
HAL Id: inria-00099850
https://hal.inria.fr/inria-00099850

Submitted on 26 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Production Systems and Rete Algorithm Formalisation
Horatiu Cirstea, Claude Kirchner, Michael Moossen, Pierre-Etienne Moreau

To cite this version:
Horatiu Cirstea, Claude Kirchner, Michael Moossen, Pierre-Etienne Moreau. Production Systems and
Rete Algorithm Formalisation. [Contract] A04-R-546 || cirstea04d, 2004, 26 p. �inria-00099850�

https://hal.inria.fr/inria-00099850
https://hal.archives-ouvertes.fr

Méta-compilation non intrusive du filtrage par contraintes
Non intrusive meta-compilation of matching by constraints

Sous Projet 1

RETE et réécriture

Production Systems and Rete
Algorithm Formalisation

Description : The rete algorithm is a well-known algorithm for efficiently addressing the many
patterns/many objects match problem, and it has been widely used and imple-
mented in several applications, mainly production systems. But despite of the
wide usage of production systems and the rete algorithm, to the best of our
knowledge there has been just one proposition for a formal definition of the rete
algorithm given by Fages and Lissajoux [FL92], but no attempt to give a formal
description of production systems as a whole, giving rise to lots of ambiguities
and incompatibilities between the different implementations. Therefore, the need
for a formalisation is clear and we present in this report a first approach to it, re-
fining Fages and Lissajoux’s approach to fit it in our general model of production
systems.

Auteur(s) : Horatiu C,
Claude K,
Michael M,
Pierre-Etienne M

Référence : M /Sous Projet 1 / Fourniture 1.1 /V1.0

Date : 15 septembre 2004

Statut : validé

Version : 1.0

Réseau National des Technologies Logicielles
Projet subventionné par le Ministère de l’économie, des finances et de l’industrie

ILOG, INRIA Lorraine, INRIA Rocquencourt

M – Méta-compilation non intrusive du filtrage par contraintes

Historique

31 août 2004 V 0.9 création du document
15 septembre 2004 V1.0 version finale

Contents
1 Introduction to production systems 3

1.1 Informal presentation of production systems . 3
1.2 Motivation for a formal description . 4

2 Formal Description of Production Systems 5
2.1 Production systems . 5
2.2 Formal Abstract Language . 7

3 The Rete Algorithm 11
3.1 Informal Description of the Rete Network . 11
3.2 Rete Network Execution for our Fibonacci Example 12
3.3 Formal Definition of the Rete Network . 15

3.3.1 Compilation of a PM . 15
3.3.2 Rete Network . 17

3.4 Execution of the Rete Algorithm . 21

4 Conclusions 23

Projet RNTL : M / Sous Projet 1 / Fourniture 1.1 /V1.0
ILOG, INRIA Lorraine, INRIA Rocquencourt

2

M – Méta-compilation non intrusive du filtrage par contraintes

Introduction
The rete algorithm is a well-known algorithm for efficiently addressing the many patterns/many
objects match problem. It has been first described in [For74], but it gains in popularity just after
publication of [For82] where a more precise description is given.

Implementation issues related to this algorithm have been widely studied [TR89, Thé90,
MBLG90, Alb89, Ish94a], and applications include, for instance, Petri Nets implementations
based on the rete algorithm [BB01]. But the most important applications are production systems
like OPS5 [X-T88, For81], Clips [CR03], JEOPS [dFFR00], Jess [FH03] and JRules [S.A04]. There are
also many specialized production systems, like parallel, distributed, multi-agent and real-time
production systems [LG89, Lop87, FL91, Ish94b]. But, despite of all this work around production
systems and the rete algorithm, to the best of our knowledge there has been just one proposition
for a formal definition of the rete algorithm given by Fages [FL92], but no one for production
systems as a whole, giving rise to lots of ambiguities and incompatibilities between the different
implementations, so the need for a formalisation is clear and we present in this work a first
approach to it.

Outline of this report: For a better understanding of the context, we will begin with an
intuitive introduction to production systems, and how they take advantage of the rete algorithm
in Section 1.1 and in Section 1.2, we present also our motivations to give a formal definition of
production systems. Section 2.1 will present a formal description of production systems, and an
unambiguous formal abstract language for specifying a production system program as given in
Section 2.2.

Then, in Sections 3.1 and 3.2, we introduce intuitively the rete algorithm and in Sections 3.3
and 3.4, we recall and refine the formal description proposed by [FL92] for getting it to fit in our
general model and so obtaining a comprehensive and consistent view of production systems.

1 Introduction to production systems
An important class of rule based languages is based on the notion of production rule which is a
statement of the form “if condition then action”. This class of programming languages has been
emerging from the artificial intelligence community at the beginning of the seventies and are
quite popular as they provide an attractive blend of declarative and imperative features. They
are at the heart of expert systems and have been more recently used under the name of “business
rule”. A first comprehensive comparison of production systems can be found in [Thé94].

Basically all of them provide the same semantics for programming, as shown in the following
informal description of the behavior and main components of production systems.

1.1 Informal presentation of production systems
A production system consists mainly of the following five components:

• The Fact Types are user defined datatypes, like structs with fields or properties. There
are intended for organizing the data that will be manipulated, for instance, we can have a
fact type representing a house with properties like color, price, availability, and so on. But,
notice that in most cases, we are restricted to basic types for the properties, so it could not
be possible to have a property of type address in the house fact type defined before, if the
address is a composed data type.
We can then view a fact as a concrete assignment of values to the properties for a given fact
type, for instance, an available red house that costs one thousand.

• The Working Memory (WM) is the current program state, it is a global structure of facts.
We will see later that this structure could be implemented either by sets or multisets.

• Production Rules are conditional statements of the form

[Name] if Condition then Action

Projet RNTL : M / Sous Projet 1 / Fourniture 1.1 /V1.0
ILOG, INRIA Lorraine, INRIA Rocquencourt

3

M – Méta-compilation non intrusive du filtrage par contraintes

A rule has a name and it acts by addition and retraction of facts on theWM iff the condition
is fulfilled. Here the condition is usually called the left hand side (LHS) of the production
rule and the action its right hand side (RHS). The condition may or not be satisfied by the
WM as described in the next section together with more precise explanation for condition
and action. When the LHS of a rule is satisfied, the rule is said to be activated.

• The Production Memory (PM) is a structure of production rules, also known as Knowledge
Base. It is almost always unvarying, in spite of some production system implementations
that provide facilities to manipulate the production memory as RHS actions.

• A Resolution Strategy that consists of an algorithm for selecting just one rule to execute, if
the conditions of the LHS of more than one rule are satisfied at the same time.

The production system interpreter executes a production system by performing a sequence of
operations called recognize-act cycle or inference cycle:

1. Matching: evaluate the LHS of each rule to determine which ones are activated given the
current state of the WM. This is the most time consuming step in the execution of a
production system, and here is were the rete algorithm is used.

2. Conflict Resolution or Selection: select one activated rule. If no rule is activated, halt the
interpreter returning the current state of theWM.

3. Firing or Act: perform the actions specified in the RHS of the selected rule.

4. go to step 1.

When a rule is activated, an instantiation1 is generated as an ordered pair of the form:

<rule, list of facts that satisfy its LHS>.

instantiations are maintained in the Conflict Set (CS). Then, the Resolution Strategy selects just
one rule of this set, and its RHS is executed; it is said that the rule is fired.

A schematic view of the data work flow in a production system is shown in Figure 1.

