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Abstract

Inductive proofs can be built either explicitly by making use of an induction prin-
ciple or implicitly by using the so-called induction by rewriting and inductionless
induction methods. When mechanizing proof construction, explicit induction is used
in proof assistants and implicit induction is used in rewrite based automated the-
orem provers. The two approaches are clearly complementary but up to now there
was no framework able to encompass and to understand uniformly the two meth-
ods. In this paper, we propose such an approach based on the general notion of
deduction modulo. We extend slightly the original version of the deduction modulo
framework and we provide modularity properties for it. We show how this applies
to a uniform understanding of the so called induction by rewriting method and how
this relates directly to the general use of an induction principle.

Key words: Induction, rewriting, deduction modulo

1 Introduction

Proof by induction is a fundamental proof method in mathematics. Since the
emergence of computer science, it has been studied and used as one of the
fundamental concepts to build mathematical proofs in a mechanized way. In
the rising era of verified software and systems it plays a fundamental role in
frameworks allowing to search for formal proofs. Therefore proofs by induction
have a critical role in proof assistants and automated theorem provers. Of
course these two complementary approaches of proof building use induction in
very different ways. In proof assistants like COQ, ELF, HOL, Isabelle, Larch,
NQTHM, PVS, ...induction is used explicitly since the induction axiom is
applied in an explicit way: the human user or a clever tactics should find the
right induction hypothesis as well as the right induction variables and patterns

Preprint submitted to Elsevier Science 27 November 2004



to conduct the induction steps. In automated theorem provers specific methods
have been developed to automatically prove inductive properties. The most
elaborated ones are based on term rewriting and saturation techniques. They
are respectively called induction by rewriting and inductionless induction or
proof by consistency. Systems that implement these ideas are Spike, RRL or
INKA.

These last methods have been studied since the end of the seventies and have
shown their strengths on many practical examples from simple algebraic speci-
fications to more complicated ones like the Gilbreath card trick. But what was
intriguing from the conceptual point of view was the relationship between ex-
plicit and implicit induction: implicit induction was shown to prove inductive
theorems, but the relationship with the explicit use of the induction principle
was open.

Our contributions. We provide a framework to understand both approaches
in a unified way. One important consequence is that it allows us to combine
in a well-understood way automated and assisted proof search methods. This
reconciliation of the two approaches will allow automated theorem provers and
proof assistants to collaborate in a safe way. It will also allow proof assistants
to embark powerful proof search tactics corresponding to implicit induction
techniques. This corresponds to the deduction versus computation scheme
advocated in [DHKO03] ' under the name of deduction modulo: we want some
computations to be made blindly i.e. without the user interaction and in this
case this corresponds to implicit induction; but one also needs to explicitly
control deduction, first because we know this is unavoidable but also because
this may lead to more efficient proof search.

It is thus not surprising to have our framework based on deduction modulo.
This presentation of first-order logic relies on the sequent calculus modulo a
congruence defined on terms and propositions. But since we need to formalize
the induction axiom which is in essence a second-order proposition, we need
to use the first-order representation of higher-order logic designed in [DHKO1].
In this formalism, switching from explicit induction to implicit one becomes
clear and amounts to push into the congruence some of the inductive reasoning,
then to apply standard automated reasoning methods to simplify the goal to
be proved and possibly get a better representation of the congruence.

This paper relies on the notions and notations of deduction modulo [DHKO03|
as well as on the first-order presentation of higher-order logic called HOL,,
presented in [DHKO01]. We refer to these two papers for full definitions, details
and motivations of the framework. In this context, our contributions are the
following;:

1 Before publication, this work was available as [DHK98].



(1) At the conceptual level, we provide through deduction modulo a uniform
framework to combine automated and assisted proof tools.

(2) This is used as a uniform framework that allows us to combine explicit
and implicit induction mechanisms.

(3) We extend the formalism of deduction modulo introduced in [DHKO03] and
used in [DHKO1] to conditional axioms and conditional rewrite rules. We
also give crucial modularity properties of the deduction modulo paradigm.

(4) We show how rewrite based techniques based on orderings help to simplify
the application of the induction hypothesis.

(5) Using this new framework, we uniformly review the induction by rewriting
method and show how it directly relates to the induction principle, thus
providing proof theoretic instead of model theoretic proofs of this rewrite
based method.

Consequently, since the proof method is completely proof theoretic, to any
rewrite based inductive proof we can canonically associate an explicit proof
in the sequent calculus, thus providing a proof assistant with all necessary
information to replay the proof as needed.

Related works. The use of rewriting techniques to perform inductive proofs con-
sists of two quite different methods. The first is based on a consistency check
and is also call inductionless induction after [Lan81]. Because it is mainly
based on a saturation procedure which aims to detect inconsistency, it is quite
different from the second method, often called term rewriting induction that
uses mainly the fact that a terminating relation determines an induction prin-
ciple that is implicitly applied when rewriting. This second method has been
historically derived from the first one in [HK88] and fully developed under the
name of “term rewriting induction” in [Red90] using the so called “cover sets”
and in a series of papers initiated by [KR90a,KR90b] and using “test sets”.

Inductionless induction can be explained in deduction modulo as well, but
we focus in this paper on term rewriting induction. It should be noticed that
our approach and results are quite different from [Red90] since in particular
we explicitly relate the induction principle and its use in the presentation of
first-order logic provided by the sequent calculus to the direct use of condi-
tional rewriting. In particular this can be spotted in the semantic definition
of what inductive consequences are in [Red90][def. 1, page 164], where we use
a completely proof theoretic definition of such consequences.

Roadmap. Section 2 first recalls the main notations and concepts. It extends
the deduction modulo paradigm to deal with congruences defined conditionally
and also proves the modularity results.

Section 3 is fully devoted to recalling the first-order presentation of higher-
order logic based on explicit substitutions.



Section 4 shows how the induction axiom, which is most naturally expressed
in second-order logic, can be encoded in deduction modulo (i.e. at first-order)
and how the induction hypothesis can be internalized in the congruence mod-
ulo which the sequent calculus works. It also provides useful sufficient condi-
tions to avoid checking ordering conditions when applying such an induction
hypothesis.

Section 5 shows how the framework can be applied to uniformly review the
proof by rewriting method.

We finally conclude and provide tracks for further researches in section 6.

2 Deduction Modulo

We use a presentation of first-order logic, called deduction modulo, where
terms as well as propositions can be identified modulo an equivalence rela-
tion [DHKO03]. In deduction modulo, the notions of term and proposition are
that of many sorted first-order logic. We consider theories formed with a set
of axioms I' and an equivalence relation, denoted by ~, defined on terms and
propositions and which can typically be defined by conditional equations.

Of course, the equivalence has an impact on the formulation of the sequent
calculus itself. The resulting calculus is called sequent calculus modulo and
is presented in section 2.1. We use the notation I' = A to denote a derivable
sequent in the standard sequent calculus [GLT89,Gal86]|, and the notation
I' E. A to denote a derivable sequent in the sequent calculus modulo. To take
the equivalence into account, each rule of the sequent calculus is modified, for
example:

TFAA TFBA
TFAAB,A

becomes

I A A Tk B A
T D,A

to take into account the fact that D does not necessarily have the syntactical
form A A B but is only equivalent to it.

itD~AAB

2.1 Sequent calculus modulo

We consider a set of fixed arity function symbols F, a set of fixed arity predi-
cate symbols P and a set of variables X with no symbol in common. 7 (F, X)



denotes the set of terms built on F and X. We call AP(P,F,X) the set
of atomic propositions built on the set of predicates P and the set of terms
T(F,X). Prop(P,F,X) is the set of first-order propositions build on the
atomic propositions in AP(P,F,X) with the usual connectors A,V,=,—, L
and quantifiers V and 3.

We give in figure 1, the definition of the sequent calculus modulo. It extends the
usual calculus [GLT89,Gal86] by working modulo the equivalence ~ and the
sequent calculus modulo given in [DHKO03| by allowing the equivalence to be
defined conditionally. In the rules, I' and A are finite multisets of propositions;
P, ) and R denote propositions. When the equivalence ~ is simply identity,
this sequent calculus collapses to the usual one. In that case sequents are
written as usual with the = symbol.

In order to evaluate the conditions, we may also have to take into account
the context in which the equivalence is used. Therefore the equivalence takes
three arguments: the two objects to be compared and a set of axioms I' called
a local context. When we want to emphasize the presence of a context we add
it to the notation, and denote the equivalence by ~I.

Proof checking decidability for the sequent calculus modulo reduces to the
decidability of the equivalence, since we can check for each rule that the con-
ditions of application are satisfied and provide the needed information in the
quantifier rules.

When the equivalence is decidable, to check the equivalence of two terms or
of two propositions is just computation. In this case deduction modulo allows
to draw a clear separation between deduction (in general undecidable) and a
decidable part of the reasoning process seen as computation.

When the equivalence is not decidable, the use of constraints allows us to
proceed, using the solution of easy to solve constraints and preserving the
others, in the same way as one deals with higher order unification constraints
in constraint resolution [Hue72].
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A=P~TQand P~ R
B=R~T(PAQ) C=R~T(PVQ), D=R~'(P=Q)
E=P~'Vz Q, F=P~"VxQ,y fresh variable
G = P ~F' 32 Q,y fresh variable, H= P ~F' 3z Q

Fig. 1. The sequent calculus modulo

2.2 Relating deduction modulo and classical deduction: compatibility

To understand the relationship between deduction modulo and standard de-
duction, we first introduce the fundamental notion of compatibility. A theory
7 and an equivalence ~ are compatible when deduction modulo ~ is equiva-



lent to deduction with 7 as hypothesis. But this equivalence may depend on
a context U, therefore leading to following definition:

Definition 2.1 A set of axioms 7 and an equivalence ~ are compatible up to
a set of axioms U when, for all I", A:

T,U,I'- Aif and only if U, " . A.

Checking compatibility can be achieved by enforcing the following two condi-
tions on the equivalence relation:

e First ensure that any deduction using the equivalence can be reproduced
without it, namely:

T.U, ' Aif and only if 7,U, 1" F. A.

e Second, ensure that the theory 7 is not needed in the calculus modulo,
namely:

T.U, ' AL if and only if U, ' . A.

Of course 7 will remain needed in practice if the equivalence is not decidable
or not tractable.

This first condition is ensured when there exists a proof of the equivalence of
two propositions only by logical means. This is formalized by the following

property:

Lemma 2.1 Let 7 and ~ be a theory and an equivalence. The two following
statements are equivalent:

(A) for all propositions P and @ and context T,

P~ Q implies T,U, T+ P < Q,
(B) T,U, T+ A'if and only if 7,U, T - A.
Proof: See appendix A O

Remark 2.1 The proof from A to B extensively uses the monotonicity of the
logic, embodied by the weakening and contraction rules.

The proof from B to A uses the reflexivity and symmetry properties of the
equivalence, but transitivity is not used.

The second condition is that the axioms of 7 have to be tautologies in the
calculus modulo. The following proposition asserts that this condition allows
working with or without the axioms of 7 in the calculus modulo.



Lemma 2.2 Let 7 and ~ be a theory and an equivalence. The two following
statements are equivalent:

(1) for every proposition P in 7, we have U k. P,
(2) T,U,T' k. A if and only if U, " . A.

Proof:
e From 1 to 2, it is obvious.
e From 2 to 1, U k. P reduces to 7,U k. P by 2, which is true by axiom
since P isin 7.
O

Remark 2.2 The proof from 1 to 2 uses the weakening rule of the logic.
The proof from 2 to 1 uses the reflexivity property of the equivalence.

The following proposition sums up the two previous lemmas to asserts that
the conjunction of the two conditions is equivalent to compatibility. It is the
direct consequence of the two previous propositions.

Proposition 2.1 A set of axioms 7 and an equivalence ~ are compatible up
to a set of axioms U iff both of the following conditions are met:

(A) for all propositions P and @ and context T,
P~V Q implies T,U.T+ P & Q.
(B) for every proposition P in 7, we have U k. P.

Remark 2.3 In [DHKO03], the conditions A and B above are given as the
definition of compatibility.

Using compatibility, we can internalize propositions into the equivalence, and
call this operation “push”. We can also recover them at the level of logic, and
call this operation “pop”. We formalize this in the form of inference rules,
where the theory 7 and the equivalence ~ are compatible:

I A I 7TFA

F7FA Ph TEAa PP

2.3  Modularity of compatibility

Because induction hypotheses arise dynamically during the proof process, we
need a modularity result to be able to add them to the equivalence.



Definition 2.2 Let ~; and ~5 be two equivalences, and I be a given context.

The equivalence (~1 U ~3)" is inductively defined by a (~1 U ~3)" b if one of
the following holds:

. ant
e a~Lb,

e there exists ¢ such that a ~} ¢ (~1 U ~)F b,
e there exists ¢ such that a ~% ¢ (~; U ~g)l b.

Lemma 2.3 Let 7; and 75 be two sets of axioms, compatible respectively
with the relations ~; and ~9 up to the set of axioms U; and Us. The relation
~1 U ~y is compatible with 77 U 75 up to Uy U Us.

Proof: We shall prove that:
(A) for all propositions P and @ and contexts I,
P (Nl U Ng)ul’MQ’F Q 1rnphe:> ﬂ,%,ul,UQ, I'-P < Q
We proceed by cases, according to definition 2.2.
o if P~ O from the compatibility of 77 and ~1 up to Uy we
get that for all IV, P szl’rl Q implies 71, Uy, 1"+ P < Q.
If I' = U, T, we get that P ~S1 Q implies T3, Uy, Us, T F
P < Q.
Monotonicity of the logic allows us to add 75 and thus to con-
clude.
o if P M O from the compatibility of 75 and ~s up to Us we
get that for all IV, P ~%2 @ implies To,Us, I F P < Q.
If IV = U, T, we get that P ~¥*21 Q implies 7o, Uy, Us, T F
P < Q.
Monotonicity of the logic allows us to add 7; and thus to con-
clude.
o if P YT R (L) U~ ML Q) we have Tr, T, Uy, Uy, T - P < R
and by induction hypothesis 77, 7o, U, Us, I' H R < @ from which
we easily deduce 77,75, U;,Us, ' - P < Q.
o if P YT R () U~ 2T Q) we have Th, T, Uy, Uy, T' - P < R
and by induction hypothesis 77, 75, U, Uz, I' F R < @ from which
we easily deduce 7y, T, Uy, Us, ' P < Q.
(B) For every proposition P in 7; U 7y we have Uy, Us F ., P.
We have two cases:
e cither P is in 7; and we have U ., P and thus Uy, Us F i, P,
e or Pisin 7; and we have Uy ., P and thus Uy, Us i, P.
O

From the previous lemma we immediately get modularity:

Corollary 2.1 Let 7; and 75 be two sets of axioms, compatible respectively
with the equivalences ~; and ~y up to the set of axioms U; and Us. Let ~q



be an equivalence compatible with 7; U 75 up to U; U Us.

for any T,

Uy, Uy, T' = A

0

7-27u17u2aF}_N1 A = 7-117591/{171/{27F}_A = 7-172/{172/{27F|_N2A

0

T Fone, A

~1u2

This property allows us to simply take ~q 9 to be ~; U ~sy. It also allows us
to internalize only 7; or 75 or to internalize dynamically one then the other.

This will be important for induction since induction hypotheses arise dynam-
ically during the proof.

2.4 Conditional protected equality

The interaction between the definition of equality via rewriting and the explicit
use of orderings brings us to control their relationship. Let us first motivate
why. Leibniz equality is the most commonly equality and it is defined as a
congruence such that two objects are equivalent when no predicate allows to
distinguish them.

