argument (stability of the structure under the permutation that exchanges 	u� � ),
the two-fixpoint permutation needs only a single pair of unary connectives to be fully
represented in the logic, call them 
 ��� , 
 being the positive one (unary tensor). A
permutation on a finite set (decorated with formulas) is a structure that can easily be
represented on a single line, by the means of the sum-of-cycles notation, as we already
have done extensively. For legibility we will add commas inside cycles, and get things
like � � G �;H �,��� � G �;H �,���
� , which would more traditionally be written as something
resembling � G �;H ��� � G �.H ��� . Let the letters �V�;� denote lists of formulas, so �1� �
is the associated cyclic permutation, while � � � denote lists of cyclic lists, i.e. permu-
tations that can have more than one cycle. What is usually called structural rules (apart
from Axioms and Cut) correspond to transformations on the notation that do not change
the structure: so in our case we have

W �'�<�V� G ���
W � � G �.� ���

��� � W �'�<� �,�1�d���
W �'�1�d�,�<� ���


 � � �

W � G � G Ya� �
� W �'�<�V� G � W�� G Y&�3�����

W � �<�V�;�d���
� 
 �

6 We have chosen a calculus where the only axioms involve atomic types; it is not hard to show
the identity is derivable for every formula.



In this notation the introduction rules are:

W � �<�V� G � W��<HC�;�d���
W � �<�V� G �8H �3�d��� � W � �1�a� G �.HC�;�d���

W �'�<�V� G �8H �3�d��� �

W � �<�V� G �
W �'�<� �,� 
 G � 


W � �1� �2� G �
W �'�<�V��� G � �

W�� � �
� W � �<� �

W � �1�a� � � �

Example 54. The example above needs only minor changes to apply to the structad
� + � ( 9 of partitions. In this case the cyclical exchange rule Cyc has to be replaced by
the stronger, ordinary Exchange rule inside the “cycles” (which are now the classes of
the partition):

W �'�1�a� G �.HC�;�d���
W �'�1�a�;H � G �;�d��� �����


 � � �
and the presence of an order on structures has to be expressed by an entropy rule

W � �<�V�;�d���
W � �1� �2�1�d���



� � �;� �

Example 55. If we now take the structad � �
7��
*
� 8 �

of involutions without fixpoints,
we know it has a single generator �<	 � � �1w - � . This means ternary tensors and pars, and
it does not take long to see that a single tensor and a single par will make for a full
framework. A sequent looks as above, except that all the cycles are of the form � G �.H � ,
with only two formulas. The introduction rules are

W �'� G � G b � W � �1H �.H b � W � � � � � b��
W � � � � G b5�.H b��,� ��� G �.H ���
� ��� b�� � W �'� G �;H �,��� � � �

W � � ��� G �.H ���
� � � � �

5.1 Cut-Elimination

We can state and prove the expected result

Theorem 6. Any proof can be tranformed into one that does not use the Cut rule.

The proof of this depends on the following

Lemma 4. Let
�

be a proof in the sequent calculus that contains

W�� L�� Q�� �V�;�
W � �a�.	u� G W�� � � G Y �x� � 
 �

W�� � � + � �%� W�� � � � 	
� �%�

a rule application 	 followed by a Cut, such that 	 does not introduce the root (outer-
most) symbol of

G
. Then rule 	 can pushed down so as to be applied after the Cut.



Proof. The proof is a simple case analysis

– 	 cannot be an Axiom, since then the formula
G

would necessarily be an atomic
type, contradicting our assumption.

– 	 is an application of Entropy, so � � 1 and the left branch of the proof has the
form

W �'�a�.	u� G 	
W � �V� G
� �%�

with � � � � ��� � + � � , so
�

can be replaced by

W�� L�� Q � �V�;�


� � �.� �W � L�� Q�� �V�;�

W � �V��	u� G W�� � � G Y&�z� � 
 �
{F{�{

the last deduction being valid since � �D�;� � � � � L � Q ��� � L � Q � because of Congru-
ence.

– 	 is a ��� -rule, so looks like

W � wz�����t�1H + ��{F{�{��;H � � �.� b �
G

W � ��� � � P ��� � � � P������ P � � 	 � w + �.H + ��{�{F{ �.w � �;H � �;� b1�
G

	

{F{�{

and we can do

W
� L�� Q � wz��� � �<H + �F{�{�{F�.H � � �;� b1�;�
W � � � � �KP � � � � � P������ P � � 	 � L�� Q � w + �.H + ��{F{�{ �;w � �.H � �.� b<�3� � �

W � ��� � � P � � � � � P������ P � � 	 � w + �;H + ��{F{�{ �;w � �;H � �;� b1�
G W�� G Y&�3� � 
 �

the conclusion is identical because


	� � � � �3� � �<w + ��{F{�{ �;w � � � L � Q � � 
	� � � � L � Q �D�;� � �1w + ��{F{�{ �;w � � �a� 
��	� L � Q �D� � � � �3� � �1w + ��{F{�{ �;w � � ��{
– 	 is a � � -rule and so looks like