PM WM0

Rete

CS

Resolution
Strategy

Rule
Execution

New
WM

input input
instantiation

changes

running

firingrhs
actions

WM
changes

Figure 1: production system work flow

1.2 Motivation for a formal description
Of course, each production system implementation has its own concrete syntax, facilities and
behavior. For instance, facts usually could be non-ordered or ordered, and it could be possible to
use objects as facts, as in the Java based implementations.

1this is a historical name, that does not reflect the common meaning of instantiation

Projet RNTL : M / Sous Projet 1 / Fourniture 1.1 /V1.0
ILOG, INRIA Lorraine, INRIA Rocquencourt

4

M – Méta-compilation non intrusive du filtrage par contraintes

Most languages also consider the possibility to interact with the user by executing special
commands in the RHS of the rules, or also the ability to modify the PM, or the possibility to
choose between a set-based WM or a multiset-based WM (i.e. two identical facts can exist
simultaneously in theWM).

In general, it is also possible to modify a fact, which is usually internally implemented as a
retraction followed by an addition.

There are also languages that instead of aCS implement an Agenda, which is a list of (already)
sorted instantiations. Thus, the resolution strategy consists in choosing the first element of the
agenda.

In what follows we propose a formalisation that does not always handle these (implementation
related) extensions but we discuss the way this can be implemented.

Example 1.1 A kind of identity rule could be described as:

[dummy] if there is an instance of fact type A then Do Nothing

where the “Do Nothing” could be implemented in several ways, depending on the language
facilities and the programmer interpretation, like, for instance:

• Really doing nothing, adding and retracting no fact.

• Retracting a fact in theWM and adding it again. If, for instance, we do so with a fact of
type A, we will obtain an infinite loop.

• Adding an arbitrary fact and retracting it. If the fact is not related to the current program,
doing so is (almost) the same as really doing nothing.

• Using the language facility for modifying an arbitrary fact, but without really modifying
any value of its properties. Usually, doing so generates a compilation time error, but there
are production system that allows to do that.

This illustrate the fact that the handling of the conflict set could be unclear and that conse-
quently a more precise description of the systems behavior should be provided. We will first
identify the various formal components of a production system, getting the intended semantics
from the behavior of existing implementations. In a second step not recorded in the report, we
will address the specification of strategies as well as the description of their semantics.

2 Formal Description of Production Systems
Now that the need for a formal definition of production systems is clear, we will give a formal
description of production systems.

2.1 Production systems
We consider a set F of function symbols, usually denoted f , g, h, . . ., a set P of predicate symbols,
and infinite sets X and L respectively called set of variables and of labels. Variables are denoted
x, y, z, . . . In most of the practical situations, finite set of labels are enough. These sets are assumed
to be disjoint. Each function symbol and predicate symbol has a fixed arity. Nullary function
symbols are called constants. We assume that there is at least one constant. The set of terms
(denoted T (F ,X)), ground terms (denoted T (F)), atomic propositions, literals (i.e. atomic proposi-
tion or their negation), propositions, sentences (i.e. closed propositions) are defined as usual in term
rewriting [KK99, BN98, “T02] and first-order logic [Gal86].

We will freely use the usual notion of substitution. Notice that since in general first order
propositions are instantiated, the substitution mechanism works modulo alpha-conversion to
take care of the variable bindings.

Definition 2.1 A fact f is a ground term, f ∈ T (F).

Projet RNTL : M / Sous Projet 1 / Fourniture 1.1 /V1.0
ILOG, INRIA Lorraine, INRIA Rocquencourt

5

M – Méta-compilation non intrusive du filtrage par contraintes

Definition 2.2 We call working memory (WM) a set of facts, i.e. it is a subset of the Herbrand
universe defined on the signature.

Definition 2.3 A production rule or simply rule or production, denoted

[l] if p, c remove r add a

consists of the following components.

• A name from the label set: l ∈ L.

• A set of positive or negative patterns p = p+ ∪ p− where a pattern is a term pi ∈ T (F ,X) and
a negated pattern is denoted ¬pi. p− is the set of all negated patterns and p+ is the set of the
remaining patterns.

• A proposition c

• A set r of terms whose instances could be intuitively considered as intended to be removed
from the working memory when the rule is fired, r = { ri }i∈Ir , where Var (r) ⊆ Var

(

p
)

∪

Var (c).

• A set a of terms whose instances could be intuitively considered as intended to be added to
the working memory when the rule is fired, a = { ai }i∈Ia , whereVar (a) ⊆ Var

(

p
)

∪ Var (c).

Such a rule is also denoted [l] p, c⇒ r, a.

Definition 2.4 We call production memory (PM) a set of production rules.

Remark 2.1 Indeed in the previous definitions, one can discuss the choice of set as the data
structure to represent theWM, p, r, a and PM.

Definition 2.5 Given a set of facts S and a set of positive patterns p+, p+ is said to match S with
respect to a theory T and a substitution σ, written p+ �σ

T
S if:

∀p ∈ p+ ∃t ∈ S | σ(p) =T t

We say that a set of negative patterns p− dis-matches a set of facts S, written p− 3T S iff:

∀¬p ∈ p− ∀t ∈ S ∀σ | σ(p) ,T t

Definition 2.6 Given a substitution σ, so that Dom(σ) = Var
(

p
)

∪ Var (c), a production rule
[l] p, c⇒ r, a is (σ,WM′)-fireable on a working memoryWM when

1. p+ �σ
T
WM′

2. T̂ � σ(c)

3. σp− 3T WM

for a minimal (with respect to the subset ordering) subsetWM′ ofWM and a matching theory,
T , and an additional theory T̂ so that T ⊆ T̂ , for the condition c. A fireable rule is also called an
activation.

Definition 2.7 Given a production rule [l] p, c ⇒ r, a which is (σ,WM′)-fireable on a working
memoryWM, its application leads to the new working memoryWM′′ defined as:

WM′′ = (WM− σ(r)) ∪ σ(a)

This is denotedWM ⇒σ,WM
′

[l] p,c⇒r,a WM
′′ or simplyWM ⇒WM′′. The couple (σ(r), σ(a)) is called

the (σ,WM′)-action of the production rule [l] p, c⇒ r, a on the working memoryWM.

Projet RNTL : M / Sous Projet 1 / Fourniture 1.1 /V1.0
ILOG, INRIA Lorraine, INRIA Rocquencourt

6

M – Méta-compilation non intrusive du filtrage par contraintes

Definition 2.8 For a given working memoryWM and a set of production rules R, the set

CS =
{ (

l,
{

f1, . . . , fk
})

| ∃ ([l] p, c⇒ a, r) ∈ R ∧ ∃σ so that l is (σ,WM′)-fireable onWM
}

is called the R@WM-conflict set, whereWM′ =
{

f1, . . . , fk
}

A conflict set could be either empty (no rule is fireable), unitary (only one rule can fire), finite
(a finite number of rule is activated) or infinitary (an infinite number of matches could be found
due to the theory modulo which we work [FH86]). Whether finite or infinite, one should decide
which rule should be applied: this is one of the major topics of interest in production systems,
addressed by resolution strategies.

Definition 2.9 A resolution strategy is a computable function that given a set of production rules
R, and a production derivation

WM0 ⇒WM1 ⇒ . . .⇒WMn

returns a unique element of the R@WMn-conflict set.

We have now all the ingredients to provide a general definition of production systems:

Definition 2.10 A production system is defined as

GPS =
(

P, F , X, L, WM0, PM, S, T , T̂
)

Where:

• P is the set of predicate symbols,

• F is the set of function symbols,

• X is the set of variables,

• L is the set of labels,

• WM0 is the initial working memory,

• PM is the production memory overH = (F , P, X, L),

• S is the resolution strategy,

• T is the matching theory.

• T̂ is the constraint theory, and T ⊆ T̂ .