Leibniz equality is too strong when one wants to explicitly use predicates like
> representing the noetherian ordering needed for induction. This is because
in such a situation, if we assume as usual the equality to be defined on naturals
by 240 — x and z+s(y) — s(z+y), then s(z)+0 is not Leibniz-equal to s(z).
Indeed, the predicate > defined as a RPO (recursive path ordering [Der87])
using the precedence + > s > 0, allows us to distinguish between s(z) and
s(x) + 0 as we have s(z) + 0 > s(s(z)) and s(s(z)) > s(z).

We therefore want to define an equality ~ such that = + 0 ~ x, while having
> as an explicit predicate. This is achieved by forbiding the context propaga-
tion of ~ equality below the > predicate. In this case, we call > a protective
predicate.

10



2.4.1 Protective symbols

For a given equivalence ~, a symbol can be protective with respect to all,
none or some of its argument. This is reflected in the following definition:

Definition 2.3 Given an equivalence ~, to each function symbol f of arity
n in F, we associate a subset of {1,...,n} that we call the protective arity of
f, denoted by prarity(f,~).

To each predicate symbol P of arity n in P, we associate a subset of {1,...,n}
that we call the protective arity of P, denoted by prarity(P,~).

If prarity(f,~) is non-empty, f is said to be a protective symbol for ~. We
call protective signature a signature with given non-empty protective arities
for its function and predicate symbols.

Remark 2.4 The notion of protective symbols [Dep02, DKKNO3] is very sim-
ilar to the operational notion of frozen symbols introduced independently in
the Maude system and in rewriting logic [BMMO02,BMO03].

Notation 2.1 To improve readability,

o xy,...,x, will be denoted by T,
o we write Q(t,v;,3) if v; is the it" argument of Q.

From the notion of protective symbols, we can define the notion of protected
congruence, where stability by context is only true at unprotected positions.

Definition 2.4 Given a protective signature, an equivalence ~ is extended
to the protected congruence ~, defined by:

e T ~NY=ST Y
(T rpy Ny~ 2) = a2
for all f of arity n in F, for all 4 in {1,...,n} \ prarity(f,~),

Ty ~p Y = f(ﬂa xiav) ~p f(ﬂ7 yu@)

for all P of arity n in P, for all ¢ in {1,...,n} \ prarity(P, ~),
Ty ~p Y = P(Ua xlaﬁ) g P(ﬂ* yl*@)

Example 2.1 Let f be a binary function symbol such that prarity(f,~) =
{1}, and a ~ b. We have f(z,a) ~, f(x,b), but not f(a,y) ~, f(b,y).

Example 2.2 Coming back to the motivating example of this section, the
predicate < is made protective with respect to its two arguments: prarity(<
.~) = {1,2}. Doing so, we get that  + 0 ~ z and s(z) + 0 > s(s(z))

11



do not imply s(z) > s(s(x)), thus not conflicting with the subset ordering

s(z) < s(s(x)).

2.4.2 Protected equality
We now define the axioms of protected equality for an equality =<.

Definition 2.5 A binary predicate < in P is said to be a protected equality
when it satisfies the theory:

Vo (z < x)
Ve Vy (z < y=y <X 7)
VeVyVz ((z <y Ay < 2)=x X 2)
for all f of arity n in F, for all i in {1,...,n} \ prarity(f, =),
Th. = Y, x;, U, Y;
r; <Xy = f(u,z;,0) < f(u,y;,0)
for all P of arity n in P, for all i in {1,...,n} \ prarity(P, <),

vu) Zi, @, Yi

T, X Y; = P(H,Q?i,@) = P(ﬂ, yi,@)

There can exist in a given context several equalities with different sets of
protective symbol. These equalities will however have to be protective symbols
with respect to each another, in order to avoid one equality to be spoiled by
another one, as described by the following lemma:

Lemma 2.4 Let x; and <, be two equality predicates such that prarity(=;
,=<9) = {1} (i.e. <1 is not protecting its second argument from =j).

We have that for any a and b, a <, b= a =<; b.

Proof: Let a and b be arbitrary terms and assume that a =, b. By reflexivity
of <1, we have a <; a. Using <7 as P in the definition of Th-,, we have
a =4 b. O

Remark 2.5 A direct consequence of the previous lemma is that in the clas-
sical setting — i.e. without protective symbols — there cannot be two different
equality symbols.

We assume in this work that all the theories considered contain:

12



e an identity predicate, denoted by :=:, which has no protective symbols and
satisfying the decomposition axioms:

for all fin F

e a equality predicate, denoted by =, which has protective symbols, including
the previous :=: (i.e. prarity(:=:,~) = {1,2}).

2.4.3 Protected conditional equational systems

We assume the reader familiar with the basic notions of term rewriting as
described for example in [BN98,DJ90,Ter02]. Indeed, we allow for a more
expressive notion of rewriting called conditional class rewriting to define an
equivalence on propositions and terms:

Definition 2.6 A conditional term rewrite rule is a pair of terms [, r together
with a proposition ¢ called the condition. Such a rule is denoted by [ — 7 if c.
As usual, the variables of r as well as the free variables of ¢ must occur in
l. A conditional term equational aziom is a pair of terms [, r together with a
proposition c¢, it is denoted by [ =~ r if c. A conditional proposition equational
axiom is a pair of atomic propositions [, r together with a proposition ¢, it is
denoted by [ = r if c. A conditional proposition rewrite rule is a 3-tuple of
propositions ¢, [,r where [ is atomic and c,r are arbitrary, it is also denoted
by [ — r if c¢. As usual, the free variables of ¢ and » must occur in [. In each
case the condition can be omitted.

Term rewrite rules like
x4+ 0— 2 and l;.2.l.y.ls — l1.yly.xls if y > x

are respectively part of the theory of groups and describing (the main part of)
a sorting algorithm for lists. Examples of term equational axioms are

r+y~y+xand z.(y.2) = (r.y).2

that are respectively part of the theory of Abelian groups and the theory of
lists. An instance of a proposition rewrite rule is

r€e€Py) —»Vz(z€x=2z€Y)

that describes powerset in set theory. In this case, = and y are free in the
rule, but z is not. Finally, an instance of a proposition equational axiom is the

13



commutativity of an equality symbol =

Definition 2.7 A conditional class rewrite system is a pair, denoted by RE,
consisting of:

e R: a set of conditional rewrite rules on propositions or terms,
e &: a set of conditional equational axioms on propositions or terms.

Definition 2.8 To a conditional class rewrite system RE, we associate the
theory denoted by Tre such that for each conditional rewrite rule [ — r if ¢
or equational axiom [ = r if ¢, Tre is the universal closure of the associated
propositions, i.e.:

( (I < 1)) when [ and r are propositions.

o VT(c =
e VZ(c= (I~ r)) when [ and r are terms.

8 8

Definition 2.9 We define Prot(t,w,~) to be true iff the position w is in the
protective scope of a protective symbol for =, i.e. a position prefix of w is in
a protective position of a protective symbol for ~ in ¢.

Definition 2.10 Given a conditional class rewrite system RE, a set of propo-
sitions I', propositions P, P’, ), Q' and ¢, a non-protected occurrence w in P
(i.e. such that Prot(P,w) is false), a substitution o such that Tre, " F o(c),
we define the following relations:

(1) P «—L P, if P' = P[o(r)],, for some equational axiom [ = r if ¢ or

r ~ L if cin & such that o(l) = B,. We say that P E-equates P’ in
context I'.
(2) P =L P'is the equivalence generated by € for a context I, i.e. the reflexive

and transitive closure of «—L.

(3) P —L P it P = Plo(r)],, for some rewrite rule [ — r if ¢ in R such
that o(l) = B,. We say that P R-rewrites to P' in context I'.

(4) Q —%L Q' it Q =% Plo(])],, Q' =L Plo(r)],, for some rule [ — 7 if ¢ in
R. We say that QQ RE-rewrites to Q' in context I’

(5) P—Re P, if P' = Plo(r)],, for some rule I — r if ¢ € R such that
o(l) =¢ P,. We say that P R, E-rewrites to P’ in context I'. This is the
classical equivalence adapted from Peterson and Stickel [PS81] where it
was only defined on terms.

(6) =ke is the equivalence generated by R U € for a context I', thus the

symmetric, reflexive and transitive closure of «—§f U —5L.

When the context I' is either empty or clear from the context we omit it. The
reflexive transitive closure of a relation — is written as usual ——.

14



The equivalence =% is not decidable in general, in particular since one needs
to decide of the validity of the condition to apply a conditional rule. Hovewer
several restrictions of the general definition of conditional rewriting like non-
equational un-conditional rewriting make it decidable. More interesting re-
strictions like decreasing rewrite systems are for example described in [DO90].

2.5  Deduction modulo using conditional equational systems

Later we will use deduction modulo equivalences represented by protected
conditional equational systems. We show now that for every conditional class
rewrite system RE, there exists a set of axioms 7 such that 7 and RE are
compatible up to the theory of equality.

This result ensures that we indeed are in a convenient representation of logic
and not in a more (or less) powerful setting.

Lemma 2.5 For any conditional class rewrite system RE, the theory Tr¢ in
definition 2.8 is compatible with RE up to Th.

Proof: The complete proof of this natural but important result is given in
appendix B. We here give the sketch of the proof.
We shall prove that:
(A) for all propositions P and @ and all contexts I', we have Tre, Tha, I F
P < Q.
We proceed by induction on the length n of the derivation P Lg&zr Q.
(B) For every proposition P in Tze, we have Thy . P.

In each case, we apply the corresponding axiom or rule in R &.
O

Example 2.3 Let RE = {x + 0 — z,2 + s(y) — s(z + y)} and the corre-
sponding theory Tre = {Va (x+0 =~ x),Va Vy (x + s(y) — s(z+y))}. RE and
Tre are compatible up to Thy.

Remark 2.6 Of course it is tempting to manage things to get class (con-
ditional) rewrite systems RE that are confluent and Noetherian. This eases
in particular equality decision modulo RE. But we should notice that at this
stage of the framework, there is a complete freedom and therefore no restriction
about confluence or termination of RE is currently enforced.
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3 HOL,,, a first-order expression of higher-order logic

Since our first goal is to formalize induction in the framework of deduction
modulo, we have to express later in this paper the second-order axiom of
induction. To do this in a first-order presentation of higher-order logic, we use
the framework introduced in [DHKO1] to which we refer the reader for all the
details. We just recall now the basic notations and results that will be useful
in the next sections.

We denote by HOL-A the usual presentation of higher-order logic [Chu40,And86.
Terms are those of a simply typed A-calculus with two base types ¢ and o and
the following constants =, A and V, of type 0 — 0 — o, =1 of type 0 — o, L
of type o, Vr and Iy of type (T — o) — o. Notice that we use a notation with
a dot for the constants to distinguish them from the connectors and quanti-
fiers of first-order logic. Propositions are terms of type o. We have no room

here to recall the deduction rules of the logic, but they are made precise in
e.g. [DHKO1].

The first-order formulation of higher-order logic we are using is based on de
Bruijn indices and explicit substitutions. This notation is also a first-order
language with a binary function symbol a, a unary function symbol A and
individual symbols 1,2,3...

Simple sorts are not sufficient anymore with de Bruijn indices. Indeed, we need
to give a sort not only to terms like (A4 1) (that gets the sort A — A), but
also to terms of the form 1. Thus, as detailed in [DHKO00], we have to consider
sorts of the form I' = T where T is a simple type and I' a context, i.e. a list
of simple types: intuitively, I" gives the types of the free variables of a term
which, in that context, has type T.

With de Bruijn indices conversion axioms use an external definition for sub-
stitution. Moreover this substitution is not well-defined on open terms of this
first-order language. This is solved by considering an extension of this calculus:
the calculus of explicit substitutions [ACCLI1] also called Ao-calculus. This
calculus also introduces sorts of the form I' = A for substitutions that are lists
of terms and symbols to build such substitutions id, ., T and o. Then a new
term constructor is introduced _[_| that allows to apply an explicit substitution
to a term. The rewrite rules describing the evaluation of the Ao-calculus are
given in Figure 2.

In this framework, HOL), is the sequent calculus modulo defined in the fol-
lowing way.

(1) The syntax of the language consists of sorts of the form I' =T and I' F A
where I' and A are sequences of simple types and 1" is a simple type. It contains
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Beta (Aa)b — afb.id]

Eta Aa 1) — b

if a =, b[7]
o-reduction:
App (a b)]s] — (as] bls])
VarCons 1]a.s] —a
Id alid] —a
Abs (Aa)[s] — Aa[t.(s o T)])
Clos (als])[t] — a[sot]
IdL idos — S

ShiftCons 1 o (a.s) — 8
AssEnv (81 o 82) 083 — 8§10 (82 o 83)

MapEnv (a.s)ot — aft].(sot)

IdR so1id — s
VarShift 1.1 — id
Scons 1[s].(1os) —s

Fig. 2. The rewrite rules of Ao-calculus

the function symbols given in Figure 3 and a single unary predicate symbol:

¢ of rank (F o)

(2) The equivalence is defined by the class rewrite system denoted by Ao L and
consisting of the rewrite rules of Ao-calculus together with the logical rules £
given in Figure 4 and explained in detail in [DHKO1]. As shown in [DHKO1],
the system Ao L is weakly terminating and confluent on terms containing no
substitution variables and the theory HOL,, is consistent and the cut rule is
redundant in it.

As in [DHKO00], we use a translation from A-calculus to Ao-calculus called
pre-cooking. Bound variables are translated by the appropriate indices and
free variables are translated variables of the first-order theory, relocated by
an appropriate [1"] operator according to the context in which they occur. To
each variable x of type T', we associate the sort - T in Ao-calculus. The pre-

17



14 of sort AI'F A

oy gy ofrank (T'FA— BTFATIFB

Myp ofrank (ATHFBI'FA— B
157 of rank (I"F A, THI)F A

id" of sort T

I} of sort ATFT

LY ofrank THATHI) - ALY

ol of rank (I'F I, T - TY)I = TV

= of sort Fo—o0—o0
A of sort Fo—o0—o
% of sort Fo—o0—o0
= of sort Fo—o

1 of sort F o

V4 of sort F(A—o0)—o

=N of sort (A —o0)—o

Fig. 3. HOL), syntax

e(=zy) — e(x)=e(y)
eAzy) — e(@)ney)
e(Vay) — (@) Vve(y)
e(rha) — —e(z)
g(L) — 1L
eVrz) — Vye(zy)
eGrz) — Fye(zy)

Fig. 4. The L-rewrite rules

cooking of a A-term a is the Ao-term defined by ar = F(a,[]) where F(a,l)
is defined using the list of variables [ (] | being the empty list) by:

o F((Ara).l) = A(F(a,2.0)).
. FU(a B).0) = Fla.)F(.0)
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o F(x,1) = 1[1%"1], if x is the k-th variable of I,
o F(x,l) = x[1"] where n is the length of [ if z is a variable not occurring in
[ or a constant.

In this framework it can be proved that HOL,, is intentionally equivalent
to the usual presentation of higher-order logic HOL, [DHKO1] and therefore
from now on we use it as a first-order presentation of higher-order logic. The
formulas in HOL), can even be denoted by the corresponding higher-order
formulas in spite of a quite different point of view, as we now see on the simple
proposition:

VP 3rVz (z € 7=P(x)) (1)
In HOL, it has the form:

VAP N VAz (xeT= P(x))
By applying pre-cooking we obtain:

e(a(V, xa(3[1], Aa(V[17],
Aa(a(=1%], ala(e [1%].1).2)),a(3.1))))))

By Ao L-normalization, and by omitting the function symbol a wherever it
does not enlight that the quantifications are first-order, we get:

VP 3rVz (e(x € 7)=¢(a(P,z))) (2)

This form is quite close to the higher-order notation (1), at the main difference
that it is now a first-order proposition. Indeed, if we omit to write the predicate
symbol € and function symbol a we get the standard notation back. This
amounts to consider (1) as a notation for the first-order proposition (2).