W � � P � � � � � � � �� P �����fP � � � � �� 	 � wz��� � � � � � � � *2+ �F{�{F{ � � + � �.� + ��{F{�{F�.� �
� �W � � 	 + � � + �x� + � �%� W
� � 	 � ��� � �x� �

with ��� � � �'� 
<wz�;� �D�	� � L � �+ �2{F{�{2� � �
L � �� � � . It follows that there is 
 � � such that

W � � 	 ����� �t�x� � is actually of the form W � � 	 �.� � �x� � bO� 	u� G . Then we can do

W � � 	 + ��� + �x� + �%� �
W � � 	 ����� ���x� b1��	u� G W � G Y �;�

W � �<L � Q��C	 � ��� � �x� bD�x� �%� � W � � 	 � ��� � �z� �
W � L�� Q�� wx� � � � � � ��� � *,+ ��{�{F{ � � + � �;� + �F{�{�{F�.� b<�F{�{F{ �.� � �;�

and this completes the proof of the lemma



It is now quite easy to prove the theorem. Given a proof with a Cut, we know from
the above that we can always rearrange that proof so that both formulas involved in the
Cut have had their outermost symbols introduced right above them. Then there are only
two possibilities: the first one is when both formulas are atomic, so we are cutting one
axiom against itself: keep only one copy of that axiom.

The other possibility is when a Par is cut against a Tensor. So we have

W � ��� ��� P ��� � L � P������ P L � 	 � �a�
G
+ ��{F{�{��

G �
W � ��� ��� P L � �a�.	u� ���x� G + ��{�{F{ �

G � �
W � � � � �

G Y� �;� � {�{F{ W � � � + �
G Y + �3� +

W � Q-P � � � � � � � �� P������ P � � � � �� 	 � � ����� � G Y� ��{�{F{ � G Y + � �;� � ��{F{�{��3� +
W � ��� ��� P ��� � � � � � �� P������ P � � � � �� 	 � �a�3� � ��{�{F{ �;� +

and we can replace by

W � � � �	� P � � � L � P������ P L � 	 � �V�
G
+ �F{�{F{��

G � W � � � � �
G Y� �3� �

W � ��� �	� P ��� � L � P������ P � � � � �� 	 � �V�;� � � G + �F{�{F{ �
G � *,+ W � ��� � � � *,+ �

G Y� *2+ �3� � *,+
W � ��� �	� P ��� � L � P������ P � � � � � � �� � � P � � � � �� � � 	 � �V�;�

� �;� � *2+ �
G
+ ��{�{F{��

G � * y � �%�
{�{F{

W � � � �	� P � � � � � � � �� P������ P � � � � � � ���� � P � � � � �� 	 � �a�3� � ��{�{F{��3� +
since we are in a linear system there is no need for a complex induction to prove that
this process terminates.
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29. A. Joyal. Une th éorie combinatoire des s éries formelles. Advances in Mathematics, 42:1–82,
1981.

30. A. Kock and G Reyes. Doctrines in categorical logic. In J. Barwise, editor, Handbook of
Mathematical Logic. North-Holland, 1977.

31. M. Kracht. Power and weakness of the modal display calculus. In Proof Theory of Modal
Logics, pages 92–121. Kluwer, 1996.

32. N. Kurtonina and M. Moortgat. Structural control. In P. Blackburn and M. de Rijke, editors,
Specifying Syntactic Structure, pages 75–113. CSLI, 1997.

33. Y. Lafont. Interaction nets. In Proceedings of the 17th ACM symposium on Principles of
Programming Languages. ACM Press, 1990.

34. F. Lamarche. Multiplicative linear logics and fibrations. In Category Theory in Computer
Science, To appear in Electronic Notes in Theoretical Computer Science. Elsevier-North-
Holland, 2002.
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65. Ch. Retor é. Pomset logic: A non-commutative extension of classical linear logic. In R. Hind-

ley and Ph. deGroote, editors, Proceedings of the Third International Conference on Typed
Lambda Calculi and Applications, TLCA’97, volume 1210 of Lect. Notes in Computer Sci-
ence, 1997.

66. R. Routley and R. K. Meyer. Semantics of entailment — II. Journal of Philosophical Logic,
1:53–73, 1972.

67. R. Routley and R. K. Meyer. Semantics of entailment — III. Journal of Philosophical Logic,
1:192–208, 1972.

68. P. Ruet. Non commutative logic II : Sequent calculus and phase semantics. Math. Struc.
Comp. Sci., 10(2):277–312, 2000.

69. R. Street. The role of Batanin’s globular monoidal categories. In Getzler and Kapranov [19].
70. Alwen Fernanto Tiu. Properties of a logical system in the calculus of structures. Technical

Report WV-01-06, Dresden University of Technology, 2001.
71. J. Valdes, R.E. Tarjan, and E. L. Lawler. The recognition of Series-Parallel digraphs. SIAM

Journal on Computing, 11(2):298–313, May 1982.
72. H. Wansing. Sequent calculi for normal propositional logics. Journal of Logic and Compu-

tation, 4:125–142, 1994.
73. D. N. Yetter. Quantales and (non-commutative) linear logic. Journal of Symbolic Logic,

55:41–64, 1990.