Remark 2.2 This definition of a production system is quite general as facts and patterns can
be deep and non-linear, conditions can be any arbitrary first-order propositions, and resolution
strategies can take the full derivation history into account.

Definition 2.11 The Inference Cycle is described in figure 2.

2.2 Formal Abstract Language

Using the above definition, we are able to specify a production system in an unambiguous,
language independent and formal way.

Example 2.1 This example is a way for computing the Fibonacci number of 200, it is not the best
example for the usage of production systems, but it shows most of they capabilities in a short and
simple way. We asume that numbers and arithmetics are builtin.

Projet RNTL : M / Sous Projet 1 / Fourniture 1.1 /V1.0
ILOG, INRIA Lorraine, INRIA Rocquencourt

7

M – Méta-compilation non intrusive du filtrage par contraintes

Matching
[l] p, c⇒ r, a is (σ,WM′)-fireable

Firing
WM⇒

σ,WM′

[l] p,c⇒r,a WM
′′

Conflict Resolution
S(CS,WM0 ⇒ . . .⇒WMn) = (l,WM′)

Figure 2: Inference Cycle

P B ∅

F B
{

f ib/2, −/2
}

X B
{

x | x begins with a question mark
}

L B
{

GoDown,GoUp
}

WM0 B
{

f ib(0, 1), f ib(1, 1), f ib(200, −1)
}

PM B {

[GoDown]
f ib(?n, −1) ∧ ¬ f ib(?n1, ?v) ,
?n1 =?n − 1

=⇒

∅,
{

f ib(?n1, −1)
}

,

[GoUp]
f ib(?n, −1) ∧ f ib(?n1, ?v1) ∧ f ib(?n2, ?v2),
?n1 =?n − 1 ∧ ?v1 > 0 ∧ ?n2 =?n − 2 ∧ ?v2 > 0 ∧ ?v =?v1+?v2

=⇒
{

f ib(?n, −1), f ib(?n2, ?v2)
}

,
{

f ib(?n, ?v)
}

}

S B a FIFO strategy
T B ∅

T̂ B ∅

Example 2.2 This is another example for searching for a house which is more near to the real

Projet RNTL : M / Sous Projet 1 / Fourniture 1.1 /V1.0
ILOG, INRIA Lorraine, INRIA Rocquencourt

8

M – Méta-compilation non intrusive du filtrage par contraintes

usage of production systems, we asume numbers, arithmetics and strings are builtin:

P B ∅

F B {

house/4, houseaddress/4, myaddress/3, war/2, searching/0,
red/0, blue/0, usa/0, irak/0, f rance/0
}

X B
{

x | x begins with a question mark
}

L B { HouseSearch }
WM0 B {

house(1, red, 341, true), houseaddress(1, 251, ”rue jeanne d′arc”, ”nancy”),
house(2, blue, 390, true), houseaddress(2, 121, ”avenue de brabois”, ”villers les nancy”),
house(3, red, 415, true), houseaddress(3, 31, ”rue carnot”, ”vandoeuvre les nancy”),
myaddress(2551, ”gorbea”, ”santiago”),
war(usa, irak),
searching()
}

PM B {

[HouseSearch]
searching() ∧
house(?id, red, ?price, true) ∧
houseadress(?id, ?number, ?street, ?city) ∧
myaddress(?mn, ?ms, ?mc) ∧
¬war(?s1, f rance) ∧
¬war(f rance, ?s2) ,
?price < 400

=⇒

{

searching(),
house(?id, red, ?price, true),
myaddress(?mn, ?ms, ?mc)
},

{

house(?id, red, ?price, f alse),
myaddress(?number, ?street, ?city)
}

}

S B a FIFO strategy
T B ∅

T̂ B ∅

We will use in the rest of this report the same abstract syntax as in the examples above.
Therefore from a practical point of view, it is not needed to give everything in an explicit way for
specifying a production system. For instance,

• if the resolution strategy is not explicitly given, a default resolution strategy, can be used, like
a FIFO strategy, for instance.

Projet RNTL : M / Sous Projet 1 / Fourniture 1.1 /V1.0
ILOG, INRIA Lorraine, INRIA Rocquencourt

9

M – Méta-compilation non intrusive du filtrage par contraintes

• if the set of variables is missing, a default variables set can be used, like:

X =
{

x | x begins with a question mark
}

So, when clear from the context a production system is just:

PS = (F , WM0, PM)

From the abstract syntax used in example 2.1, we can express common production systems
programs in a formal way.

Example 2.3 For instance, this JRules-TRL program [S.A04] is a concrete implementation of the
Fibonacci example 2.1:

• Fact type declarations (F)

public class Fib {

public int number;

public int value;

}

• Working memory initialization (WM0)

assert [] [] Fib []

so that number = 0

and value = 1

assert [] [] Fib []

so that number = 1

and value = 1

assert [] [] Fib []

so that number = 200

and value = -1

• Rule declarations (PM)

[GoDown]

WHEN

there is a [] Fib [] [called ?f]

[where]

such that value = -1

there is no [] Fib []

[where]

such that number = ?f.number - 1

THEN

assert [] [] Fib []

so that number = ?f.number

and value = -1

ELSE

[GoUp]

WHEN

there is a [] Fib [] [called ?f1]

[where]

such that value = -1

there is a [] Fib [] [called ?f2]

[where]

such that number = ?f1.number - 1

Projet RNTL : M / Sous Projet 1 / Fourniture 1.1 /V1.0
ILOG, INRIA Lorraine, INRIA Rocquencourt

10

M – Méta-compilation non intrusive du filtrage par contraintes

and value > 0

there is a [] Fib [] [called ?f3]

[where]

such that number = ?f2.number - 2

and value > 0

THEN

modify [] ?f1

so that value = ?f2.value + ?f3.value

retract ?f3

ELSE

Going one step forward, we are already able to develop a tool, for translating a program in
this abstract notation into concrete programs for several specific production systems.

Remark 2.3 We already have implemented a prototype of such a tool using Java and TOM [MRV01].

3 The Rete Algorithm
The rete algorithm, as said before is an efficient algorithm for solving the many patterns/many
objects match problem.

Forgy’s paper [For82] represents the rete algorithm viewed as a black box as described in
figure 3:

Changes to theWM

Rete Algorithm

Changes to the CS

Figure 3: Rete algorithm as a Black Box

But, more precisely it can just take one input token at once, and it may generate zero, one or
more changes to the CS.

The main idea of the rete algorithm, as stated by [FL92], is to compute the set of rule instanti-
ations incrementally, based on two main approaches:

• Memorisation: in general, the set of rule instantiations does not change dramatically from
one cycle to the next one. So, the idea is to compute just these changes. For this, partial rule
instantiations are held and maintained.

• Sharing: if several rules are using some conditions in common, the rules are factorized over
their common conditions.

We can also state that the rete algorithm is decomposable into two very different tasks; one is
to build the rete network given the set of rules PM, and the another is about the usage or execution
of this network, starting from theWM0.

We will first give informal descriptions of these two tasks, and then recall and refine Fages
and Lissajoux’ formalisation [FL92] to fit in our previous definition of production system.

3.1 Informal Description of the Rete Network
The rete algorithm works generating a workflow graph built based on the PM. Where its input
is the set of changes to the WM, differentiating recently added facts, called positive tokens, and
recently removed facts, called negative tokens, which are treated in a similar way. Its output are
instantiations, positive and negative ones, to be added or removed from the CS.