4 Proof by induction

We apply in this section the previous framework and results to show how
Noetherian rewriting can be used, directly, to perform proof by induction.
In the remainder of this paper and except if explicitly stated, we are only
concerned with conditional equational goals.

Deduction modulo permits us to give a proof theoretic understanding of in-
duction by rewriting. In the context of deduction modulo, the induction hy-
potheses arising from equational goals can be (dynamically) internalized into
the relation. When doing this, the computational part of the deduction mod-
ulo appears to perform exactly induction by rewriting as done for instance by
systems like Spike [BKR92] or RRL [KZ95].
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We first recall the main notations and basic facts on induction that we use
later. Then we show how this could be expressed in the first-order HOL,,
sequent calculus.

4.1  Noetherian induction

We first recall the standard notations and results about Noetherian induc-
tion [Wec92].

e First, subset inclusion is modeled by the proposition:

71 C 7 =Vr(z € =1 €n).

The property for an element = to be minimal in a set 7 w.r.t. a relation R
is defined by:

Minimal(R,7,2) = x € T A=y (y € T A R(z,7)).

A relation is Noetherian or well-founded if every non-empty set has a min-
imal element:

Noeth(R,7) £ V7' (7' €7 ATz (x € 7)) = Jy Minimal(R, 7, y)).

A proposition P is inductive relative to the relation R in the set 7 when:

Ind(P,R,7) £Vx ((x € T AVy ((y € T A R(z,))=P(y)))=P(x)).

To denote a proposition true on a set 7, we let:

True(P,7) = Vx (x € 7=P(2)).

The Noetherian induction principle can now be defined as:
NoethInd(P,R,7) = Ind(P, R, 7)=True(P,T).

As shown for example in [Hue86,Wec92|, noetherianity and the induction prin-
ciple are equivalent:

Lemma 4.1

VrVP3ar’ (Vo (x € 7' < (x € T A P(2))))
l_
VRYT (Noeth(R,T) < VP (NoethInd(P, R, T))).

Proof: This could be proved using Coq, in classical logic (Requires Classical).
O
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This allows us to use the proposition VRVT (Noeth(R, 7)=VP (NoethInd(P, R, T)))
to make available the induction principle while generating explicitly the noethe-
rianity proof obligations.

4.2 Inductive consequence and inductive property

A proposition ) valid in all the Herbrand models of the theory T'h,, is called
an inductive property of Th,, which is denoted Th, }=rnq @. When the theory
Th, is a set of Horn clauses, there exists a unique smallest Herbrand model
(with respect to inclusion) which could be used as a canonical representative.
Even simpler is the case of equational axioms where the smallest Herbrand
model is the initial algebra 7 (F)/Th,,.

A proposition @ is an inductive consequence of Th, when, assuming the
noetherianity of a relation R, ) could be derived from the induction prin-
ciple and the user theory axioms, using the deduction rules of higher-order
logic:

VRYT (Noeth(R,T) = VP (Noethind(P, R, 7))), Thy, Fror Q.

We strongly insist on the fact that contrarily to some of the terminology
used in the literature, an inductive consequence is a proposition that could
be formaly derived in higher-order logic (e.g. using Fgor) with the induction
principle and the user theory as context.

The inductive consequences of T'h,, are inductive properties of Th,,.

To prove a proposition () by induction amounts to:

(A) find a well-founded relation R on a set 7.
(B) such that

VRYT (Noeth(R, 7) = VP (NocthInd (P, R, 7))),
Noeth(R, 7) = VP Noethind(P, R, ), Thy Fror Q

where Noeth(R,T) = YP NoethInd(P, R, T) denotes an instance of the induc-
tion principle using R.

Both steps are known to be non-trivial [Bun01]. In this paper we concentrate
on the case where the well-founded relation R contains a reduction ordering
on terms [Der87,KK99|. This is still a very powerful situation that strictly
contains structural induction, for instance standard Peano induction.
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From now on we work in HOLy, and therefore use the notation F* for de-
duction in HOL ),

4.3  Using the induction hypothesis

We want to prove that a property P is an inductive consequence of a user
theory Th,,.

Using the induction principle gives rise to a new hypothesis called the induc-
tion hypothesis. We intend to give it the best form to be useful, ultimately

internalizing it whenever possible.

Notation 4.1 We use capital X for a free variable as freed by the rules ¥-r
and 3-1 on quantifiers (see Figure 1).

Notation 4.2 When the user theory is an equational theory, we also need to
have Thy and Th.—. in the context. Therefore, we denote

Th £ VYRYT (Noeth(R, ) = VP (NoethInd(P, R, 7)), Th, Thi_,

4.3.1 Single-goal case

We want to prove that a property Vz (7 € 7 = (C(T) = Q(T))) is an inductive
consequence of a user theory Th,. To keep the notations simple, we deal with
the case of two variables and one condition. Even if this is of no use in the

first steps, we intend to focus on the case where () is an equality.

Lemma 4.2 Given a user theory Th, and a Noetherian ordering < on a
set 7., the equivalences described in Figure 5 hold.

Proof: By a simple application of the appropriate deduction rules of the
sequent calculus modulo. This is detailed in appendix C. a

The main interest of this Lemma is to make clear the last statement (5) that
will be used later, making use of the fact that @) is assumed to be an equality.
Indeed in that statement, the proposition

VeVy((z € ANz < X Ay e, ANC(z,y) = Q(z,y)) (6)

is what is called usualy the “induction hypothesis”.
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VRYT (Noeth(R, T) = VP (NoethInd(P, R, 7))), Th,

F Vo Vy (z € = (y € 7y = (Cla,y) = Q(x,1)))) (3)
IFF
VRYT (Noeth(R,T) = VP (Noethind(P, R, T))), Th,, X € 7,
7y (y € 7, = (C(X.y) = Q(X.y))) (4)
IFF

VRVr (Noeth(R, ) = VP (NoethInd(P, R, 7)), Tha, X € 7,
VaVy (e Az <X ANyeT, NC(z,y)) = Qz,v))
Yy (y € 7, = (C(X,y) = Q(X,y))) (5)

Fig. 5. Towards using the induction hypothesis

4.3.2  Multiple-goal case

When we have two properties on the same set (or a set and a subset of it), we
are able to generate an induction hypothesis for each property. This possibility
is very powerful, and is indeed used by Spike.

The hypothesis of the properties being on a set and a subset of it permits to
obtain an equivalence between

Vz (z € 11 = (Ci(z) = Q1(2))) AVy (y € 2= (Ca(y) = Q2(y)))
and
Ve (z € = ((Ci(z) = Qi(2)) AVy (y € 2= (Ca(y) = Q2(y)))))-

Lemma 4.3 Given a user theory Th, and a Noetherian ordering < on a
set 7, and given a subset 75 of 71, the relations described in Figure 6 hold.

Proof: Also by a simple application of the appropriate deduction rules of the
sequent calculus modulo. This is detailed in appendix D. O

As in the single goal case, this result allows us to provide two induction hy-
pothesis apppearing in statement (9). When @ consists of an equality, the next
section will show how this could be internalized as a conditional rewrite rule.

4.4 Internalization of induction hypotheses

When the properties () to be proved are equational theorems of the form
t1 & to, the induction hypotheses shown in the previous section have exactly
the form of canonical theories from Definition 2.8, and therefore we are able
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VRYT (Noeth(R,T) = VP (NoethInd(P, R,T))), Th,,
Ve(zx €m=x€mn)
F Yz (v € 1= (Culz) = Qu(@)) A VY (y € 2= (Caly) = Q2())) (7)
IFF
VRYT (Noeth(R, ) = VP (NoethInd(P, R, T))), Thy, X € 1,
Ve(r €m=x€mn)
7 (CLX) = Qu(X)) AVY (y € 2= (Ca(y) = Q2(y))) (8)
IFF
VRYT (Noeth(R,T) = VP (NoethInd(P, R, T))), Th,, X € T,
Ve (z € m=x € 1),
Ve((zen Az <X ACi(z)) = Qi(z)),
Wy ((y € 72 Ay < X A Caly)) = Quly)

A (C1(X) = Qu(X)) AVy (y € 2 = (Caly) = Qa(y))) 9)

Fig. 6. More induction hypotheses

to internalize them using deduction modulo. Lemma 4.2 and Lemma 4.3 give
us two forms for the induction hypotheses:

e The first form is the most usual one, coming from the goal we apply induc-
tion on, as given by (6). We will note:

Rglnd(tlwtg,C,x) (X) -
ti(z,y) mta(z,y)ifz e, ANz < X ANy er, NC(z,y)

e The second form is the one arising by lemma 4.3 from the second goal. We
will note:

RE Ind(tsmta,timcts,Corza)(X) =
t3(z,w) ty(z,w)ifzem Nz < X ANw € 7y A Co(z, w)
Example 4.1 For instance, if we have a goal:
Ve(x € Nat =0+~ z) AVyVz((y € Nat Az € Nat) = y+ 2z~ 2z +Y)
by induction on x, we get three induction hypotheses:

RE nd(o+amaa)(X) =0+ 2z ~zifz € Nat ANz < X

Rglndy+z~z+y0+m~xya: ) Z~z+y1fy€Nat/\z€Nat/\y-<X

(X
RE tnd(y+2rzty0tanmze)(X) =y+2zrz+yifye Nat Az € Nat ANz < X



4.5 Using the membership hypothesis

The next step consists in using the membership hypothesis X € 7. We shall
make use of an induction scheme

Vo (x €1 V375 (T; € To, Nz :=:1,(T5)))

This induction scheme has to cover all the possible cases and to allow us to
simplify the generated subgoals.

Lemma 4.4 Applying an induction scheme to

Th, The: X € TFy o) if zerne<x @)

we get subgoals of the form:

Th/./ Thu, X € 7—,77; € Tixi, |_t1(1)%t2(£) if &ET/\£<ti(Yi) Q(tl(z))

Using the fact that if the relation :77;2?2‘@?((%“ can be oriented into a termi-

nating term rewrite system, then only irreducible instances of X are useful
and should therefore be generated. This fact has been used to design various
techniques based on:

constructor discipline,
test sets [BKR95,

covering sets [ZKK88],
tree automata [BJ99).

4.6 Simplifying the goal

We can choose the best representation for the proposition Q(X) modulo the
conditional class rewrite system RE rna(0) (X). A natural assumption will be
to assume that the class rewrite system is confluent and Noetherian, in which
case the canonical representative of the proposition Q(X) by RE ) (X)
will be its normal form. Indeed to use the equational form of the induction
hypothesis RE1na(g)(X) one needs to check the condition z < X. Theorem
4.1 will show that, for the right choice of the induction ordering, as soon as
the goal has been simplified, the condition is indeed true.
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4.7 The induction ordering

A key point in any proof by induction is to provide an appropriate Noethe-
rian ordering < to base the induction on. In our context, if the conditional
class rewrite system REruq0)(X) is Noetherian, it is natural to choose an
ordering containing it to drive the induction. Other possibilities are up to
the (semi-)automated system designer’s choice, but we will stick to this, in
particular because to the nice properties of the resulting framework.

Of course, the Noetherianity of < is essential in the proofs. For example it
allows us to close the following branch in the proof of Lemma 4.2:

VRYT (Noeth(R,T) = NoethInd(R,T)), Th, F*° Noeth(<,T), P

We should also remark that < (and its semantics) will usually not allow rewrit-
ing its arguments and therefore a protective symbol will appear in its defini-
tion.

4.7.1 An ordering on equations

In order to instantiate appropriately the Noetherian ordering <, we let it take
into account more than simply the terms but also the structure of the goal
to be proved. So the remainder of this work is based on the ordering used in
Spike [Bou94| to compare equations. We give here two equivalent definitions
for this ordering. Two more definitions and the proofs of equivalence of all the
definitions are given in appendix E.

Definition 4.1 Let < be a noetherian ordering on terms.

({th {t'}) ift' <t
Clt=t) =1 ({t'}, {t}) ift<t
({t,t'}. {}) otherwise

and we define >, by
arb>,crdif Clarb) >, Clc~d)
where >, is the lexicographic extension of the set extension of >.

An alternative and equivalent definition is:
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Definition 4.2

t1 =13 Nt >ty

to =13 Nty > 14
bRty >ty ity {t, b} > {t i} Vi # A\
t1 =14 N1t1 > 13

to =1t4 Nto > 13
We state useful properties of the ordering >, that we will use throughout the
proof. For any terms t;, t, and t and equation £

Lemma 4.5 >, respects the semantics of commutativity of =, therefore, for
any terms t; and t5 and any equation £

hxty> FE=toxt; >, F
E>timty=FE> ty~t
Proof: It is easy to check that C(t; ~ t2) = C(ta = t;). O
Lemma 4.6 Quasi-stability in equational context:
h>tb=tirt>tart ift44

Proof: By cases in the comparison between ¢; and ¢ on the one hand and of
t; and t on the other hand. O

Lemma 4.7 The order of reduction of the two terms of an equation does not
commute.

by Rty > ] Rty > ] Rty oty Rty >, b Rty >, 1) &ty
Proof: This is easily checked from the definition O
Lemma 4.8 >, is stable by substitution if > is.

Proof: Easy check that the complexity is preserved by substitution. O

4.7.2  Avoiding to check the conditions

The next result finishes to explain the behavior of induction by rewriting in
our proof theoretical setting. It asserts that when using a Noetherian ordering
compatible with the rewrite relation, the conditions in the application of the
equational axioms and rewrite rules are always satisfied.
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Lemma 4.9 Consider a goal a; = as, a conditional class rewrite system R £
and an equation t; = ty or a rule t; — ts.

We have o(t1) =~ o(t2) <. a1 = ag when:

(A) a1 = aq|o(ty)], for a position w in oy such that w # e.

(B) a1 & ay —1 e ] = ag, with a; & ag >, o] = ay, and
(a) o) = af[o(t1)]. at a position w in af.
(b) ag = aslo(ty)], for a position w in ay such that w # e.
(c) ag =0(tq) if a1 £ g or ag > o(ts)

(C) a1 & ag —5 e o) & aly, with a; & ay >, o} =~ ab, and o = af[o(t1)].,
for any position w in o} (or symmetrically o), = ab[o(t1)].).

Proof: See appendix FE. O

Theorem 4.1 Consider a goal a1 = an, and an induction hypothesis of the
form:

ti(z) mta(z) if z €T ANt (z) = ta(z) <. t1(X) = ta(X).

The condition t1(x) ~ to(z) <. t1(X) =~ to(X) is always satisfied if the hy-
pothesis 1s used:

(A) on a strict subterm of oy
(B) after reducing the goal into o/} =~ as

(a) on the term o}

(b) on a strict subterm of o

(c) on ay at head position, if ay £ ag or ay > o(ts)
(C) after reducing the goal into o) =~ o

Proof: The result follows from the previous lemma. O

Conjecture 4.1 Lemma 4.9 is no longer true with an ordering based on a
reduction ordering instead of a simplification ordering.

Conjecture 4.2 Theorem 4.1 remains true with an ordering based on a re-
duction ordering instead of a simplification ordering.

5 Proving inductive properties by rewriting

The main ideas of induction by rewriting are:

(A) to base the induction on an ordering containing the simplification order-
ing generated by the Noetherian term rewrite system issued from the user
theory Th,,
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(B) to use test sets as a way to expand the membership hypothesis X € 7.

