
HAL Id: inria-00099889
https://hal.inria.fr/inria-00099889

Submitted on 26 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Simple Constraint-solving Decision Procedure for
Protocols with Exclusive or

Yannick Chevalier

To cite this version:
Yannick Chevalier. A Simple Constraint-solving Decision Procedure for Protocols with Exclusive
or. 18th International Workshop on Unification - UNIF’2004, Jul 2004, Cork, Ireland, 15 p. �inria-
00099889�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50427377?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00099889
https://hal.archives-ouvertes.fr


A Simple Constraint-solving Decision Procedure for Protocols with
Exclusive or?

Yannick Chevalier

Projet CASSIS – LORIA-INRIA
email: chevalie@loria.fr

Abstract. We present a procedure for deciding security of protocols employing the Exclusive or
operator. This procedure relies on a direct combination of a constraint solver for security protocol
with a unification algorithm for the exclusive-or theory. Hence compared to the previous ones it is
much simpler and easily amenable to automation. The principle of the approach can be applied to
other theories too.

Security protocol analysis has been intensively studied [22, 24, 28, 16, 19, 18] motivated by the threats
on internet communications and their dramatic consequences. Recently many procedures have been pro-
posed to decide insecurity of cryptographic protocols in the Dolev-Yao model w.r.t. a finite number of
protocol sessions [1, 5, 17, 27, 23, 2]. Among the different approaches the symbolic ones [23, 12, 26, 4,
20] are based on reducing the problem to constraint solving in a term algebra. Constraint solving has
proved to be quite effective on standard benchmarks [14] and also was able to discover new flaws on
several protocols [13].

However while most formal analysis of security protocols abstracts from low-level properties, i.e.,
certain algebraic properties of encryption, such as the multiplicativity of RSA or the properties induced
by chaining methods for block ciphers, many real attacks and protocol weaknesses rely on these proper-
ties. In particular for the XOR operator (which is frequently used in protocol design) Ryan and Schnei-
der [29] give a simple attack on Bull’s recursive authentication protocol: the protocol is used to distribute
a connected chain of keys linking all the nodes from originator to the server, but if one key is compro-
mised the others can be compromised too thanks to the property of XOR. Conversely, if XOR is
considered as a free operator then, as shown by L. Paulson using the Isabelle prover [25], the protocol is
secure. For attacks exploiting the XOR properties in the context of mobile communications see [7].

Therefore several attempts have been made to extend the protocol decision procedures to incorporate
algebraic properties in the Dolev-Yao model and relax in that way the so-called perfect encryption
assumption (i.e. One needs a decryption key to extract the plaintext from the ciphertext, and also, a
ciphertext can be generated only with the appropriate key and message). To our knowledge only two such
procedures have been proposed for handling the properties of the XOR operator: [9] gives a decision
procedure for XOR with an optimal NP complexity and [15] describes a constraint solving procedure
for a more general class of protocols but with a higher complexity. Both procedures seem difficult to be
turned into effective verification tools. The former is based on guessing terms of some height and may
lead to combinatorial explosion. The latter has also hard complexity and is intricate.

In this paper we present a new procedure for deciding security of protocols employing the XOR
operator. This procedure relies on a direct combination of a constraint solver for security protocol with
a unification algorithm for the XOR theory. Hence compared to the previous ones it is much simpler
and easily amenable to automation. The principle of the approach can be applied to other theories too.
An advantage of our approach is that it reuses as much as possible results from unification theory and
especially combination techniques, instead of reconstructing them in ad-hoc way for security constraints.

? This work was partially supported by IST AVISPA HTTP://WWW.AVISPA-PROJECT.ORG/ and RNTL Prouvé



Structure of the paper. In the first two sections, we compare the result presented with the similar ones and
we provide an example illustrating the role of XOR in attacks. We then present the theoretical framework
of our stduy, and our model of protocols (in Section 3) and of the hostile environment in Section 4. After
this, we define the Simultaneous Construction Problems, and the translation from protocols to SCPs in
Section 5, and transformations on SCPs in Sections 6 and 7. Finally, we show on an example how this
system permits to automatically find an attack on a protocol in Section 8.

The detailled proofs are given in the companion research report available on the web [11].

1 Related work

The main result presented in this article is the decidability of the search for attacks on a protocol within
a finite number of sessions and no bounds on message length. This result is very similar to the one
presented by V. Shmatikov and H. Comon-Lundh in [15], the main difference being that the protocol
we consider are only a subset of the protocol they take into account. The reason for this is that we
impose some conditions on the occurrences of the variables in the rules of the protocol. However, these
conditions are no real restrictions in practice.

To explain why, let us consider the reception of a message m (a ground term) by an agent. Upon
receiving this message, the agent matches it with a pattern t, and assigns values to the variables of t
according to the result of this matching. We define a protocol to be deterministic when given m and t,
there is at most one possible assignment, i.e. at most one substitution τ such that tτ ≡ m. As is noted
in [30], not every deterministic protocol satisfies our restrictions. However, as was already noted in [9],
and proved in [8] every deterministic protocol can be effectively transformed in a protocol that satisfies
these restrictions. We have not considered this larger class of deterministic protocols in order to avoid
the introduction of an additional ordering on the variables as is done in [1], this additional ordering being
encoded within the order on messages.

To sum up, we consider the result presented in this article is equivalent for practical purposes to the
one presented in [15]. But we claim that this article is very original because the algorithm presented
and the proof of it are very different. In [15], but also in all recent papers considering the problem
of cryptographic protocols analysis in presence of an algebraic operators [9, 10, 30, 6], the equalities
induced by the theory of the operator are hard-wired into the deduction system and into the proof. The
proofs are technically involved when only one algebraic operator is considered, and we do not know any
attempt to consider several independent algebraic operators at the same time.