This directed graph may have several different kinds of nodes:

Projet RNTL : M / Sous Projet 1 / Fourniture 1.1 /V1.0
ILOG, INRIA Lorraine, INRIA Rocquencourt

11

M – Méta-compilation non intrusive du filtrage par contraintes

• The Root Node: this is the only entry point to the network, it receives the tokens and
passes copies of them to all its successors. We represent it as a box node labeled Root.

• One-Input Nodes: these nodes, also called Anodes, perform the intra-elements tests, that
are the conditions which depends on just a single pattern. If the test success it passes copies
of the given token to all its successors. And there are different types:

– For type tests, for example, is the received token a fact of type house? Represented
in oval shapes labeled with the fact type to be checked. These nodes are also called
Tnodes.

– For condition tests, for example, is the color of the received house red? Represented in
diamond shapes and labeled with the condition to be checked.

– For intra-relation tests, when a same variable appears more than once in a single
pattern. Is the color of the windows equals to the color of the doors of the house??

• Two-Input Nodes: these nodes, also called Bnodes, are useful for testing the inter-element
conditions, conditions which involve more than one single pattern. For instance, when
two patterns are related due to a common variable. These nodes have two different local
memory slots for storing the tokens arriving at each of its inputs. If a positive token arrives,
it is stored in the local memory, if a negative token arrives, it is removed from the local
memory. And, in both cases, the test result will determine, if a new token is generated and
the sign of it. Represented as rounded box shapes with two input arrows and labeled with
the inter-element conditions, maybe more than one, or no condition at all. If a token arrives
at one of its input, the condition will be checked against all the tokens in the another input’s
local memory. A common notation for referencing the different tokens in the condition is to
use the prefixes l for left and r for right.

There are two different kinds of Bnodes:

– Any nodes, related to inter-element tests between only positive patterns or between
only negative patterns.

– Not nodes, related to inter-element tests between both, positive and negative, patterns.

• Terminal Nodes: these nodes will just receive tokens which instantiate the LHS of a rule,
so it will be the output of the network and the input for the CS. Represented as box shapes,
and the label of the name of the activated or deactivated rule, depending of the sign of the
arriving tokens.

Example 3.1 The rete network for our Fibonacci example is shown in figure 4.

3.2 Rete Network Execution for our Fibonacci Example
As an informal introduction to how the rete network is executed, we will take the rete network
presented in the previous section, and execute the program given in example 2.1 but initializing
the working memory with

WM0 B
{

f ib(0, 1), f ib(1, 1), f ib(3, −1)
}

Notice that the network is providing slots names to be more clear, so the first slot of the f ib fact
is called number, and the second value (they could be also numbered with 1 and 2, for instance).

Example 3.2 Rete Network Execution.
First, we initialize

WM B ∅ ∧ CS B ∅

then, we add the first fact inWM0 toWM

WM B WM ∪
{

f ib(0, 1)
}

Projet RNTL : M / Sous Projet 1 / Fourniture 1.1 /V1.0
ILOG, INRIA Lorraine, INRIA Rocquencourt

12

M – Méta-compilation non intrusive du filtrage par contraintes

Root

fib

value = −1 value > 0

l.number = r.number − 1

l.number = r.number − 1

l.number − 2 = r.number

GoDown
GoUp

Figure 4: Rete network for Fibonacci example

and we send the respective token, < +, f ib(0, 1) >, to the rete network, which first checks for
the type of the token, if it is equals to f ib as in this case, it passes the token to the next connected
nodes, also called successors, if not the token is casted away.

At the second level, first, the token travels to the left input of the Not node and the fact is
stored in the left memory of the node, waiting for some input at the right side. On the other side,
the token also travels to the node for checking if value = −1, it is not the case, so the token is
casted away. Finally, on the right branch, the token arrives to the node for checking the condition
value > 0, as it is true it gives the token to both successors, which are both two input nodes, since
the sign of the token is positive we add the given fact f ib(0, 1) to the right memory, and because
the nodes have both empty left memories no condition can be checked so no input is generated.

Then, we add the second fact inWM0 toWM

WM B WM ∪
{

f ib(1, 1)
}

and the process is the same as before, the fact stays waiting at both Any nodes of the right branch
in their right memory, and also in the left memory of the Not node of the left branch.

Finally, we add the last fact inWM0 toWM

WM B WM ∪
{

f ib(3, −1)
}

in this case, the left branch is taken, so first the fact is stored in left memory of the Not node,
and then the check value = −1 succeeds so the token propagates to all its successors, first to the
right hand side of the Not node, where the condition is checked against all the fact in the left
memory, and given that the condition can not be satisfied by any combination an output token is
generated, < +, f ib(3, −1) >, activating the rule GoDown, so we have:

CS B CS ∪ < GoDown,
{

f ib(3, −1)
}

>

On the other hand, the fact f ib(3, −1) is also stored in the left memory of the first Any node, where
no combination satifies the condition so no output is generated.

Now, the rete network is waiting for new input, so we have to fire a new activation, and
there is no choice, and we fire the given activation of the GoDown rule, actualizing the CS and

Projet RNTL : M / Sous Projet 1 / Fourniture 1.1 /V1.0
ILOG, INRIA Lorraine, INRIA Rocquencourt

13

M – Méta-compilation non intrusive du filtrage par contraintes

computing the substitution σ:

CS B CS \ < GoDown,
{

f ib(3, −1)
}

>

σ B { ?n→ 3, ?n1→ 2 }

And we perfom the actions of the RHS of the given rule, which just adds a new fact, f ib(2, −1),
to theWM,

WM B WM ∪
{

f ib(2, −1)
}

So, we generate the respective token, < +, f ib(2, −1) >, which behaves similar to the previous
one, < +, f ib(3, −1) >, except that now, when the token arrives at the left input of the Not node,
the condition can be satisfied in conjunction with the fact f ib(3, −1) of the right memory, so, a new
token is generated < −, f ib(3, −1) > deactivating the rule GoDown, if it would be activated. On
the other hand, the new fact f ib(2, −1) also riches the right input of the Not node, but since there
exists a combination with a fact in left memory, f ib(1, 1), validating the condition again a new
token is generated for deactivating the GoDown rule. And finally, now, when the token arrives
the left input of the first Any node, the condition can be satisfied, using fact f ib(1, 1) of the right
memory, so a new token is generated, < +,

{

f ib(1, 1), f ib(2, −1)
}

>, and given to the left input
of the second Any node, storing the facts in the left memory, and checking the condition, which
can be satisfied by the fact f ib(0, 1) of the right memory, generating a new token for activating
the GoUp rule, and:

CS B CS ∪ < GoUp,
{

f ib(0, 1), f ib(1, 1), f ib(2, −1)
}

>

Again the rete network is stucked, waiting for more input, so we have to select an activation from
the CS, we select the only one activation in the CS, of rule GoUp, and we actualize the CS

CS B CS \ < GoUp,
{

f ib(0, 1), f ib(1, 1), f ib(2, −1)
}

>

and we execute the right hand side, first computing the substitution σ as

σ B { ?n→ 2, ?n1→ 1, ?n2→ 0, ?v1→ 1, ?v2→ 1, ?v→ 2 }

for then, removing f ib(2, −1) from the working memory

WM B WM \
{

f ib(2, −1)
}

So, a negative token, < −, f ib(2, −1) >, is given to the rete network, which checks the type, then
the token first arrives at the left input of the Not node and the given fact is removed from the left
memory, and now the condition can not be satisfied by the f ib(3, −1) fact of the right memory, so
a new token < +, f ib(3, −1) > is generated and the GoDown rule is activated:

CS B CS ∪ < GoDown,
{

f ib(3, −1)
}

>

Then, the token pass also through the value = −1 check, so the token arrives at the right input of
the Not node and after actualising the right memory by rm = rm \

{

f ib(2, −1)
}

there is still a
combination, with fact f ib(1, 1) that satisfies the condition so a negative token is generated for
deactivating the GoDown rule. Then, on the other branch, the negative token arrives at the left
input of the first Any node, removing the given fact from the left memory, and given that the
condition can be still satisfied by the fact f ib(1, 1) from the right memory a new negative token,
< −,

{

f ib(1, 1), f ib(2, −1)
}

> is generated, arriving at the left input of the second Any, which
in the same way removes the item from the left memory and generates a new negative token,
deactivating the given instantiationof the GoUp rule.