These are the main techniques first described in [KR90b,KR95] and imple-
mented with success in the Spike system [BKR92,BKR95].

We continue to assume for simplicity that the property to be proved is an
equational theorem of the form u ~ v.

5.1  Simple examples in Peano arithmetics

Let us begin to show how the general method can be applied to prove by
induction that, in Peano arithmetics:

e 0 is a left and right neutral element for addition (simple),
e addition is commutative and then associative (more elaborated).

5.1.1 Setting
First, we set up the theory for Peano arithmetics. Let:

e A sort Nat with 0 € Nat, s(x) € Nat and x +y € Nat for any x € Nat
and y € Nat. This is expressed by:

Vz (z € Nat &
(z:=:0V

Thiw = Jyly € Nat A x:=:5(y))V

Jy3Jz(y € Nat A z € Nat

Nxi=wy+ 2)))

Remark 5.1 Note that this could also be internalized, using our ability to
rewrite propositions.
e A definition for the symbol + expressed by:

def+ Va (l’ S Nat:>x+0%$)
Thiy. =
VaVy (x € Nat Ay € Nat)=z + s(y) ~ s(z + y))

Using lemma 2.5, we can build-in Th%/F as:

r+0~z it x € Nat
r+s(y) = s(z+y)if r € Nat Ny € Nat
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d . . . . .
RE J\?({;L can be oriented into a confluent and terminating rewrite system:

~ de r+0—2x itz e Nat
RgNj:—:
x+s(y) — s(x+y)ifz € Nat Ny € Nat

5.1.2  Let us prove that 0 is a left neutral element for addition
We want to prove the proposition:

Ve(x € Nat =0+ x ~ x)

We thus start from the following sequent:

Th, Thr FRedest Va(z € Nat=0+z ~ x)

By internalizing the induction hypothesis as explained in Section 4.4, we get:

Th,Th. X € Nat - 0+ X~X

,R'g(]i\]eaft+ UREInd(O{wcz;c,z) (X)

The proof reduces to:

Th, Thiert + J0+0R0 (10)

d
Rg]\f,zf:URgInd(O+zzz,z) (0
and

Th,Thit Y € Nat - p 0+ s(Y) = s(Y) (11)

d
,R’g]\le(ftJr U’R'glnd(o—&-:vﬁz,z) (s(Y

(10) is trivial using The.

(11) is also done using Thy, with:

0+s(Y)=s(Y) — s(0+Y)~s(Y)

Notice that in the use of the induction hypothesis, thanks to Theorem 4.1, the
condition
0+Y~Y <0+s(Y)=~s(Y)

is verified since the goal has been reduced before.
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5.1.3  Let us prove commutativity of the addition
We want to prove the proposition
Vo (zr € Nat=Vy(y € Nat =z +y~y+1))
Internalizing the induction hypothesis on = we get:
Th,Thyg b Vy(ye Nat=0+y~y+0) (12)

def+
Rg]\]e;lft UREInd(zﬁ—y%y{-z,z) (0)

and
Th,Th¢t Z € Nat

}_Rg?\feaft+URgInd(z+yzy+z,z)(S(Z)) (13)
Vy(y € Nat = s(Z)+y~y+s(Z2))
(12) easily reduces to the example before.
For (13), an induction on y gives us:
Th,Th¢"t. 7 € Nat
l_R‘g?\]ej:—URglnd(m+yzy+m,m)(S(Z))URglnd(s(Z)+yzs(y+Z),y)(0) (14)
s(Z)+0=s(0+ 2)
and
Th,Thi%t, Z € Nat,V € Nat (15)

l_
joi\]e(fj URSInd(z+yzy+m,m) (S(Z))URgInd(s(Z)+yzs(y+Z),y) (S(V))

s(Z)+s(V)=s(s(V)+ Z2)
(14) is simple, using the result of the previous example.
(15) is reduced as follows:
s(Z)+s(V) = s(s(V)+ 2)
— s(Z)+s(V) = s(Z +s(V))
— s(s(Z)+ V)= s(s(Z+V))

Q

then s(s(Z) + V) ~ s(s(Z +V)) is proved by an easy induction on V' and we
are done.
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The difficult step here is to apply the induction hypothesis. Denoting by s#t
when s is incomparable with ¢, and using a LPO ordering with precedence
0 < s <+, we have:

s(Z)+s(V) # s(s(V)+ 2)
s(Z)+s(V) > s(Z+s(V))
which allows orienting the step, since

S(2) + s(V) 2 s(s(V) + 2) >, s(Z) + s(V) ~ s(Z + s(V)).

We also have:
s(Z)+s(V) > Z+s(V)
s(V)+s(Z) >s(V)+ Z

which allows us to check that, as stated by theorem 4.1, the induction condition
Z+5(V)m s(V)+ Z <. s(2) +s(V) ~ s(V) + s(2)

is ensured.

5.1.4 Let us prove associativity of the addition
We now want to prove associativity of addition +.

It could be done by noetherian induction over one variable, but we will proceed
as Spike does, and use an induction over two variables.

We want to prove the proposition:

Vr(x € Nat=Vy(y € Nat =Vz(z € Nat =2+ (y+2) = (z+y) + 2)))
This goal is oriented left to right by giving a lexicographic status right to left
to the + symbol.

An induction on y and z reduces the proof to:
Th. Thig!
|_
Vo (z € Nat =z + (0+0) = (z+0)+0)

(16)

Rg?\?aft+ UR‘C"Ind(z+('y+z)z(z+y)+z,[y,z]) ( [070})
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and
Th,Thiyt, 7 € Nat

l_jod\;za);JrURSInd(z+(y+z)z(z+y)+z,[y,z])([O7S(Z)])
Vo (z € Nat =2+ (0+s(2)) = (x+0) + s(2))

and
Th, Thigt, W € Nat
l_Rg(]i\if;LU’R‘glnd(m+(y+z)z(z+y)+z,[y,z])([S(W)ro])
Ve (x € Nat=z+ (s(W)+0) = (z+ s(W)) +0)
and

Th,Thi", Z € Nat,W € Nat
|_

Rg?\regt+URglnd(z+(y+z) (z+y)+2,[y,2] )([5( ) S(Z)])

Ve (z € Nat =z + (s(W)+s(2)) = (x+ s(W)) + s(Z))

(16) and (18) are trivially concluded, by simplification using the user theory.

(17) is reduced as follows:

4+ (0+s(2)) ~(z+0)+s(2)
— r+s(0+2Z)~ (x+0)+s(2)

— s(z+(0+ 2)) = (x+0) + s(2)
— s((x+0)+ Z2) = (x+0) + s(2)
—s s(x+ Z) = (x+0) + s(2)

— s(z+2Z)~x+s(2)

— s(zr+2Z)~s(x+ 7)

(19) is reduced as follows:

x4+ (s(W)+s(2)) = (z+ s(W)) + s(2)
— z+s(s(W)+2) = (x+ s(W)) + s(Z)
r+ (s(W)+2)) = (x+ s(W)) + s(Z)
s((x+s(W))+ Z) = (x+s(W)) + s(2)
( )+ 2Z) = (x+s(W)) +s(2
s(x+W)+Z) = s((xz+s(W))+
( )+ Z) = s(s(x+ W)+ 2)

)
Z)
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5.1.5  An instance of crossed definitions: Even and Odd

Although they cause no trouble in our framework or in induction by rewriting,
crossed definitions are not syntactically possible in NQTHM and are handled
by an ad hoc syntax in ACL2.

We expand the definitions of section 5.1.1 with:

Va (z € Bool <
Thigy = (x:=:true V x:=:falseV

Jy(y € Nat A x:=:FEven(y)) V Jy(y € Nat A x:=:0dd(y))))

Even(0) = true

Thdef(Even) _
Bool
Vo (x € Nat = FEven(s(x)) =~ Odd(z))
. 0dd(0) =~ false
TthZO(lOdd) _

Vo (x € Nat = Odd(s(x)) =~ Even(x))

We want to prove the proposition:

Vz (2 € Nat=FEven(z+z) =~ true)AVxzVy ((z € NatAy € Nat)=s(z)+y = s(z+y))

Internalizing the induction hypothesis on z and using Lemma 4.3, reduces the

proof to:
Th, Thyz, Thig,,
- def+ de f(Even) def(Odd)
RSNat U 7?’E"Bool U RgBool U RSInd(Even(z-i—z)%true,z) (0) U

Rglnd(s(m) +yxs(z+y),Bven(z+z)~true,z,z) (O) U

Rglnd(s(m)+y%s($+y),Even(z-}—z)%tr‘ue,y,z) (0)
Fven(0+0) ~ true AVzVy ((x € Nat Ny € Nat) = s(x) +y ~ s(z +y))
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and
Th, Thgrt Tht, W € Nat

Rgcll\tfa(fj U RgdBe(f;([Even) U Rgdgfj()(l()dd) U Rglnd(Even(z—i—z)%true,z) (S(W))U
Rglnd(s(z)+y%s(m+y),Even(z—kz)%tvﬂue,m,z) (S(W))U
Rglnd(s(:v)—i—y%s(x—i-y),Even(z-i—z)’kstrue,y,z) (5 (W) )

Even(s(W) + s(W)) ~ true A\VazVy ((x € Nat Ny € Nat) = s(z) +y = s(x +y))

By sequent calculus we get:
Th,Thilu, Thien

l_
Rg(]i\?tf: U RgdBfofo(lEven) U Rgdgfo{)(lOdd) U Rglnd(Even(z+z)ztrue,z) (O)U

20
Rglnd(s(w)+y%s(w+y),Even(z—i—z)mtrue,x,z) (O)U ( )

Rglnd(s(w)+y%s(w+y),Even(z—i—z)mtrue,yz) (0)

Even(0+ 0) ~ true

and
Th, Thﬁ\‘,’gf, Th%’ggl, W € Nat

Rg?\i{;_ U RgdBeg;(lEven) U Ré‘%’eofo(l()dd) U Rg[nd(Even(z+z)ztrue,z) (S (W) ) U
21
Rglnd(s(w)+y%s(az+y),Even(z—i—z)%true,w,z) (S(W))U ( )

Rglnd(s(m)+yzs(m+y),Even(z—i—z)ztrne,y,z) (S (W))
Even(s(W) + s(W)) =~ true
and
Th, Thigt, Thig™',, W € Nat
}_

22
lR’ng\?(ftjL UdeBejo(lEven) U,R“‘;dBeofo(lOdd) ( )

VeVy ((x € Nat Ny € Nat) = s(z) +y = s(x + y))
(20) is trivial and (22) is proved by a simple induction.
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(21) is reduced as follows:
Even(s(W) + s(W)) ~ true
— Bven(s(s(W) + W)) = true
— Odd(s(W) + W) =~ true
— Odd(s(W +W)) =~ true
— Bven(W + W) ~ true

— true = true

The interesting step is here:

Odd(s(W) + W) = true — Odd(s(W + W)) = true

Which corresponds to the use of RE 1na(s(z)+y~s(@-+y), Even(a+2)atruey,) (S(W)).

Its induction condition is trivially verified since W < s(W).
5.2 The general case

Generalizing the ideas illustrated in the previous example, we assume given:

e a set of sort definitions,
e an equational user theory Th,,
e an equational property @ of the form ¢;(x) & to(x) to be proved.

By application of Theorem 4.1, @) is an inductive consequence of Th,, if:

Th,Thu, X € T Fre g0 x) QX)

Assume that RE 7y, is orientable in a terminating term rewrite system denoted
RErn, and whose rewrite relation is contained in a simplification ordering <
total on ground terms.

Let us finally define the rewrite relation ~» similarly (but a bit more general)
as [KR95, page 144]:
(A) if t; > ty then

U~V

1 1 #A x
u(—>7€gThu U —>t1—>t2) © (—>7€SThuU{t1—>t2})v
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(B) in all the cases

U~ V<=
1 #A
U(—, g, © — 5, )o
ti=tz RETh,
(é o —> 0 s )*
t1~to R"gThu t1~to v

Proposition 5.1 Let @ such that
Q(X) ~ Q'(X)

Q(X) is an inductive consequence of Th,, if

Th? Th’u7 X erT }_RgThuURglnd(Q,z)(X) QI(X)

Proof: This is a consequence of Theorem 4.1 together with the restrictions
put on T'h, and on the fact that REpy, CH. O

This provides an alternative approach to the induction by rewriting introduced
by E. Kounalis and M. Rusinowitch in [KR90b,KR95] (Proposition 5.1 is a re-
formulation of [KR95, Theorem 6.2, page 144] with the main advantage that it
could be combined with explicit induction. It also shows the advantage intro-
duced by deduction modulo to internalize normalization techniques in general
deduction processes. Another interest of this approach is related to the skep-
tical interactions between provers. In this case, a prover should not only find
a proof but also make it available to the prover it is cooperating with. In the
approach described above, the automated proof by rewriting performed, be-
cause of compatibility, using RE 14, URE ra(q)(X) can be faithfully reflected
at the level of sequent calculus.

6 Conclusion

Until now the worlds of explicit and implicit inductions were understood sep-
arately. Thanks to the general notion of deduction modulo, we have shown
that implicit induction can be seen as a way to internalize explicit induction
using term rewriting techniques. This provides a uniform way to integrate ex-
plicit and implicit induction and thus to have a well understood framework to
combine interactive and automatic inductive theorem provers.

In addition to provide a unified framework to understand and study the so
called induction by rewriting technique, this framework allows us to go fur-
ther since it gives the exact hypotheses needed to perform the inductive proofs.
Moreover it allows us to chose the right subset of the theory under considera-
tion that we want to internalize and on which standard automated deduction
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techniques apply. Consequently it provides a formal setting for the cooperation
of proof assistants providing inductive capabilities like COQ and automated
proof tools based on rewriting.

We did not formalize inductionless induction method (also called proof by
consistency [Com01]) in our setting. But this could be done.

Since we have used the presentation in deduction modulo of HOL,, this al-
lowed us to ripe benefits of the framework developed in [DHK98 DHKO1].
But all the benefits have not yet been exploited, in particular, we did not
use the possibility to rewrite not only terms but also propositions (except in
Ao L). Moreover the use for induction of the proof search method developed
in [DHKO8] has also to be investigated.

Finally, the framework developed here has been designed for initial seman-
tics, but it can be applied for other semantics of interest like final seman-
tics [BBR9S]. We therefore plan to apply the same techniques for combining
assisted and automated reasoning in final models.

We are now designing a family of proof search method based on the approach
presented here and in particular on narrowing. Indeed, the theorem 4.1 en-
lightens the importance of the “instantiate to reduce” paradigm which is just
the narrowing concept.
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A  Proof of lemma 2.1

We introduce two rules that can be deduced from sequent calculus and will simplify
the proof:

e The first rule we introduce is the well-known modus ponens, we call it mp-r.

PFAA I'FA=BA
I'FB.A

p-r

Suppose we have proofs m and p such that:
TFAAT

and 0
'HA= B, A

We build the proof:

TFa=BA"
ILA=>BFrB.A° TFrA= B .B.A Veak?

TFB.A cut
Where § is the proof:
' ITFAAT
T N L W N
A= BF B.A =1

Hence we can use mp-r.

e The second rule we introduce is a left variant of modus ponens, we call it mp-1.

[LAFA TEB=AA
T,BF A mp-

Suppose we have proofs m and p such that:
TLAFA T

and 0
'EB=AA

We build the proof:

s TFB=AA" o
[LB.B=AFA° T,BFB= A A V%
T.BF A cut
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Where § is the proof:

TLAFA " _
T.B.A- A Weakl pprp-x axiom
T.B,B= AF A =1

Hence we can use mp-1.