Follows to remove f ib(0, 1), and to add f ib(2, 2), then a new activation of rule GoUP is fired,
and facts f ib(3, −1) and f ib(1, 1) are removed, and fact f ib(3, 3) added, so no more rules are
activated and the final state of theWM is

WM B
{

f ib(2, 2), f ib(3, 3)
}

Projet RNTL : M / Sous Projet 1 / Fourniture 1.1 /V1.0
ILOG, INRIA Lorraine, INRIA Rocquencourt

14

M – Méta-compilation non intrusive du filtrage par contraintes

3.3 Formal Definition of the Rete Network
In this section, we will describe how the rete network is build, for this we give a more general
alternative of Fages and Lissajoux’ formalisation of [FL92], using the same notations used for
defining a production system in Section 2.1.

First we will describe how to compute a normal form for a PM, and then how to build the
rete network from this normal form.

3.3.1 Compilation of a PM

In this section we describe how to compile a PM, that is a set of rules, and more specifically, a set
of LHS, patterns and conditions, for obtaining a normal form, allowing us to easily build the rete
network as described in the next section.

Definition 3.1 A term t can be viewed as a mapping from a subset of the monoid N∗ called its
domain, denotedDom (t), to F .

Definition 3.2 The subterm s in term t at occurrence ω ∈ Dom (t), denoted as s = t |ω, is defined as:

t |ε = t
f (t1, . . . , tn) |i.ω = ti |ω

Definition 3.3 The top symbol of term t is written as top(t).

Definition 3.4 We defineMV as an enumerable set of metavariables, in general, denoted ini.

Definition 3.5 We define the compilation of a given pattern p ∈ T (F , X) and a metavariable
in ∈ MV, denoted p�ε in, or simply p� in, via the following set of rewrite rules:

f (t1, . . . , tn)�ω in → top(in |ω) = f (1a)

∧

n
∧

i=1

ti �
ω.i in

x�ω1 in ∧ x�ω2 in → x�ω1 in
∧ in |ω1= in |ω2 (1b)

Where:

• x ∈ X, f ∈ F , ti ∈ T (F ,X),

• p is a positive or a negative pattern, we compile them in the same way,

• in is a placeholder for a fact that may match the pattern, and

• ω is an occurrence in in.

Example 3.3 The pattern f (x, g(a, x)) will compile into:

in |ε = f
in |1 = in |2.2
in |2 = g

in |2.1 = a

x�1 in

Definition 3.6 We also define incrementally the compilation of a given rule [l]
{

p1, . . . , pm
}

, c ⇒
r, a, by compiling each pattern, starting from

p1 � in1 ∧ . . . ∧ pm � inm ∧ c

Projet RNTL : M / Sous Projet 1 / Fourniture 1.1 /V1.0
ILOG, INRIA Lorraine, INRIA Rocquencourt

15

M – Méta-compilation non intrusive du filtrage par contraintes

and applying the following set of rewrite rules:

f (t1, . . . , tn)�ω ini → top(ini |ω) = f (2a)

∧

n
∧

i= j

t j �
ω ini

x�ωi ini ∧ x�ω j in j → x�ωi ini

∧ ini |ωi= in j |ω j (2b)
c [x] ∧ x�ω ini → c [ini |ω] ∧ x�ω ini (2c)

Remark 3.1 This is just an incremental definition of a rule’s left hand side satisfaction as described
in Definitions 2.5 and 2.6.

Remark 3.2 Notice that equation (2a) is just the same as equation (1a) and that equation (2b) is
just a generalisation of equation (1b).

Example 3.4 The following left hand side of a rule

f (x, y) ∧ f (a, x) ,
y > 5 ∧ z = x + y

will compile into:

in1 |ε = f
in2 |ε = f
in1 |1 = in2 |2

in |2 > 5
z = in1 |1 +in1 |2

x�1 in1

y�2 in1

Definition 3.7 Now, we define an optimisation for such compilation, which is strong related to
the sharing concept in the Rete Algorithm, as described in section 3.3.2. The main idea is that
for testing conditions depending on just one single pattern, we can forget the related pattern
and treat two conditions that only differ in the related pattern as the same. So we can have this
additional rewrite rule for optimization:

R
(

ini |ω1 , . . . , ini |ωn

)

∧ R
(

in j |ω1 , . . . , in j |ωn

)

−→ R
(

ini |ω1 , . . . , ini |ωn

)

So, in the example 3.4, we should remove, for instance, the relation

in2 |ε = f

Definition 3.8 This takes us to define the compilation of a whole production memory PM as the
compilation of each rule of the PM, obtaining a Normal Form like:

∧

i ∈I

top(in |ω) = fi (3a)

∧

j ∈ J

in |ω1 j
= in |ω2 j

(3b)

∧

(l, r) ∈ (L, R)

inl |ωl= inr |ωr (3c)

∧

k ∈K1

ck | Var (ck) = ∅ (3d)

∧

k ∈K2

ck | Var (ck) , ∅ (3e)

where

Projet RNTL : M / Sous Projet 1 / Fourniture 1.1 /V1.0
ILOG, INRIA Lorraine, INRIA Rocquencourt

16

M – Méta-compilation non intrusive du filtrage par contraintes

• Subequations (3a) and (3b) come from subequations (1a) and (1b),

• Subequation (3c) comes from subequation (2b) for inter-pattern relations, and

• Subequations (3d) and (3e) comes from subequation (2c) for general conditions, and the
conditions in subequation (3d) have no free variables, so that they can be used for building
the Rete Network, while the conditions of subequation (3e) still have free variables, so they
have to be handled at runtime by an additional Constraint Solver. This is, for instance, the
case of the condition ?v = ?v1+?v2 in our Fibonacci example.

Definition 3.9 To put everything together, we have to sort all the relations appearing in the
Normal Form, except the relations of subequation (3e), for this we first define the Dependency Set
of a relation R(t1, . . . , tn) as the set of involved patterns:

DS (R) B
{

p | Var
(

p
)

∩ Var (R) , ∅
}

Definition 3.10 We define Rk as the set of all relations depending on exactly k patterns:

Rk
B { R(t1, . . . , tn) | |DS (R) | = k }

Definition 3.11 And finally, we define Rk
p1, ..., pk

as the set of all relations depending on exactly k
patterns, patterns p1, . . . , pk as:

Rk
p1 , ..., pk

B
{

R(t1, . . . , tn) | DS (R) =
{

p1, . . . , pk
} }

Remark 3.3 The set of relations R1 is the set of intra-elements tests or the test mono-schéma as
defined in Section 3.1 of [FL92].

And R \R1 is the set of the inter-element tests or the test multi-schéma as defined in Section 3.1
of [FL92].

3.3.2 Rete Network

So, given a normal form for a PM, we can begin to build the network by creating a root node,
then for each pattern i we take any intra-element relation r ∈ R1

i and we build a new Anode or
one-input node for each of them and we connect them in a serial way and an arbitrary absolute
order to the root node, removing first any duplicated relation in R1

i .
And, in the case there is the same intra-element test, in two different rules or patterns, we

share it, i.e. if we have that two relations R and R′, so that:

R = R′ ∈ R1

Instead of two different nodes, one for R and one for R′, we build a single Anode, A, and if
Anode(Rp) and Anode(R′p) are the predecessors and Anode(Rs) and Anode(R′s) are the successors of
R and R′ respectively, we connect them as follows:

Anode(Rp) −→ A −→ Anode(Rs), and

Anode(R′p) −→ A −→ Anode(R′s)

In other words, you can see it graphically as described in the example of figure 5, where we
begin by an empty graph, then we add a root node, and then following the same absolute order
we connect the intra-element relations of a single pattern to the root node for each pattern in
every rule, obtaining one independent path for each one. Then we remove duplicate instances of
relations in a single pattern/path.

Once we have shared the intra-element relations for each pattern, we have still one path for
each pattern, but now we will share also relations between different patterns, and may be also
different rules, as the example of figure 6 shows.

We will call leaf-nodes every node which is still unconnected at its output, so after you connect
every intra-element relation, you will have one leaf-node for each pattern, non considering
sharing. In our example, y, z and v are leaf nodes, which is clear in figure 5, but tricky in figure 6.

Projet RNTL : M / Sous Projet 1 / Fourniture 1.1 /V1.0
ILOG, INRIA Lorraine, INRIA Rocquencourt

17

M – Méta-compilation non intrusive du filtrage par contraintes

root root

x

x

y

y

z

z

w

y

v

root

x

y

y

z

w

y

v

Figure 5: An example how to share intra-element tests for single patterns

root

x

y

y

z

w

y

v

root

x

y

z

w

v

Figure 6: An example how to share intra-element tests

Now, for building the Bnodes or two-input nodes we have to consider that each Bnode is
asociated a list L of the relations to be checked by the node, so this node will depend on the union
of each dependency set

DS (n) B
⋃

R∈L

DS (R)

for n a Bnode. This set will be a superset of the union of the patterns related to the facts arriving
at both inputs.

Remark 3.4 A Bnode, depending on the relation to a negative pattern, is called Any node, if there
are only negative or only positive patterns involved, or Not node, if there are negative as also
positive patterns involved.

Then, for building and connecting the Bnodes, for inter-element relations, we select one of the
remaining relations R ∈ Rk and dependency set P =

{

p1, . . . , pk
}

, Here, we will have to decide
how to select this relation R ∈ R. A good criterion seems to be to select the relation with smallest
dependency set.

Then, if there is a Bnode, n, does not matter if it is a leaf-node or not, so thatDS (R) ⊆ DS (n),
we have just to add the relation R to this node, and if there are more than one possibilities, we
add it to the node n, so that |DS (n) | is minimal.

If there is no node n, so that DS (R) ⊆ DS (n), create a new node n for this relation R, and
locate the minimal amount of leaf-nodes n1, . . . , nl, so that, DS (R) ⊆ DS (n1) ∪ . . . ∪ DS (nl),
and connect the output of the nodes n1, . . . , nl to the inputs of node n, keeping in mind that a
Bnode have exactly two inputs, and one output. So, we proceed as follows: If

l=2 , there is just two possibilities to connect the outputs of n1 and n2 to the inputs of n, one
structural shape, with 2! posibilities. Here is the picture:

l=3 , there are several, exactly 3! possibilities to connect them, the point is that we have to connect
all them two nodes by two at each time, creating empty nodes, nodes that only collects their
inputs but do not check any relation, at least yet, may be later you will have to put some
relations in these nodes. The best way to connect them will depend on each production
system, but some metrics for taking a good decision includes the height of the final rete
network and the number of empty nodes. Here a picture of the different possibilities for

Projet RNTL : M / Sous Projet 1 / Fourniture 1.1 /V1.0
ILOG, INRIA Lorraine, INRIA Rocquencourt

18

M – Méta-compilation non intrusive du filtrage par contraintes

n1 n2

n

n2 n1

n

Figure 7: How to create a new Bnode n from 2 sources, n1 and n2

connecting three nodes, structuraly there is only one choise, but there are three different
configurations swapping the nodes:

n1 n2

n3e

n

n1 n3

n2e

n

n2 n3

n1e

n

Figure 8: How to create a new Bnode n from 3 sources, n1, n2 and n3, by inserting an extra empty
node e.

l=4 , as before, there are 4! × 2 = 48 possibilities, two different structures with 4! = 24 different
configurations each:

n1 n2 n3 n4

e1 e2

n

n1 n2

n3

n4

e1

e2

n

Figure 9: How to create a new Bnode n from 4 sources, n1, n2, n3 and n4, by inserting two extra
empty nodes e1 and e2, and showing just the two different structural approaches, each one with
three possible combinations.

l=? , in general, there will be exactly l! × s possibilities for connecting the nodes, where s is
the number of different structural posibilities, using a similar strategy as showed in the
examples above.

Remark 3.5 Until now, we made no difference for building nodes for relations that involve
positive and negative patterns. And, in general, for building the Rete Network there is no special
threatment for negative patterns, just that, if you have a relation which involves both positive
and negative patterns, you have to build your network in such a way that you collect all the

Projet RNTL : M / Sous Projet 1 / Fourniture 1.1 /V1.0
ILOG, INRIA Lorraine, INRIA Rocquencourt

19

M – Méta-compilation non intrusive du filtrage par contraintes

negative patterns and all the positive patterns, so that the new node will have one input for
positive patterns and one for negative patterns.

Once all the relations have been included in the Rete Network, we create for each rule a
terminal node, and we just take all the outputs of leaf-nodes related to a single rule and we
connect them with the corresponding terminal node, and we do not worry about the number of
inputs of terminal nodes, since they do not perform any condition check, they can have as many
inputs as needed.

Remark 3.6 The so built Rete Network will have exactly one entry point, the root node, one
terminal node for each rule and, unless there are two or more identical patterns in the same rule,
one path from the root node to a terminal node will represent exactly one pattern.

Example 3.5 For our Fibonacci example, we have:

q1
1,0 = q1

2,0 = q2
1,0 = q2

2,0 = q2
3,0 ≡ input.ε = f ib

q1
1,1 = q2

1,1 ≡ input.2 = −1

q2
2,1 = q2

3,1 ≡ input.2 > 0

Not1
1,2 ≡ input1.1 − 1 = input2.1

Any2
1,2 ≡ input1.1 − 1 = input2.1

Any2
1,3 ≡ input1.1 − 2 = input3.1

c2
2,3 ≡ ?v = input2.2 + input3.2

So, just considering intra-element relations, we will have the network showed in figure 10.

root

q1
1,0 q1

2,0 q2
1,0 q2

2,0 q2
3,0

q1
1,1 q2

1,1 q2
2,1 q2

3,1

Figure 10: Intra-element nodes for Fibonacci without sharing

Then, figure 11, shows the network after sharing.

root

q j
i,0

q1
1,1, q

2
1,1 q2

2,1, q
2
3,1

Figure 11: Intra-element nodes for Fibonacci with sharing

Now, we have to build the Bnodes for the inter-element tests. Notice that our leaf-nodes are:
q2

2,0, q
1
1,1, q

2
1,1, q

2
2,1 and q2

3,1. We first take relation Not1
1,2, this relation depends on pattern p1 and p2

Projet RNTL : M / Sous Projet 1 / Fourniture 1.1 /V1.0
ILOG, INRIA Lorraine, INRIA Rocquencourt

20

M – Méta-compilation non intrusive du filtrage par contraintes

for the GoDown rule, so, since there is no node n so that
{

p1, p2
}

⊆ DS (n), we have to create
a new node and we connect them to the corresponding leaf-nodes, checking q1

1,1 for the positive
pattern p1 and q1

2,0 for the negative pattern p2. Then, we take the next relation Any2
1,2, related to

patterns p1 and p2 of the GoUP rule, and after looking for a node n so that
{

p1, p2
}

⊂ DS (n) with
no success, we create a new node connecting the corresponding leaf-nodes, checking q2

1,1 for p1

and q2
2,1 for p2. Now, for the last relation Any2

1,3 we have also to create a new node, but now the
leaf-node involving p1 is not q2

1,1 instead it is the node Any2
1,2, so we connect the new node to it

and also to the node containing q3
3,1. So, we get the graph as presented in figure 12

root

q j
i,0

q1
1,1, q

2
1,1

q2
2,1, q

2
3,1

any2
1,2

not1
1,2

any2
1,3

Figure 12: Rete network for Fibonacci example after adding the Bnodes

And finally, after adding the terminal nodes, figure 13 shows the formal version of the rete
network for our Fibonacci example.