Lemma 2.1 Let 7 and ~ be a theory and an equivalence. The two following
statements are equivalent:

(A) for all propositions P and @ and context T,

P ~' Q implies T,U,T+ P < Q,

(B) T,U,I'F A if and only if 7.U, T k. A.

Proof:

e From A to B, the proof is similar to the one presented in [DHKO9S|.
- The “only if” part is an obvious induction on the structure of the derivation
of T,U,T'F A, expliciting the witnesses using first-order matching.
- For the “if” part, we first notice that using the contraction rule any proof
of T,U,T" k. A can be transformed into another where the propositions of
T and U appear in the left part of every sequent.
We then proceed by induction on the structure of the proof:
axiom
The proof has the form:

axiom where P ~THUT Q.

T.UT,PH Q

We trivially have:

T,U,T, PF p *Xom
We have P ~TUT Q thus from A we get T,U,T+ P = Q.
Using either mp-r or mp-1, we build a proof of 7,U,T, P+ Q.
cut
The proof has the form:

TUT.PA" TuUure A’

TUTE A cut where P ~

TU,r Q

By induction hypothesis we have proofs 7’ and p’ of 7, U, T - P, A
and 7,U, T+ Q, A.

We have P ~TUT @, thus from A we get 7,U,I' - P=Q, from
which we easily prove 7,U,I' F P = Q, A. We call § a proof of
this sequent.
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We build the proof:

!
TUT.PFA™ TUTFPA
TUTFA cut

where v is the proof:

0

mp-r

/
TUTFPAP TUTFQ=PA
T.UTFPA

We can also build the proof:

/ /
TULTQFAT T.UTFQ A"

TUTFA cut
where 7/ is the proof
/
TUT.PFA™ TUTFQ=PA° |
T.UTL,QF A -

contr-1
The proof has the form:

™

T.UT,Q, Rk A
e contr-l1 where P ~7UT Q and P ~THUT R,

T.UT, P A

By induction hypothesis we have a proof #’ of 7,U,T', Q, R - A.
We have P ~7UT @, thus from A we get 7,U, T - P=Q, from
which we easily prove 7,U, T+ P = Q,A. We call § a proof of
this sequent.

We have P ~7HT R thus from A we get 7,U,I' - P= R, from
which we easily prove 7,U,I' P = R, A. We call € a proof of
this sequent.

We build the proof:

TUTFP=0OA?
9 weak-1
TUT.QPFA ' TUT PFP=QA "
T.UT,P,PFA mp-
TUT. P-A contrl

where v is the proof:

TUT,QF P=>RA © o
TUT,Q RFAT Z%RQFP:&Awm{
T.UT,Q,PF A b

contr-r
The proof has the form:

TUTRQRAT
TUTEL PA contrr

where P ~TUT ) and P ~THUT R,
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By induction hypothesis we have a proof 7’ of 7,U,T'  Q, R, A.
We have P ~7UI @, thus from A we get 7,U,I' - Q= P, from
which we easily prove 7,U, T+ Q = P, A. We call § a proof of
this sequent.

We have P ~74I R thus from A we get 7,U,T' - R= P, from
which we easily prove 7,U,I' - R = P, A. We call ¢ a proof of
this sequent.

We build the proof:

TUTFO=PA°
TUTFQ.PA | T.UTFOQ= PP A Veaks
TUTFPPA T
TUTFPA

contr-r

where v is the proof:

. TUTFR=PA° .
TUTFQRAT ZumFQJh?RAxif
T.UTFQ,PA

weak-1

The proof has the form:

™

TUTE A o
T,UT, PE A VO

By induction hypothesis we have a proof 7’ of 7,U,T" - A.
We build the proof:

- /
TUTFAT
TUT, PFA Weakl

weak-r

The proof has the form:
TUTE A" §
T, U T P, A Vst

By induction hypothesis we have a proof ©’ of 7,U,T" - A.
We build the proof:

- !/
TUTFAT
TUTFE P A Weakr

The proof has the form:

T
T.UT,P,QH A TUT
TUT.R A A-1  where R ~* " P AQ.
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V-1

By induction hypothesis we have a proof ©’ of 7,U,T", P,Q  A.
We have R ~7UI P A Q, thus from A we get T,U,I' - R =
(P AQ), from which we easily prove 7,U,T'F R= (P AQ), A.
We call § a proof of this sequent.

We build the proof:

/

T.UT,P,QFA ”A
TUT,PAQFA "
T,UL,RFA

' TUTFR=(PAQ)LA°
mp-1

The proof has the form:

TUTRPA" Ture A’

TUTE RA A-r where R ~TUT P A Q.
By induction hypothesis we have proofs 7’ and p' of 7, U, T + P, A
and 7,U, T+ Q, A.

We have R ~THT PAQ, thus from A we get 7,7,U,T F (P A
Q) = R, from which we easily prove 7,U,T' F (PAQ) = R, A.
We call § a proof of this sequent.

We build the proof:

TUTFPAOA | T.UTF(PAQ =RA fn

T.UTFRA

p-r

where v is the proof:

/ /
TUTFPAT T,L[,FI—Q,A?\
T.UTFPAQ,A -

r

The proof has the form:

TUT.PA" Turga’

TUT.RE A V-1 where R ~THUT Py Q.
By induction hypothesis we have proofs 7’ and p/ of 7,U, T, P - A
and 7,U,1',Q F A.

We have R ~TYT Py Q, thus from A we get 7,7, U, T - R =
(P AQ), from which we easily prove 7,U,T' R = (PAQ), A.
We call § a proof of this sequent.

We build the proof:

TUT,PVOFA | TUTFR=(PVQ).A° 1
T.UT,RF A b

where v is the proof:

/! /
TUT,PFAT T,U,F,QI—Apl
T.UT,PVQFA V-
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The proof has the form:

™

T.UT'k P,Q,A
@ V-r where R ~TUT Py Q.

T.UTH RA

By induction hypothesis we have a proof 7’ of 7,U,T' F P, Q, A.
We have R ~THUT PvQ, thus from A we get 7,7, U, T+ (PA
Q) = R, from which we easily prove 7,U,T' - (PAQ) = R, A.
We call § a proof of this sequent.

We build the proof:

/

TﬂIFRQAQ

TUTFPVQA " TUTH((PVQ) =RA
TUTFRA

0

mp-r

The proof has the form:

TUTEPA " Tur.Qa’

JTUT
TUT. R A =-1 where R P=qQ.

By induction hypothesis we have proofs 7’ and p' of 7, U, T + P, A
and 7,U,T,Q F A.

We have R ~7UT P= Q. thus from A we get 7,7, U,I' - R =
(P=Q), from which we easily prove 7,U,I' - R = (P=Q), A.
We call ¢ a proof of this sequent.

We build the proof:

TUT P=QFA Z%F%&#@:Q%A5l
T.UL,RF A mp-

where v is the proof:

- !/ - /
TUTFPA™ T.UT,.QFA"
TUT.PSQFA =1

The proof has the form:

T
T.U,I'PH= Q, A TUr
T,UTH+H RA =-1r where R ~7YI P= Q.

By induction hypothesis we have a proof #’ of 7,U,T', P + Q, A.
We have R ~THUT P=Q, thus from A we get 7,7 ,U,T + (P=
Q) = R, from which we easily prove 7,U,T' - (P=Q) = R, A.
We call § a proof of this sequent.
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1-1

We build the proof:

!/
Z%RPFQAﬁ$r 5
TUTHFP=Q,A T,Z/{,l“l—(P:>Q)¢R,AH1

T.UTFRA

p-r

The proof has the form:

TUTEPA™
T,Z/[, F, R l_N A _|—1 Where R ~

T7.U,r -P.

By induction hypothesis we have a proof 7’ of 7,U,I' - P, A.
We have R ~7UT <P, thus from A we get 7,7,U,T - R =
=P, from which we easily prove 7,U,I' - R = =P, A. We call
§ a proof of this sequent.

We build the proof:

/
TMIFRAW{ 5
T,.U,I',-PFA T.UI'r R=-PA |
T,U,T,RF A s
The proof has the form:
T
T.UT,PE A Tur _p

TUTE RA 0 where R~

By induction hypothesis we have a proof 7’ of 7.U,T', P + A.

We have R ~TUT =P thus from A we get 7,7, U,T' F P =
R, from which we easily prove 7,U,I' - =P = R, A. We call ¢
a proof of this sequent.

We build the proof:

- !/
ZMRPPAW{ 5
T,UTF-PA TUTF-P=RA

TUTFRA

p-r

The proof has the form:

T,U,r
T,Z/{, F, P }_N A 1-1 where P ~ 1.

We have P ~THT | thus from A we get 7,7, U, TP = 1,
from which we easily prove 7,U/,I' F P = 1, A. We call § a

proof of this sequent.
We build the proof:

ZMRLFALITﬂIFPiLAél
T.UT,PFA mp-
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31

The proof has the form:

e
T.U,T,Q{t/z} = A o
TUT. P A 71 where P25 vrQ.

By induction hypothesis we have a proof 7’ of T,U, T, Q{t/z} - A.
We have P ~TUT Yz Q, thus from A we get 7,7, U, + P =
Vz @, from which we easily prove 7,U.T' - P = Vz Q,A. We
call 9 a proof of this sequent.

We build the proof:

/

T.UTL,Q{t/z} FA T
TUTVzOFA " TUTFP=vzQ.A° |
T.UT,PF A mp-

The proof has the form:

s
T.U T Qly/z}.A
TUTE PA 7 where P74V Q.

By induction hypothesis we have a proof 7’ of 7,U, T + Q{y/x}, A.
We have P ~7HI e @, thus from A we get 7,7,U.T F
(Vx @) = P, from which we easily prove 7,U,T' F (V2 Q) =
P,A. We call § a proof of this sequent.

We build the proof:

/
T.UTFQ{y/«},A " 5
TUTFVZQA "' TUTF(VzQ =PA°

T.UTF PA

p-r

The proof has the form:

T
T.U,T,Q{y/z} = A e
T.UT,PH A 31 where P ~TUT 32,

By induction hypothesis we have a proof 7’ of 7,U, T, Q{y/x} - A.
We have P ~TUT 32 Q, thus from A we get 7,7,U,T + P =
dx Q, from which we easily prove 7,U,I' - P = dx Q,A. We
call § a proof of this sequent.

We build the proof:

/
T.UT,Q{y/z}FA T
TUT,320FA 7 TUTFrP=30.A° 1
T.UT,PFA mp-
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The proof has the form:

T
T7u7 r l_N Q{t/l‘}, A
Tvua 'k P, A Jr where P ~TUT dx Q

By induction hypothesis we have a proof 7’ of 7,U, T - Q{t/z}, A.
We have P ~7UT 32Q, thus from A we get 7,7,U. T F
(3 Q) = P, from which we easily prove 7,U,I' + (Fz Q) =
P, A. We call § a proof of this sequent.

We build the proof:

/
T.UTFQ{t/z},AT 5
TUTEFIzQ,A ~F TUTF(EQ)=PA
T,UTFPA

p-r

- FromBto A, 7,U,T + P < Qreducesto 7 ,U,I" . P < @ by B. Then by
sequent calculus modulo we easily get 7,U,I', P, Q and 7,U,T",Q k. P
which are both true by axiom since P ~!' Q.

B Proof of lemma 2.5

Lemma 2.5 For any conditional class rewrite system RE, the theory Tre in defi-
nition 2.8 is compatible with RE up to The.

Proof: We shall prove that:

(A) for all propositions P and @ and all contexts I', we have Tge, Tho,I'+ P <
@ Thx,I
We proceed by induction on the length n of the derivation P« = Q.

e If n =0 then P = @ and the property is trivially satisfied,

Thx
Th~D py n—1""%
o clse P23 5" P e—p_¢

There are six possibilities, according to the use of an axiom, a rule in
direct way or a rule in reverse way, and according to the rule or axiom
dealing with terms or propositions.

- If the rule or axiom deals with terms, we have an axiom VZ (¢(Z) =
(I(z) = r(7))) in Tre. We thus instantiate this axiom according
to o and use it with the axioms of equality.

For each case, we detail how to build a proof in sequent calculus.
If we apply an axiom f = g if c or g = f if ¢, we have

P = Plo(f)lw ="' Plo(g)lo = P’
for some occurrence w in P such that Prot(P,w,~) is false

and some substitution o such that Tge, Tha,I' - o(c).
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By induction hypothesis we get Tre, Th~, I'F P & Q.
Let us now derive a proof of Tre, Th~,I'F P < Q:

Tre, Tho, ' P < (Q

< [by contraction and instantiation]

Tre; Thw, T, 0(c(7)))= (0 (f (7)) = 0(9(7))) - P & Q

< [by implication left and weakening]

Tre, ThaI'F o(c(T)) and Tre, Tha, T, 0(f(Z)) = 0(9(ZT)) F P < Q

Tre, Tha T F o(c(T)) is true by hypothesis.
Tre, Tha, U o(f(T)) = 0(g(T)) F P & @ is proved as fol-
lows:

Tre, Tha, U 0(f(T)) = 0(9(T)) F P < Q
< [using the equality axioms]

Tre, The, U o(f (7)) = 0(g(7)) F P' & Q
< [by weakening]

Tre, Tha,T'E P & Q

which is exactly the induction hypothesis.
If we apply a rule [ — r if ¢ in direct way, we have

P=Plo()l, —x"~" Plo(r)l, = P’

for some occurrence w in P such that Prot(P,w,~) is false
and some substitution o such that Tre, Tha, ' o(c)

By induction hypothesis we get Tre, Tha, I'F P & Q.

Let us now derive a proof of Tre, Th~,I' F P < Q:

Tre, Thay,'F P& Q

< [by contraction and instantiation]

Tre, Tha, T, 0(c()))= (0 (I(T) = o (r(T))) - P < Q

< [by implication left and weakening]

Tre, Tha, T'F 0(c(T))) and Tre, Tha I, o(1(Z)) = o(r(z)) - P < Q

Tre, Tha, 't o(c(T)) is true by hypothesis.
Tre, Tha, U, o(l(Z)) = o(r(Z)) F P < Q is proved as follows:

Tre, Th~,T,0(l(%)) = o(r(z)) F P < Q
< [using the equality axioms]

Tre, Th~, T,0(l(T)) = o(r(z)) F PP < Q
< [by weakening]

Tre, Th~, T+ P & Q
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which is exactly the induction hypothesis.
If we apply a rule [ — r if ¢ in reverse way, we have

P = Plo(r)]y —r"=" Plo()]. = P’

for some occurrence w in P’ such that Prot(P,w,=) is false
and some substitution o such that o (1) = P|’w and Tre, Th~, T+

%ng)induction hypothesis we get Tre, The,I' - P < Q.
Let us now derive a proof of Tre, Th~,I'F P < Q:
Tre, Th~,T'F P & Q
<« [by contraction and instantiation]
Tre; Tha, I, 0(c(T)))= (o (I(7)) = o(r(T))) F P = Q
< [by implication left and weakening]
Tre, Tha, I'E 0(c(T))) and Tre, Tha, U o(l(Z)) = o(r(z)) - P < Q
Tre, Th, Tt o(e(T)) is true by hypothesis.
Tre, Tha T, o(l(Z)) = o(r(Z)) F P < Q is proved as follows:
Tre, Tha,Uo(l(Z)) = o(r(z)) F P < Q
< [using the equality axioms]
Tre, Th~, T,0(l(T)) = o(r(z)) F PP < Q
<« [by weakening]
Tre, The,T'+ P < Q

which is exactly the induction hypothesis.

- If the rule or axiom deals with propositions, we have an axiom
vz (c¢(T) = (I(Z) < r(T))) in Tre. We thus instantiate this axiom
according to o and use the obtained equivalence.

For each case, we detail how to build a proof in sequent calculus.
If we apply an axiom f =~ g if c or g = f if ¢, we have

P = Plo(f)l ="' Plo(g)lo = P’

for some occurrence w in P such that Prot(P,w,~) is false
and some substitution o such that Tre, Tha, I' F o(c).

By induction hypothesis we get Tre, Th, I'F P & Q.

Let us now derive a proof of Tre, Th~,I'F P < Q:

Tre, Th~,I'FP & Q

< [by contraction and instantiation]

Tre, Thas T, 0(c(7))) = (0(f(7)) © olg@) F P Q
< [by implication left and weakening]

Tre, Tha, I'F 0(c(T))) and Tre, Tha, U o(f(T)) & 0(9(T)) F P < Q
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Tre, Thy, T o(e(T)) is true by hypothesis.
Tre, Tha,U,o(f(T)) < o(9(T)) F P < Q is proved as fol-
lows:

Tre; Thw, T, 0(f (7)) & 0(9(T)) - P & Q
< [using the equivalence]

Tre, The, U, 0(f(7) < o(g9(T) F P < Q
< [by weakening]

Tre, The,I' = P < Q

which is exactly the induction hypothesis.
If we apply a rule [ — r if ¢ in reverse way, we have

P = Plo(r)]y —r"=" Plo()], = P’

for some occurrence w in P’ such that Prot(P,w,=) is false
and some substitution o such that o (1) = P|’w and Tre, Tha,T' -

%ng)induction hypothesis we get Tre, The, ' P < Q.
Let us now derive a proof of Tre, Th~,I'F P < Q:
Tre, The,T'HP & Q

< [by contraction and instantiation]

Tre, Tha To(e(T))=(0(l(T)) & o(r(T)) F P& Q
< [by implication left and weakening]

Tre, Tha, T'F 0(c(T))) and Tre, Tha, I, o(l(Z)) © o(r(Z)) F P & Q

Tre, Tha T F o(c(T)) is true by hypothesis.
Tre, Th~,T,0(l(T)) < o(r(z)) P < @ is proved as fol-

lows:
Tre, Th~,T,0(l(T)) < o(r(z)) F P < Q
< [using the equivalence]
Tre, Th~,T,0(l(T)) & o(r(z)) - P < Q
< [by weakening]
Tre, Th~, T - P & Q

which is exactly the induction hypothesis.
If we apply a rule [ — r if ¢ in reverse way, we have

P = Plo(r)]y —&"=" Plo(l)], = P’

for some occurrence w in P’ such that Prot(P,w,=) is false
and some substitution o such that o (1) = P|’w and Tre, Th~,T' F

o(c)
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By induction hypothesis we get Tre, Th~, I'F P & Q.
Let us now derive a proof of Tre, Th~,I'F P < Q:

Tre, Thy, ' P < Q
< [by contraction and instantiation]
Tre, Tha, T o(c(T)))=(0(l(Z)) < o(r(T))) F P < Q
< [by implication left and weakening]
Tre, Thy,T'F o(c(T))) and Tre, Tha, T, 0(l(T)) < o(r(z)) F P < Q
Tre, Tha, T o(e(T)) is true by hypothesis.
Tre, Tha I, o(l(Z)) & o(r(T)) F P < Q is proved as fol-
lows:
Tre, Tha, T, o(l(Z)) © o(r(Z)) F P& Q
<« [using the equivalence]
Tre, Th~, T,0(l(T)) & o(r(z)) - P < Q
< [by weakening]
Tre, Tha,T'E P & Q

which is exactly the induction hypothesis.
(B) For every proposition P in Tgre, we have Thy b P.
There are two kinds of propositions in Tr¢.
e If P has the form VZ(c = (p < ¢)), we have to prove that we have
The b VE(c = (p < q)).
To achieve this, we apply the corresponding axiom or rule in R &,
which is written as follows in sequent calculus modulo:

Thy o VZ(c= (p< q))

< [by weakening]

F.VZ(c= (p<q))

< [by freeing and implication right]

c(y) =~ p(y) < a(v)

< [by and right and twice implication right]

c(¥),p(¥) k= q(¥) and c(7),q(¥) = p(¥)

Which are true by application of Axiom modulo.
e If P has the form VZ(c = (p = q)), we have to prove that we have
Tha E VZ(c = (p = q)).
To achieve this, we again apply the corresponding axiom or rule in R
&, which is done using Th~ and written as follows in sequent calculus
modulo:
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The b VE(c = (9 = d))

< [by freeing and implication right]
The,c(y) =~ 9() ~ d(7)

< [by weakening]

Vr (z =~ z),c(y) b 9(7) = d(7)

< [by instantiation]

9(y) = 9(), ¢(y) =~ 9(y) = d(y)

Which is true by application of Axiom modulo.

C Proof of lemma 4.2

Lemma 4.2 Given a user theory Th, and a Noetherian ordering < on a set 7,
the relations described in figure 5 hold.

Proof of “(3) if (4)”

In HOL), we have:

VRYT (Noeth(R,T) = VP (NoethInd(P, R, ))), Thy,
A Vay (z € 7 = (y € 7y = (Clz,y) = Q(x,y))))
<~

VRYT (Noeth(R, T) = VP (Noethind(P, R, T))), Th,
FA VY (x € 7, = Yy (y € Ty = (Cz,y) = Q(x,v))))
<= |by instantiation]

VRYr (Noeth(R, ) = VP (NoethInd(P, R, 7))), Tha,
X e =Vy(y e = (CX,y) = QX))
<= |by implication right|

VRYT (Noeth(R,T) = VP (Noethind(P, R, 1))), Thy, X € T
FAT Yy (y € 7y = (C(X.y) = Q(X.y)))
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Proof of “(4) if (3)”

In HOL), we have:

VRYT (Noeth(R,T) = VP (NoethInd(P, R, T))), Thy, X € 7

7 Vy (y € 7y = (C(X,y) = Q(X,1)))

< [using cu]

VRYT (Noeth(R,T) = VP (Noethind(P, R, T))), Thy, X € T )
F vz (2 € 7= Yy (5 € 1y = (Cl2,y) = Q1)) Yy (y € 7y = (C(X.9) = Q(X.w))
and

VRYT (Noeth(R,T) = VP (NoethInd(P, R, T))), Thy, X € Ty, (©2)
Vo (z €7 = Vy(y € 7y = (Clz,y) = Qz,9))) F Yy (y € 7y = (C(X,y) = Q(X,y)))

We easily prove:

VRV (Noeth(R,7) = VP (NoethInd(P, R, 7)), The, X € 7o, )
Vr(z €7 = Vy (y € 7y = (C(z,y) = Q2,¥)))) F Yy (y € 7y = (C(X,y) = Q(X,y)))
<= [by instantiation]

VRYT (Noeth(R,T) = VP (NoethInd(P, R, 1))), Thy, X € Ty,
Xen=YWyecr=(CX,y)=Q(X,y)) " Vy(y € 7y= (C(X,y) = Q(X,y)))
< [by implication left]

VRYT (Noeth(R,T) = VP (NoethInd(P, R, T))), Thy, X € 7

A X e, VY (y € 7y = (C(X,y) = Q(X,9)))

and

VRYT (Noeth(R,7) = VP (NoethInd(P, R, 7)), Thu, X € 7o,

Vy(y € 7y = (C(X,y) = Q(X.y))) F Yy (y € 7y = (C(X.y) = Q(X.,y)))

So we continue with:

VRYT (Noeth(R, ) = VP (NoethInd(P, R, 7))), Thu, X € 7 )
FA Y (2 € 7 = Yy (y € 7y = (Cla,y) = Qx,9)))), Yy (y € 7y = (C(X,y) = Q(X, y)))

<= [by weakening]

VRYT (Noeth(R, 7) = VP (NoethInd (P, R, ))), Thy, X € 7

FA Ve (2 € 7o = Yy (y € 7y = (Clz,y) = Q(x,y))))

—
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VRVT (Noeth(R,T) = VP (NoethInd(P, R, T))), Thy,
FA Y Vy (z € 7 = (y € 7y = (Clx,y) = Q(x,))))

Proof of “(4) if (5)”

In HOL), we have, expliciting the application of the induction principle, and
putting the obtained induction hypothesis into form:

VRYT (Noeth(R,T) = VP (Noethind(P, R, T))), Thy, X € T
A7 Vy (y € 7 = (C(X,y) = Q(X, 1))

by contraction and instantiation,

the induction relation and set are chosen
VRYT (Noeth(R,T) = VP (NoethInd(P, R, T))), Thy, X € 7y,
Noeth(=<, 1) = VP (NoethInd(P, <, 1))
7Yy (y € 7y = (C(X, ) = QX))
<= |by implication lef]
VRYT (Noeth(R,T) = VP (NoethInd(P, R, T))), Thy, X € 7 (©3)
FAT Noeth(=,72),Vy (y € 7y = (C(X,y) = Q(X,y)))
and

VRYT (Noeth(R,T) = VP (NoethInd(P, R, T))), Thy, X € 7,,VP (NoethInd(P, <, 7'90))(C 2
FA7 Yy (y € y = (C(X,y) = QX))

Since we suppose < noetherian on 7., we indeed have:

VRVT (Noeth(R, 7) = VP (NoethInd(P, R, 7))), Thy, X € 7y (©.3)
A0 Nocth(<, ), ¥y (y € 7, = (C(X,y) = Q(X, 3))) |

So we continue with:

VRYT (Noeth(R,T) = VP (NoethInd(P, R, T))), Thy, X € 175, VP (NoethInd(P,<,1;)) (C.4)
FA7 VY (y € 7y = (C(X,y) = Q(X,y)))

<= [by instantiation and renaming of bound (quantified) variables]
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VRYT (Noeth(R, ) = VP (NoethInd(P, R, 7)), Thy, X € Ts,

Ve((z €pAVz((z € m Az <2)= VY (y €7y = (Clz,y) = Qz,y)))))

=Vy(y € 7y = (C(z,y) = Q(z,y))))

=Vz(z € =Vy(y €= (Clz,y) = Qz,y))))

Yy (y € 7y = (C(X,y) = Q(X,y)))

<

VRVT (Noeth(R, ) = VP (NoethInd(P, R, 7))), Thu, X € Ts,

Ve ((z ey AVzVy((z e Az <zAyeT, ANC(z,y)) = Q(z,y)))

=Vy (y € 7y = (C(z,y) = Q(z,7))))

=Vz(r € =Vy(y €= (Clr,y) = Qz,y))))

Yy (y € 7y = (C(X,y) = Q(X,y)))

< [by implication lef]

VRVT (Noeth(R, ) = VP (NoethInd(P, R, 7))), Thy, X € T,

A Vr (2 € e AVZVY (€T Az <2 Ay €7y AC(Z,Y)) = Q(2,1))) (C.5)
=Vy(y € 7y = (Clz,y) = Q(z,9)))),Vy (y € 7y = (C(X,y) = Q(X,y)))

and

VRYT (Noeth(R, ) = VP (NoethInd(P, R, 7)), Thy, X € Ts,

Ve (zer,=Vy(lyer=(Clz,y) =Qx,v)))) (C.6)
FA Yy (y €y = (C(X,y) = Q(X, 1))

We easily prove

VRV7 (Noeth(R,T) = VP (Noethind(P, R, 7))), Thy, X € Tz,

Vz (z € 7y = Vy (y € 7y = (Cla,y) = Q(z,y)))) (C.6)
Yy (y € 7y = (C(X,y) = Q(X,y)))

< [by weakening]

XenvVe(rern=>Yyecn=(C(y = Q)

7y (y € 7y = (C(X,y) = Q(X,y)))

<= [by instantiation]
XenXen=>YWyen=(CX,y)=Q(X,y)))

VY (y € 7y = (C(X,y) = Q(X,y)))

< |by implication lef]

XentXenVylyern=(CX.y) =QX.y))
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et
XenVylyern=(CX.y)=QX,y)))
A VY (y € Ty = (C(X,y) = Q(X,y)))
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So we continue with:

VRY7 (Noeth(R, 1) = VP (NoethInd(P, R, 7))), Thy, X € 7,

A Vr((z € e AVZVy (z € Te Az <Ay €Ty AC(2,y) = Q7)) (C.5)
=Vy(y € 7y = (Clz,y) = Qz,9)))), Yy (y € 7y = (C(X,y) = Q(X,y)))

<= |by weakening]

VRVT (Noeth(R,T) = VP (Noethind(P, R, T))), Thy,

FAY Vr ((z € e AVZVy (€T Az <2 Ay €Ty AC(2,9)) = Q2,Y)))

=Vy (y € 7y = (C(z,y) = Q(z,y))))

< [by instantiation]

VRV1 (Noeth(R, 1) = VP (NoethInd(P, R, 7))), Th,

(X e AVaVy (e Az <z Ay €y AC(z,y) = Qz,y)))

=y (y €y = (C(X,y) = Q(X.y)))

< [by implication right]

VRYr (Noeth(R, ) = VP (NoethInd(P, R, 7))), Tha,
(XemAVazVy((zemhz<zANy ey ANC(z,y)) = Q(z,v)))

Yy (y € 7y = (C(X,y) = Q(X,y)))

< [by and leff]

VRV7 (Noeth(R, 1) = VP (NoethInd(P, R, 7))), Thy, X € T,

VeVy((z € e Az <z Ay €Ty AC(z,9) = Qz, ) (5)
FA Yy (y €y = (C(X,y) = Q(X,9)))

Proof of “(5) if (4)”

In HOL,, we have:

VRYT (Noeth(R, T) = VP (NoethInd(P, R, 7))), Thy, X € Ty,
Vevy((z € mAz <z Ay €y AC(zy)) = Qz,y)) (5)
FA7 Yy (y € 7y = (C(X,y) = Q(X,p)))

<= |by weakening]

VRVT (Noeth(R, 7) = VP (NoethInd(P, R, ))), Thy, X € 72

(4)
Ao Yy (y €1y = (C(X, y) = Q(X,y)))
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Remark C.1 Notice that in the proof above, we make use of the higher-order ca-
pabilities of HOL), to instanciate P and R.

D Proof of lemma 4.3

Lemma 4.3 Given a user theory Th, and a Noetherian ordering < on a set 7,
and given a subset 7 of 71, the relations described in figure 6 hold.