3.4 Execution of the Rete Algorithm

Once the rete network is built, it can be executed receiving as input changes to theWM as tokens.

Definition 3.12 We define a token, t, as:

t =< s,
{

f1, . . . , fn
}

>

where

• f1, . . . , fn are facts inWM, and

• s is a sign, + or −, for indicating that a fact has been added or removed fromWM.

So, if a fact, f , is added toWM, we generate a token < +, f >, and we pass it to the entry point
of the rete network, the root node. If f was removed, we generate a negative token < −, f >.

Now, we will define how the diferent node types behaves on the arrival of tokens. First, when
the root node gets a new token, it forward it without question to all its successors in the network,
this means possibly, a clonation of the token, so that every successor, get his own copy.

Projet RNTL : M / Sous Projet 1 / Fourniture 1.1 /V1.0
ILOG, INRIA Lorraine, INRIA Rocquencourt

21

M – Méta-compilation non intrusive du filtrage par contraintes

root

q j
i,0

q1
1,1, q

2
1,1

q2
2,1, q

2
3,1

any2
1,2

not1
1,2

any2
1,3

GoDown GoUpCS

Figure 13: Rete network for Fibonacci example

Definition 3.13 Then, we define an execution rule for a given Anode(R), n, and a given input token,
t, as:

Exe (n, t) =

t if R(f)
∅ if ¬R(f)

That means, that when a Anode receives an input token and the respective relation can be satisfied,
it generates the same input token as output, for all its successors. And if not, nothing happens.

The incremental approach of the rete algorithm comes from the memorization of the tuples
of facts that satisfy a partial left hand side of a rule in left and right memories, lm and rm for each
Bnode. Each Bnode, is associated to three memories, the left input memory lm, the right input
memory rm and the output memory, or input memory for the next node.

Definition 3.14 A partial left hand side of a rule j, [l] p, c⇒ r, a, asociated to a Bnode, n, isπ j
n =
(

p′, c′
)

,
where

p′ = DS (n)

c′ =
{

ci | ∀x ∈ Var (ci) x ∈ Var (DS (n)) ∧ x <Var
(

p \ p′
) }

We also define a partial left hand side of a rule, for a single pattern pi asosiated to the last Anode
n in a branch, where

p′ = pi

c′ =
{

ci | ∀x ∈ Var (ci) x ∈ Var
(

pi
)

∧ x <Var
(

p \ pi
) }

Definition 3.15 So, we can define the left memory, lm j
n, and the right memory, rm j

n of a Bnode n in a
rule j, if it is connected to the nodes n1 and n2, as following:

lm j
n =
{

F ⊆WM | F � π j
n1

}

Projet RNTL : M / Sous Projet 1 / Fourniture 1.1 /V1.0
ILOG, INRIA Lorraine, INRIA Rocquencourt

22

M – Méta-compilation non intrusive du filtrage par contraintes

rm j
n =
{

F ⊆WM | F � π j
n2

}

Then, when a token < s, F > arrives to one input of a Bnode, either Any or Not node, the
respective memory(lm or rm) is updated as follows:

mem←

mem ∪ { F } if s = +
mem \ { F } if s = −

For a Any node, we define the execution rule as:

Exe
(

Anyi(R), < s, F >
)

=

< s, F ∪ F′ > if ∃F′ ∈ mem | F ∪ F′ � R
∅ if ∀F′ ∈ mem | F ∪ F′ 2 R

Where mem is the memory from the opposite side where the token has arrived.
And for a Not node, we define the execution rule as follows, if the token arrives at the side

related to positive patterns:

Exe (Noti(R), < s, F >) =

< s, F > if ∀F′ ∈ mem | F ∪ F′ 2 R
< −s, F > if ∃F′ ∈ mem | F ∪ F′ � R

and if the token arrives at the side related to negative patterns:

Exe (Noti(R), < s, F >) =

< −s, F′ > if ∃F′ ∈ mem | F ∪ F′ � R
∅ if mem = ∅ ∨ ∀F′ ∈ mem | F ∪ F′ 2 R

Where mem is the memory from the opposite side where the token has arrived.
At last, the terminal nodes, that can have several inputs, in general, have to wait for tokens

at every input, memorising the facts at every input, these memories work in the same way as a
lm or rm, if a positive token, < s, F j > arrives at input j, F j is stored in the memory, if a negative
token arrives, F j is removed from the memory. So, when a new positive token arrives, the other
inputs are checked for the different combinations for activating the given rule l,

CS = CS ∪ < l,
⋃

i∈I

Fi >

Where Fi is an element at input i, but F j is fixed. So, all inputs have to have at least one element,
for generating the activation. But, if a negative token arrives, and there is a combination, then the
activation is retracted:

CS = CS \ < l,
⋃

i∈I

Fi >

The only exception is, if one of the inputs is comming directly from an Anode related to a negative
pattern. In that case, the activation is generated just if all inputs have elements, except the input
comming from the mentioned Anode, which has to be empty.

Remark 3.7 Notice that the activation do not include any information about the binding of the
variables, this is because it is trivial to obtain the mapping given the facts that match the patterns.
But there is also the possibility to track the binding of the variables inside of the tokens, and
include that information in the activation of a rule.

4 Conclusions

The main contribution of this work has been the development of a whole formal description for
production systems, including an ad-hoc formal definition of the rete algorithm.

Projet RNTL : M / Sous Projet 1 / Fourniture 1.1 /V1.0
ILOG, INRIA Lorraine, INRIA Rocquencourt

23

M – Méta-compilation non intrusive du filtrage par contraintes

With respect to production systems, we give a formal definition of common used concepts, like:
facts, working memory, positive and negative patterns, production rules, production memory,
activations, instantiations, conflict set, conflict resolution strategy, and so on.

This formal definition of production systems allows us to define a production system program
in an unambiguous, language independent and formal way, being useful for generating code for
concrete implementation.

With respect to the rete algorithm, we can say we have rewritten Fages and Lissajoux’ previous
formalisation, making clear some important points, like:

• The fact that it can be used for handling deep facts and deep patterns.

• The need for correlation between different relations involving common patterns.

• The need, in some cases, for empty nodes in the rete network, just for collecting the facts
pairwise.

We also presented a normal form for a production memory for being able to build the rete network.
On the other side, if we compare the rete algorithm with a standard AC-rewriting algorithm,

we can say that the only differences are:

• the rete algorithm manages a context, the WM which facilitates the implementation of
negative patterns.

• the rete algorithm lacks on search capabilities, so it can not match subterms.

As a related work, we are working on an extensive comparison between the rewrite systems
and production systems.
Acknowledgments: Thanks to François Charpillet for sharing with us his X-tra experience and
to the Manifico project members for interactions and comments.