Proof of “(7) if (8)”

In HOL), we have:

VRVT (Noeth(R, ) = VP (NoethInd(P, R, 7)), Thy,Vz (z € 7 =z € 71)
27V (z € 71 = (Ci(x) = Q1(2))) AVy (y € o= (Caly) = Q2(y)))
=

VRYT (Noeth(R, 7) = VP (NoethInd(P, R, 7))), Thy,Vz (x € 7o = x € 1)
7 Ve (z € 1 = ((Ci(z) = Q1(2)) AVY (y € T2 = (Ca(y) = Q2(y)))))
<= [by instantiation]

VRVT (Noeth(R, ) = VP (NoethInd(P, R, 7)), Thy,Vz (z € 7 = 2 € 71)
X €n = (CL(X) = QX)) AVy (y € 2= (Ca(y) = Q2(y))))

<= |by implication right]

VRYT (Noeth(R,7) = VP (NoethInd(P, R, 7))), Thy,Vz (x € o =z €1), X €71
FA (C1(X) = Qu(X)) AVy (y € T2 = (Ca(y) = Q2(y)))

Proof of «(7) if (8)”

In HOL), we have:

VRYT (Noeth(R,T) = VP (NoethInd(P, R, 1))), Thy,Vz (r € =z €11),X €71
7 (CL(X) = Qu(X)) AVy (y € 12 = (Ca(y) = Q2(v)))

<= [using cut]

(8)
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VRVT (Noeth(R,T) = VP (NoethInd(P, R, T))), Thy,Vx (z € =2 €1), X €71

7V (z € 1 = ((Ci(z) = Qu(x)) AVy (y € T2 = (Ca(y) = Q2(v))))), (D.1)
(C1(X) = Q1(X)) AVy (y € 2 = (Ca(y) = Q2(y)))

and

VRYT (Noeth(R,T) = VP (Noethind(P, R, 1))), Thy,Vz (r € =z € 11), X € 11,

vz (z € = ((Ci(x) = Qu(x)) AVz (y € 72 = (Ca(y) = Qa(v))))) (D.2)

FA7 (C1(X) = Qu(X)) AVy (y € T2 = (Caly) = Q2(y)))

We easily prove:

VRYT (Noeth(R, 7) = VP (NoethInd(P, R, 7)), Thu,Vz (z € 72 =z € 1), X € 71,
Vz (z € T = ((Ci(z) = Q1)) AVy (y € 2 = (Ca(y) = Q2(y))))) (D-2)
R (CL(X) = QX)) AVY (y € T = (Ca(y) = Qa(y)))

<= [by instantiation]

VRVT (Noeth(R, ™) = VP (NoethInd(P, R, 7)), Tha,Va (z € s = 2 € 71), X € 71,
X en = ((C1(X) = QX)) AVy (y € 2 = (Ca(y) = Q2(y))))

FA (CL(X) = Qi(X)) AVy (y € 7o = (Ca(y) = Qa(v)))

<= |by implication lef]

VRYT (Noeth(R,T) = VP (Noethind(P, R, T))), Thy,Vx (z € =z € 11), X € 11,
A X €1, (C1(X) = Q1(X)) AVy (y € 72 = (Ca(y) = Q2(y)))

and

VRYT (Noeth(R, 7) = VP (NoethInd(P, R, 7))), Tha,Vz (z € 9= z € 1), X € 1,
(C1(X) = Q1(X)) AVy (y € 2 = (Ca(y) = Q2(y)))

FA (C1(X) = Q1(X)) AVy (y € 72 = (Ca(y) = Q2(y)))

So we continue with:

VRVT (Noeth(R, ) = VP (NoethInd(P, R, T))), Thy,Vx (r € m=>2x€1), X €T
27V (z € 71 = ((Ci(z) = Qi(2)) AVy (y € o = (Caly) = Q2(y)))): (D.1)
)

(C1(X) = Q1(X)) AVy (y € 2 = (Ca(y) = Q2(y)))

<= [by weakening]

VRVT (Noeth(R, 7) = VP (NoethInd(P, R, 7))), Thy,Vz (x € 79 = z € 1)
FA7Va (z € T = ((Ci(x) = Q1)) AVY (y € T2 = (Ca(y) = Q2(v)))))

=
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VRVT (Noeth(R, ) = VP (NoethInd(P, R, T))), Thy,Vx (x € 7o = x € T1)
7 Vo (2 € 71 = (Ci(z) = Q1(2)) AVy (y € 2= (Ca(y) = Q2(y)))

Proof of “(8) if (9)”

In HOL), we have:

VRVT (Noeth(R, 1) = VP (NoethInd(P,R,7))), Thy,Vz (t € =z € 71), X €71
FA7 (C1(X) = Q1(X)) AVy (y € a = (Ca(y) = Qa2(y)))

—

VRYT (Noeth(R, ) = VP (NoethInd(P, R, 7)), Thy,Vz (t € m =z € 1), X € 71,
Ve ((z e Az < X) = ((Ci(z) = Q1(z)) AVy (y € T2 = (Ca(y) = Q2(v)))))

FA7 (CL(X) = Qi(X)) AVy (y € 7o = (Ca(y) = Qa(v)))

< [using cut

VRVT (Noeth(R, ) = VP (NoethInd(P, R, 7)), Thy,Vz (x € s =z € 71), X € 71,
Vz((z € mAz < X)= ((Ci(z) = Qi(z)) AVy (y € T2 = (Ca(y) = Q2(y)))))
FrYvr((zem Az < X)= (Oz) = Q1(z))),

(C1(X) = Q1(X)) AVy (y € 2 = (Ca2(y) = Q2(y)))

and

VRVT (Noeth(R, ) = VP (NoethInd(P, R, 7)), Thy,Vz (t € m =z € 1), X € 71,
Vz((z e Az < X) = (Ci(z) = Q1(z))),

Vz((z € m Az < X)=((Ci(z) = Qi(z)) A Vy (y € T2 = (Ca(y) = Q2(v)))))

FA (C1(X) = Qi(X)) AVy (y € 2 = (Ca(y) = Q2(y)))

(D.3)

(D.4)

We easily prove:

VRVT (Noeth(R, 7) = VP (NoethInd(P, R, 7))), Thy,VNz (x € s =z € 71), X € 7,
Vz((z €Az < X)=((Ci(z) = Qi(z) AVy (y € 2 = (C2(y) = Q2(v)))))
A Vz((zen Az < X) = (Ci(z) = Qi(2))),

(C1(X) = QX)) AVy (y € 2 = (C2(y) = Q2(y)))

<= [by weakening]

Ve ((z e Az < X)= ((Ci(z) = Q1(z)) AVy (y € 2 = (Ca(y) = Q2(y)))))
FrY vz (zem Az <X)= (Ci(z) = Q1(z)))

(D.3)
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<= |by instantiation]

Vz((z e Az < X)=((Ciz) = Qi(z)) AVy (y € 2 = (C2(y) = Q2(y)))))
F (X en AX < X) = (Cil(X) = Qi(X))

< [by instantiation]

(X ennX <X)= ((C1(X) = Qi1(X)) A\ VY (y € 2 = (Ca(y) = Q2(y))))
F (X enAX < X)= (CL(X) = Q1(X))

< [by implication right]

(X ennX <X)= ((C1(X)= Qi(X)) AVy (y € 2= (Caly) = Q2(y)))),
XenAnX <XFY O (X) = Qi(X)

< [by implication lef]

XenmAX <X XennX <X,01(X)= Q1(X)

and

Ci(X) = Q1(X),Vy(y e 2= (Caly) = Q(y), X e n A X < X FV C1(X) = Q1(X)

So we continue with:

VRVT (Noeth(R, ) = VP (NoethInd(P, R, 7)), Thy,Vz (t € o=z € 71), X € 71,
Vz((z e m Az < X) = (Ci(z) = Q1(z))),

Vz((z € m Az < X)= ((Ci(z) = Q1(z)) Ay (y € 2 = (Ca(y) = Q2(v)))))

FA (C1(X) = QX)) AVy (y € 2 = (Ca(y) = Q2(y)))

<

VRVT (Noeth(R, ) = VP (NoethInd(P, R, 7)), Thy, Nz (t € =z € 71),X € 71,
Vz((z e Az <X ANCi(z)) = Q1(z)),

Vz((z e Az < X)= ((Ci(z) = Q1(z)) AVy (y € T2 = (Ca(y) = Q2(y)))))

FA7 (C1(X) = Q1(X)) AVy (y € 72 = (Ca(y) = Q2(y)))

< [using cut|

VRVT (Noeth(R, ) = VP (NoethInd(P, R, 7)), Thy,Vz (t € s =z € 1), X € 71,
Vz((z € m Az <X ACi(z) = Qi(z)),

Vz((z € Az < X)=((Ci(z) = Qi1(z)) AVy (y € T2 = (Ca(y) = Q2(v))))) (D.5)
FA Wy (yen Ay < X)=Vy(y € 2= (Caly) = Q2(y)))),

(C1(X) = Q1(X)) AVy (y € 2 = (Ca(y) = Q2(y)))

and

(D.4)
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VRYT (Noeth(R,T) = VP (NoethInd(P, R, T))), Thy,Vx (x € =z € 1), X € 11,

Ve ((z €Az <X ACi(z)) = Q1(z)),

Vy(lyenn Az < X)=Vy(y € = (Ca(y) = Q2()))),

Ve ((z e Az < X)= ((Ci(z) = Qi(z)) AVy (y € 2 = (Ca(y) = Q2(v)))))
FA (C1{(X) = QX)) AVY (y € 12 = (Ca(y) = Qa(y)))

We easily prove:

VRYT (Noeth(R,T) = VP (Noethind(P, R, 1))), Thy,Vz (x € 2 =z € 11), X € 11,

Vr((zemn Az <X ACi(2) = Qi(2)),

Ve ((z en Nz < X)= ((Ci(z) = Q1(z)) AVy (y € 2= (Ca(y) = Q2(y)))))
Fvy(yen Ay < X)=Vy(y € m=(Caly) = Q2(v))),

(C1(X) = Q1(X)) AVy (y € 2 = (Ca(y) = Q2(y)))

< [by weakening]

Ve ((z €Az < X)=((Ciz) = Qi(z) AVy (y € 2= (C2(y) = Q2(y)))))
Fvy((ye Ay < X)=Vy(y € m=(Caly) = Qa2(y))))

<= [by instantiation]

Vz((z €Az < X)=((Ci(z) = Qi(z) AVy (y € 2 = (C2(y) = Q2(v)))))
FA (Y e AY < X)=Vy(y € o= (Caly) = Qa(v)))

<= [by instantiation]

Y enAY <X)=((C1(Y) = Q1Y) AVy (y € 2= (Ca(y) = Q2(y))))
FA (Y e AY < X)=Vy(y € = (Caly) = Qa(y)))

<= |by implication right]

YennY <X)=((C1(Y) = Qi(Y)) AVy(y € 2= (Ca(y) = Q2(y)))),
YernAY < XM Vy(yen=(Cxy) = Q2y)))

<= |by implication lef]

YennAnY <X

FY enAY < X,Vy(y € 2= (Caly) = Q2(y)))

and

CiY) = Qi(Y), Yy (y € = (Ca(y) = Q2(y)). Y e n A X <Y

F Yz (y € 7o = (Coy) = Qa(y)))
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So we continue with:

VRVT (Noeth(R, ) = VP (NoethInd(P, R, 7)), Thy,Vz (z € =z € 71), X € 71,

Ve ((zen Az <X ACi(z)) = Qi(z)),

Vy(lyen ANy < X)=Vy(y € n=(Cay) = Q2(v)))), (D.6)
Vz((zem Az <X)=((Ci(z) = Q@) AVy (y € 2 = (Ca(y) = Q2(v)))))

FAT (C1(X) = Qu(X)) AVy (y € 2 = (Caly) = Qa2(y)))

<

VRYr (Noeth(R, ) = VP (NoethInd(P, R, 7)), Thy,Vz (z € s =z € 11), X € 1,

Ve ((zen Az <X ACi(z)) = Qi(z)),

Yy (e m Ay < X Ay € m A Ca(y)) = Qaly)),

Vz((zem Az < X)=((Ci(z) = Qi(x) AVy (y € = (Ca(y) = Q2(v)))))

FA (C1(X) = Q1(X)) AVy (y € T2 = (Ca(y) = Q2(y)))

—

VRVr (Noeth(R, ) = VP (NoethInd(P, R, 7)), Thy,Vz (z € o =z € 71), X € 1,
Vz((z €Az < XACi(z)) = Q1(z)),Vy ((y € 2 Ay < X ACa(y)) = Q2(y)),
Vz((zen Az <X)= ((Ci(z) = Q1(z)) AVy (y € 12 = (Ca(y) = Q2(v)))))

7 (C1(X) = QX)) AVy (y € 2 = (Ca(y) = Q2(y)))

< [by weakening]

YRYr (Noeth(R, ) = VP (NoethInd(P, R, 7))), Thy,Vz (x € 7 =z € 11), X € 71,
Vz((zen Az <XACi(z)=Qi(z)),Yy((y € Ay < X ACa(y) = Qa(y)) (9)

FA (CU(X) = Q1(X)) AVY (y € T2 = (Ca2(y) = Q2(y)))

Proof of “(9) if (8)”

In HOL), we have:

VRYT (Noeth(R, ) = VP (NoethInd(P, R, T))), Thy,Vz (v € 2 = 2 € 11), X € 11,
Ve((zemihnz <X ANCi(z)) = Q1(2)),Vy((y e m Ay < X ACa(y)) = Q2(y)) 9)
7 (C1(X) = QX)) Ay (y € 2 = (Ca(y) = Q2(y)))

<= [by weakening]
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VRVT (Noeth(R,7) = VP (NoethInd(P, R, T))), Thy,Vx (x € o =2 € 711), X € 71,

(8)
FA7 (CL(X) = Qu(X)) AVy (y € 2 = (Ca(y) = Q2(y)))

E Proof of lemma 4.9

We give here several alternate definitions for <., which we use to prove the main
results.

We prove that they are equivalent to definition 4.1.
In all these definitions, let < be a noetherian ordering on terms.

Definition E.1

t1 =l >ty =iy
-~

(tl>t3\/t2>t3)/\(t1>t4\/t2>t4)
r

t1:t3/\(t2>t4\/t3:t4\/ bty >ta Nty F o
to=t3sAN(t1 >t4Vig=1t4V (to >4 Nt1 F#F to

(
( (
\Y tl#tg/\\/
tl—t4/\(t2>t3\/t3=t4\/(t1>t3/\t1#t2
( (

)
)
)
)

to =14 N (t1 >t3Vitg =14V (tg >ty Nty # 1o
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Definition E.2

t1 Rl >ty =iy

=

t1>t2/\t3>t4/\(t1>t3\/(t1:t3/\t2>t4))
t1>t2/\t3<t4/\(t1>t4\/(t1:t4/\t2>t3))
ty >ta ANty =tg Ntp >t}

ty >toANtg#Hty Ntp >t3 Nt >ty

t1<t2/\t3>t4/\(t2>t3\/(t2:t3/\t1>t4))
t1<t2/\t3<t4/\(t2>t4\/(t2:t4/\t1>t3))
t) <to ANty =ty Nty >t}

ty <toANtg#H ity Nto >t3 Nty >ty

=ty Aty >ty ANt > t3
ty=ta Nty <ty ANtd >ty
t) =ty Nty =t4 NtY > 13

ty=taNtg#tys Nth>tantl >ty

th#H to Nty >ty /\(t12t3\/t22t3)
ty#Hto Nty <ty A t12t4\/t22t4)
L1 #ta Ntz =14

At >Vt > 1))
ty #Hto Nty H# ity A
A

< < < | < < <[ <K < < (K| < < K<
~
=

t1>t3\/t2>t3\/t1>t4\/t2>t4)

(
(
(
(

t1 >t Vita > t3) At > ta Vig > )

We start by giving a simplified form of >, in the case of two incomparable terms,
since it is the most difficult case we get with <..

Lemma E.1
b1 #ta Ntz # iy
= ({t1,t2} > {t3,t4}
< ((t1 >ts3Vita >tg Vg >ty Vig > ty)
A (t1 >t3Vita >ta)
A (t

>ty Vig > ty)))
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Proof: By definition of >, we have:

b1 #ta Ntz # 1y
= ({t1,t2} > {t3,t4}
S ((ty > t3 Vit >t3) A (L >ty Vig > ty))
Vo (t =tz Nta > tg)
Vo (ta =t3 Aty > tg)
Vo (t =ty Nt > t3)
v ( )

t2:t4/\t1>t3)

Noticing that they do not introduce any inconsistency, we add the cases we need
to recombine:

t1#Fta Ntg 1y

= ({t1,t2} > {t3, 14}

S ((t1 > taVita > t3) A(t1 > ta Vg > ty))
Vo ((ty =t3Vitg =1t3) Aty > ty)

V ((ty =t3 Vg =1t3) ANty > tg)

V ((t1 =t Vitg = tg) Nlg > t3)

V o ((ty = tg Vg = tg) ANty > t3)

We can now recombine, to obtain:

tr # to N3 # Ly
= ({t1,t2} > {ts, ta}
S (k1 =tz Vig =1t3) A (t1 >ty Vig > ty))
V ((t1 =ta Vg =ts) A (t1 > t3 Vig > t3))
v (

(tl > 13 Vi > t3) A (tl > 14 Vi > t4))))

Still recombining, we get:

L1 #ta Ntz # ty
= ({t1,t2} > {t3,14}
= (((tl >t4Vig > t4) A (tl >t3Vig > tg))

\Y ((tl > 13 Vi > t3) N (tl >ty Vi > t4))))
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Now, as we want a conjunctive form, we expand to obtain:

t1#ta Ntz # 1y
{t1,ta} > {ts, ta}
(tl >t3 Vi >tz Vi >ty Vie >t4)

= (
& (
A (L >t3Via >t Vs > 13 Vis > t3)
A (>t Vg >tV >ty Vg > ty)
A

ty > 13 Vig > 13V iy >ty Via >14)))
A last set of simplifications lets us obtain:

by #ta Ntz 1y
= ({tl,tg} > {t3,t4}
(tl >1t3 Vi >t3 Vi >1t4Vig >t4)

&
A (t >tV L > t3)
A (t1 >ty V ity > ty)))
O

Lemma E.2 Definition E.2 is equivalent to definition 4.1.

Proof: The result easily comes by expanding t; = to >, t3 =~ t4 using definition
4.1. We proceed by cases:

e if t1 > t9, we have C(tl ~ tg) = ({tl}, {tg})
- if t3 > t4, we have C(t3 =~ t4) = ({t3}, {t4}), and thus

ti ety ety Aty ety >tV (t = t3 Aty > ty)
- if t3 < t4, we have C(t3 =~ t4) = ({ta}, {t3}), and thus
bRty Doty ity ety >tV (b =ty Ay > t3)
- if t3 =ty = t3, we have O(t3 ~ t4) = ({t3},{}), and thus
ty Rty >ty ety <t >t
- if tg # ta, we have C'(ts ~ t4) = ({t3,ts},{}), and thus
t1 Rty >ty iyt >3 N > 1y

o ift; < to, we have C(tl =~ t2) = ({tg}, {tl})
- if t3 > t4, we have C(t3 ~ t4) = ({t3},{t4}), and thus

t1 =~ to >et3%t4<=>t2>t3\/(t2:t3/\t1>t4)
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- if t3 < t4, we have C(t3 =~ t4) = ({ta}, {t3}), and thus
timty Setgmty et >taV (o =ty Aty > t3)
- if t3 = t4 = t3, we have O(t3 = t4) = ({t3},{}), and thus
ti Rty >ty Rty &ty >t
- if 13 # 4, we have C(t3 =~ t4) = ({l3,1a}. {}), and thus
t1 R lg >el3 iyt >3 N1lg > 1y

o if t; =ty =t}, we have C(t; ~ to) = ({t3},{})
- if t3 > t4, we have C(t3 ~ t4) = ({t3},{t4}), and thus

t Rty >e g Rty & 1h > t3
- if t3 < t4, we have C(t3 ~ t4) = ({ts}, {t3}), and thus
tl Rty >ty ety < th >y
- if tg =ty = t3, we have O(ts ~ t4) = ({t3},{}), and thus
ty Rty Sty ety o th >t
- if tg # ta, we have C'(ts ~ t4) = ({t3,ts},{}), and thus
Rty Sety Rty ot >ty Atd >ty

o if t1 # tg, we have C(tl ~ tg) ({tl, tg}, {})
- if t3 > t4, we have C(tg ~ t4) ({tg}, {t4}), and thus

t Rty Sty Rty &t >3V ity > t3
- if t3 < t4, we have C(t3 =~ t4) = ({ta}, {t3}), and thus

Rty Sety Rty St >t Viy >ty
- if t3 = t4 = t}, we have CO(t3 =~ t4) = ({t3},{}), and thus

LRty >etygety oty >t Vi >t

- if t3#ty, we have C(ts =~ ty) = ({t3,14},{}), and we are thus in the context
of lemma E.1 and

1 Rly > lygrity & {tl,tQ} > {t3,t4}
We finish the proof by recollecting the results. O

Lemma E.3 Definition E.1 is equivalent to definition E.2.

Proof: This is easily checked by simplifying definition E.2 for each case of the
comparison of t{ with ¢o and of t3 with #4. O

71



Lemma E.4 Definition 4.2 is equivalent to definition E.1.

Proof: This is easily checked on definitions E.1 and 4.2. O

Lemma E.5 When the equations have a common term, we get a simplified defini-
tion that we will use to show the main results.

Let t1, to and ¢ be terms.

hhmt>.lsa~t& 1 ;ﬁt/\(tl >t3\/t3:t\/(t3 <t/\t1#t))
Proof: This is easily checked with definition E.1. O

Lemma 4.9 Consider a goal a1 = ag, and rule t1 = to.
We have o(t1) = o(t2) <. a1 =~ a9

if the rule is used:

(A) on a strict subterm of a;

(B) after reducing the goal into o] =~ as

(a) on the term o
(b) on a strict subterm of as
(c) on ag at head position, if a1 £ as or a1 > o(ta)

(C) after reducing the goal into o =~ o,

Proof: We follow the cases of the result:

(A) The rule is used on a strict subterm of aj.
By hypothesis, we have:

a1 &g = aifo(t)]w =~ ao
and since a1[o(t1)], = as — ai[o(t2)], = az, we have:
aro(t)]w = as >c aqfo(t2)]w = a2 (E.1)
By the subterm property of the simplification ordering, we have:
at[o(t1)]w > o(t1)
arlo(t2)]e > o(t2)

Thus
a1 > o(t1) by a1 = aq[o(t1)]w > o(t1) (E.2)

and by lemma E.5 applied to (E.1), we can devise two cases:
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e Either ag[o(t1)]w > ai[o(t2)]w-
In this case we have

] > U(tQ) by a1 = Oél[U(tl)}w > al[O'(tQ)]w > O'(tg) (E3)

To sum up we have ag > o(t1) (E.2) and a1 > o(t2) (E.3),
thus a1 = as >c o(t1) = o(t2).
e Or ajfo(t2)]w < as.
In this case we have

Qg > Cf(tg) by Qo > Ozl[U(tg)}w > U(tg) (E4)

To sum up we have a1 > o(t1) (E.2) and ap > o(t2) (E.4),
thus a1 &~ ag >, o(t1) = o(ta).
(B) The rule is used after reducing the goal into o} ~ as,
(a) on the term o
Since a1 &~ as =" o] = as, we have:

a1 R ag > a) = ag (E.5)

by hypothesis, we have:

and since o [o(t1)]w = az — af[o(t2)]w = a2, we have:

a[o(t)]w =~ ag > a)lo(t2)]w ~ ag (E.6)

By the subterm property of the simplification ordering, we have:
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By lemma E.5 applied to (E.5), we have

i # ag (E.7)

and three cases:
e The first case is ag > of.
In this case we have

a1 > U(tl) by Q) > O/l = O/l [O'(tl)]w > U(tl) (ES)

and by lemma E.5 applied to (E.6), we can devise two subcases:
- Either of[o(t1)], > o}[o(t2)]w-
In this case we have

a1 > o(te) by a1 > o) = o[o(t1)]w > o) [o(t2)], > o(ta)
(E.9)
To sum up we have ag > o(t1) (E.8) and oy > o(t2) (E.9),
thus a1 = as >, o(t1) = o(ta).
- Or of[o(t2)]w < as.
In this case we have

(6%)] Z U(tg) by a9 Z Ozll[U(tQ)}w 2 U(tg) (E.lO)

To sum up we have ag > o(t1) (E.8), as > o(t2) (E.10) and
a1 # ag (E.T),
thus a1 = as >c o(t1) = o(t2).
e The second case would be of = g, but it is not possible, because
it contradicts (E.6).
e The third case is o) < as A a1 # as.
In this case we have

ag > o(t1) by as > o = ajlo(t1)]w > o(t1) (E.11)

and by lemma E.5 applied to (E.6), we can devise two cases:
- Either o/ [o(t1)]w > o [o(t2)]w-
In this case we have

ag > o(ty) by ag > o) = o o(t1)]w > o)[o(ta)]n > o(t2)
(E.12)
To sum up we have ae > o(t1) (E.11) and ag > o(t2) (E.12),
thus a1 & ag > o(t1) = o(la).
- Or of[o(t2)]w < as.
In this case we have

as > o(te) par as > o[o(t2)], > o(ta) (E.13)
To sum up we have ag > o(t1) (E.11), ag > o(t2) (E.13) and

a1 # as (hypothesis),
thus ag = ag >¢ o(t1) = o(t2).
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(b) on a strict subterm of as
Since a1 & as =" o) = as, we have:
/
a1 R Qg >e ) R Qg (E.14)

By hypothesis, we have:
ay = az = oy ~aso(t)]e
and since o) ~ asfo(t1)], — o) = azlo(t2)]., we have:
o) ~ aslo(ty)]w >e ) & aslo(t2)]w (E.15)

By the subterm property of the simplification ordering, we have:

9 [O’(tl)}w > 0'(751)

@9 [O’(tz)}w > O'(tg)

thus
ag > o(ty) by ag = aslo(t1)], > o(t1) (E.16)

and by lemma E.5 applied to (E.15), we can devise two cases:

. ag[O’(tl)}w > OéQ[O'(tQ)]w.
In this case we have

ag > o(ty) by ag = asg[o(t1)]w > aslo(te)]w > o(te)  (E.17)

To sum up we have ag > o(t1) (E.16) and ae > o(t2) (E.17),
thus a1 = ag > o(t1) = o(t2).
o azfo(t2)lw < -
In this case, by lemma E.5 applied to (E.14), we can devise two
cases:
cap > af.
In this case we have

o) > O'(tg) by a1 > 04,1 > OéQ[U(tQ)]w > O'(tg) (E.18)

To sum up we have ap > o(t1) (E.16) and o > o(t2) (E.18),
thus a1 &= ag >, o(t1) = o(ta).

- o) < as.
In this case we have

Qo > Cf(tg) by Qo > CM’l > ag[d(tg)]w > Cf(tg) (E.lg)
To sum up we have ag > o(t1) (E.16) and as > o(t2) (E.19),
thus a1 &= ag >c o(t1) = o(ta).
(c) on ay at head position, with a; £ ag or a3 > o(t9)

Since a1 &~ as =" o] = as, we have:

) R ag > a) R ag (E.20)
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by hypothesis, we have:
o) mas=a] =o(t)
and since o) ~ o(t1) — o] =~ o(t2), we have:
oy mo(ty) >e o) = o(ta) (E.21)

By lemma E.5 applied to (E.21), we have:

a1 7é (6% (E.22)
We can devise two cases:
° U(tl) > U(tg).
In this case we have
Qo > O'(tg) by Qo = O'(tl) > U(tg) (E.23)
We have to proceed by cases between a; and as:
- a1 = ao.
This contradicts (E.20) and thus cannot be the case.
- a1 # as.

In this case we have ags = o(t1) (hypothesis) as > o(t2)
(E.23) and a1 # a9,
thus oy = ag >, o(t1) = o(tq).
C Q1 > (9.
In this case we have ay > o(t1) and o > o(t2),
thus a1 = ag > o(t1) = o(t2).
o < (9.
In this case we have as > aq, o(t1) > o(t2), az = o(t1) and
o] > O'(tg),
thus a1 &= ag >c o(t1) = o(ta).
e Oro(ty) <of-
In this case by lemma E.5 applied to (E.20), we have three cases:
cag > af.
In this case we have

o) > O'(tg) by a1 > O/l > O'(tg) (E.24)
To sum up we have ae = o(t1), a1 > o(t2) (E.24) and oy #
as (B.22),
thus a1 = as >, o(t1) = o(ta).
- o) = ao.

This contradicts (E.21) and thus cannot be the case.
c ) < as ANag # as.
In this case we have

as > o(ta) by ag > o) > o(ts) (E.25)

To sum up we have ag = o(t1) ag > o(t2) (E.25) and a1 #
(hypothesis),
thus a1 ~ g >, o(t1) = o(t2).
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(C) The rule is used after reducing the goal into o =~ af,.
Since aq & g =™ o) = ab, we have:

a1 & ag > ) & ah (E.26)

by hypothesis, we have:
o) = aly = al[o(t1)]e ~ o)
and since o [o(t1)], = o, — of[o(t2)]s =~ ), we have:
aylo(t)]e = ah >c aifo(t)lw = o (E.27)

By the subterm property of the simplification ordering, we have:

o
/
551

By definition E.1 applied to (E.26), we can devise three cases:
o > 0.
In this case we have

ar > o(ty) by a1 > o = dfjlo(t1)], > o(t1) (E.28)

and by lemma E.5 applied to (E.27), we can devise two cases:
- Either o [o(t1)], > o [o(t2)]w-
In this case we have

] > U(tg) by a1 > 0/1 = C)/l[(f(tl)]w > O/l[d(tg)]w > U(tg) (E.Zg)

To sum up we have ag > o(t1) (E.28) and oy > o(t2) (E.29)
thus a1 = ag > o(t1) = o(t2).
- Or ofj[o(t2)]w < ab.
In this case, by definition E.1 applied to (E.26), we have two
cases
Either a; > af.
In this case we have

’

o) > U(tg) by a1 > 0/2 > O/l[d(tg)]w > U(tg) (E.30)
To sum up we have a; > o(t1) (E.28) and a3 > o(t2) (E.30),
thus a1 = ag > o(t1) = o(t2).
Or ap > aj.
In this case we have

ag > o(te) by ag > ah > afj[o(t2)]w > o(ts) (E.31)

To sum up we have a; > o(t1) (E.28) and ao > o(t2) (E.31),
thus ag = ag >¢ o(t1) = o(t2).
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o oy > af.
In this case we have

Qo > U(tl) by Qo > Oéll = Oéll[O'(tl)Ld > U(tl) (E.32)

and by lemma E.5 applied to (E.27), we can devise two subcases:
- Or ajlo(th)lw > ajfo(t2)]w.
In this case we have

Qg > O'(tg) by Qg > 04/1 = Oéll[O'(tl)]w > Oz/l[U(tQ)]w > O'(tg) (E.33)

To sum up we have ag > o(t1) (E.32) and ag > o(t2) (E.33)
thus a1 = ag >. o(t1) =~ o(ta).
- Or of[o(t2)]w < a.
In this case, by definition E.1 applied to (E.26), we have two
subcases
Either a; > aof.
In this case we have

’

ay > o(ta) by a1 > ab > oj[o(t2)], > o(t) (E.34)

To sum up we have ap > o(t1) (E.32) and oy > o(t2) (E.34),
thus a1 = as >, o(t1) = o(ta).

Or ag > aj.

In this case we have

Qo > U(tg) by Qg > 0/2 > Oéll[d(tg)]w > U(tg) (E.35)

To sum up we have as > o(t1) (E.32) and ag > o(t2) (E.35),
thus a1 = ag >¢ o(t1) = o(t2).
o a1 # Q.
We have four subcases: ay = o(t1), a1 = o(t2), aa = o(t1) and as = o (t2).
Each of them contradicts the hypothesis and thus cannot happen.

O
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