References

[Alb89] Luc Albert. Average case complexity analysis of rete pattern-match algorithm
and average size of join in databases. Rapport de recherche no. 1010, INRIA-
ROCQUENCOURT, 1989.

[BB01] Dumitru Dan Burdescu and Marius Brezovan. Algorithms for high level petri nets
simulation and rule-based systems. Acta Universitaris Cibiniensis, XLIII:33 – 39, 2001.

[BBCK04] Clara Bertolissi, Paolo Baldan, Horatiu Cirstea, and Claude Kirchner. A rewriting
calculus for cyclic higher-order term graphs. In Maribel Fernandez, editor, Proceedings
of the 2nd International Workshop on Term Graph Rewriting, Roma (Italy), September
2004. to appear.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and all That. Cambridge University
Press, 1998.

[CKMM04] Horatiu Cirstea, Claude Kirchner, Michael Moossen, and Pierre-Etienne Moreau.
Production systems and rete algorithm formalisation. Manifico deliverable, LORIA,
Nancy, September 2004.

[CR03] Chris Culbert and Gary Riley. Basic Programming Guide, June 2003.

[dFFR00] Carlos Santos da Figueira Filho and Geber Lisboa Ramalho. Jeops - the java embedded
object production system. Lectures Notes in Artificial Intelligence, 1952, 2000.

[DK99a] Hubert Dubois and Hélène Kirchner. Modelling planning problems with rules and
strategies. Technical Report 99-R-029, LORIA, Nancy, France, March 1999.

Projet RNTL : M / Sous Projet 1 / Fourniture 1.1 /V1.0
ILOG, INRIA Lorraine, INRIA Rocquencourt

24

M – Méta-compilation non intrusive du filtrage par contraintes

[DK99b] Hubert Dubois and Hélène Kirchner. Rule based programming with constraints
and strategies. Technical Report 99-R-084, LORIA, Nancy, France, November 1999.
ERCIM workshop on Constraints, Paphos (Cyprus).

[DK00a] Hubert Dubois and Hélène Kirchner. Objects, rules and strategies in ELAN. In Pro-
ceedings of the second AMAST workshop on Algebraic Methods in Language Processing,
Iowa City, Iowa, USA, May 2000.

[DK00b] Hubert Dubois and Hélène Kirchner. Rule Based Programming with Constraints and
Strategies. In K.R. Apt, A.C. A. C. Kakas, E. Monfroy, and F. Rossi, editors, New Trends
in Constraints, Papers from the Joint ERCIM/Compulog-Net Workshop, Cyprus, October
25-27, 1999, volume 1865 of Lecture Notes in Artificial Intelligence, pages 274–297.
Springer-Verlag, 2000.

[Dub01] Hubert Dubois. Systèmes de règles de production et calcul de réécriture. PhD thesis,
Université Henri Poincaré - Nancy 1, September 2001.

[Duf84] Pierre Dufresne. Contribution algorithmique a l’inference par regles de production. PhD
thesis, Université Paul Sabatier de Toulousse, Juny 1984.

[FH86] F. Fages and G. Huet. Complete sets of unifiers and matchers in equational theories.
Theoretical Computer Science, 43(1):189–200, 1986.

[FH03] Ernest J. Friedman-Hill. JESS in Action. Manning Publications Co., 2003.

[FL91] Francois Fages and Rémi Lissajoux. Systèmes experts temps-réel: une introduction
au langage xrete. Revue Technique Thomson-CSF, 23 - 3:633–699, 1991.

[FL92] Francois Fages and Rémi Lissajoux. Sémantique opérationnelle et compilation des
systèmes de production. Revue d’intelligence artificielle, 6 - 4:431–456, 1992.

[For74] Charles Forgy. A network fast routine for production systems. Working paper,
Carnegie-Mellon University, 1974.

[For81] Charles Forgy. Ops5 user’s manual. Technical Report CMU-CS-81-135, Carnegie-
Mellon University, Pittsburgh, USA, July 1981. 62 pages.

[For82] Charles Forgy. Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence, 19:17–37, 1982.

[Frü98] Thom Frühwirth. Theory and practice of constraint handling rules. Special Issue on
Constraint Logic Programming, 37(1-3):98–135, October 1998.

[Gal86] Jean H. Gallier. Logic for Computer Science: Foundations of Automatic Theorem Proving,
volume 5 of Computer Science and Technology Series. Harper & Row, New York, 1986.

[Ish94a] Toru Ishida. An optimization algorithm for production systems. IEEE Transactions
on Knownledge and Data Engineering, 6 - 4:549–558, 1994.

[Ish94b] Toru Ishida. Parallel, distributed and multiagent production systems. Lecture Notes
in Artificial Intelligence, 878, 1994.

[KDK93] Francis Klay, Eric Domenjoud, and Claude Kirchner. Vérification sémantique de
spécifications métallurgiques. Rapport de fin de contrat, Inria Lorraine & Crin, 1993.

[KK99] Claude Kirchner and Hélène Kirchner. Rewriting, solving, proving. A preliminary
version of a book available at www.loria.fr/˜ckirchne/rsp.ps.gz, 1999.

[LG89] Thomas Laffey and Anoop Gupta. Real-time knownledge-based systems, 1989.

[Lop87] Frank Lopez. The Parallel Production System. PhD thesis, University of Illinois, Urbana-
Champaign, Illinois, USA, 1987.

Projet RNTL : M / Sous Projet 1 / Fourniture 1.1 /V1.0
ILOG, INRIA Lorraine, INRIA Rocquencourt

25

M – Méta-compilation non intrusive du filtrage par contraintes

[MBLG90] Daniel Miranker, David Brant, Bernie Lofaso, and David Gadbois. On the per-
formance of lazy matching in production systems. Knowledge Presentation, pages
685–692, 1990.

[Mir90] Daniel Miranker. Treat: a new and efficient match algorithme for AI production systems.
Morgan Kaufmann, 1990.

[MRV01] Pierre-Etienne Moreau, Christophe Ringeissen, and Marian Vittek. A pattern match-
ing compiler. In D. Parigot and M. G. J. van den Brand, editors, 1st International
Workshop on Language Descriptions, Tools and Applications, 2001.

[S.A04] ILog S.A. Ilog jrules 4.6 technical white paper, 2004.

[SS96] Wayne Snyder and James Schmolze. Rewrite semantics for production rule systems:
Theory and applications. In Michael McRobbie and John Slaney, editors, Proceed-
ings 13th International Conference on Automated Deduction, New Brunswick NY (USA),
volume 1104 of Lecture Notes in Artificial Intelligence, pages 508–522. Springer-Verlag,
July 1996.

[“T02] “Terese” (M. Bezem, J. W. Klop and R. de Vrijer, eds.). Term Rewriting Systems.
Cambridge University Press, 2002.

[Thé90] Philippe Théret. De l’efficacité des systèms de règles de production. Technical Report
90.09 / 002 / P, IBSI électronique, September 1990.

[Thé94] Philippe Théret. De l’efficacité des interpréteurs de systèms de règles de production dans les
systèmes à base de connaissances. PhD thesis, Université Paris XIII, February 1994.

[TR89] Milind Tambe and Paul Rosenbloom. Eliminating expensive chunks by restricting ex-
pressiveness. In Proceedings of the International Joint Conference on Artificial Intelligence,
pages 431–456, 1989.

[X-T88] X-tra 1.0 - manuel de reference, 1988.

Projet RNTL : M / Sous Projet 1 / Fourniture 1.1 /V1.0
ILOG, INRIA Lorraine, INRIA Rocquencourt

26