On the other hand, it can be shown that the system presented in this article terminates, is sound and
is complete as soon as the theory has some simple properties. We plan to write soon an extension of the
result presented to take into account several algebraic operators.

2 A Motivating Example

We illustrate that when taking the algebraic properties of XOR into account, new attacks can occur.
As an example, we use a variant of the Needham-Schroeder-Lowe Protocol [21], i.e., the public-key
Needham-Schroeder Procotol with Lowe’s fix, where in some place, instead of concatenation XOR is
used. Using common notation, the protocol is given as follows:

1. A → B : {NA, A}p
KB

2. B → A : {NB,⊕({NA, B})}p
KA

3. A → B : {NB}
p
KB



If XOR is interpreted as free symbol, such as pairing, then according to [21] this protocol is secure.
In particular, the intruder is not able to get hold of NB. However, if the algebraic properties of XOR
are taken into account, the following attack is possible, which is a variant of the original attack on the
Needham-Schroeder Protocol and which allows the intruder I to obtain NB . In this attack, two sessions
run interleaved where the steps of the second session are marked with ′. In the first session, A talks to the
intruder I , and in the second session I , purporting to be A, talks to B. We emphasize that in this attack
I generates new messages by applying the XOR operator and uses that NA ⊕ B ⊕ I ⊕ B = NA ⊕ I .

1. A → I : {NA, A}p
KI

1’. I(A) → B : {⊕({NA, B, I}), A}p
KB

2’. B → I(A) : {NB,⊕({NA, B, I, B})}p
KA

2. I → A : {NB,⊕({NA, B, I, B})}p
KA

3. A → I : {NB}
p
KI

3’. I(A) → B : {NB}
p
KB

3 Terms and Protocols

3.1 Messages and Knowledge

In this paper we assume the same setting as the one considered in [9]. The messages are modelled by
terms over a signature containing a denumerable number of free constants and:

F =
{

〈 , 〉 , { }p
, −1, { }s

, ⊕ , 0
}

The 〈 , 〉 represents the concatenation (pairing) of its two arguments.The constructor { }p represents
the public key encryption, and for a public key k ∈ Key, the term k−1 represents the inverse key. The
operator { }s represents the symmetric key encryption. We call Ff the set of these operators. Under the
hypothesis of non-collision between messages, the operators in Ff are free: For f, g ∈ Ff , the equality
f(t1, t2) = g(t′1, t

′
2) holds if, and only if, f = g, t1 = t′1 and t2 = t′2.

On the other hand, the ⊕ operator represents the Exclusive-Or operation, and 0 is the constant rep-
resenting sequences of the 0 bit-value of any length. Given two arbitrary messages a and b we consider
that this operator has the following properties:

x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z (A)
x ⊕ y = y ⊕ x (C)
x ⊕ 0 = x (U)
x ⊕ x = 0 (N)

If we orient from left to right the equations (U) and (N), we get a convergent rewrite system modulo
AC. Given a term t, we note ptq the normal form of t. For example, we have:

– p⊕({⊕({a, b}), b, c})q = ⊕({a, c})
– p⊕({a,⊕({b, c})})q = ⊕({a, b, c})

Given a term t, we define the factors of t, denoted Factor(t):

Factor(t) =

{

{t1, . . . , tn} if ptq = ⊕({t1, . . . , tn})
{t} otherwise

We note that all the factors of a normalized term ptq have a free root operator.



The subterms are defined on normalized terms. Given a term t such that t = ptq, the set of its subterms
Sub(t) is defined inductively by:

Sub(t) = {t} ∪







Sub(t1) ∪ Sub(t2) If t = f(t1, t2)
with f a free symbol

∪u∈Factor(t)Sub(u) Otherwise

Given a set of terms E, we also note Sub(E) the set ∪t∈ESub(t).
If the root operator of a normalized term t is a free constructor or a constant, we say t is a free term.

Otherwise, we say t is a ⊕ term.
Last, we call X the set of variables, and T(F ,X ) (resp. pT(F ,X )q) the set of terms (resp. normalized

terms). Substitutions, noted σ, τ , . . . are defined as mappings from X to pT(F ,X )q. The application of
a substitution σ on a term t, denoted tσ, consists in the term where all variables x1, . . . , xn of t are
replaced by the terms x1σ, . . . , xnσ.

3.2 Protocols

In order to decide the security of a protocol w.r.t secrecy or authentication for a fixed number of protocol
sessions can be reduced to deciding the security for a single session by guessing an interleaving of the
sessions that leads to the security violation [27]. In the same way we can assume that the protocol steps
are linearly ordered (otherwise we simply try all possible orderings). Hence we will consider here only
a single session of a protocol defined as a sequence of steps.

The following definition is explained below.

Definition 1 A protocol rule is of the form R ⇒ S where R and S are terms.
A protocol P is a tuple ({Rι ⇒ Sι, ι ∈ I},S) where I is an initial segment of the set of natural

numbers, S is a finite set of normalized messages with 0 ∈ S, the initial intruder knowledge and Rι ⇒
Sι, for every ι ∈ I, is a protocol rule such that

1. the terms Rι and Sι are normalized;
2. for all x ∈ Var(Sι), there exists ι′ ≤ ι such that x ∈ Var(Rι′);
3. for any subterm⊕({t1, . . . , tn}) of Rι, there exists j ∈ {1, . . . , n} such that Var(ti) ⊆ ∪ι′<ιVar(Rι′)

for every i ∈ {1, . . . , n} \ {j}. (Note that since Rι is normalized, the ti’s are free terms.)

Intuitively for executing a protocol step Rι ⇒ Sι on receiving a (normalized) message m in a pro-
tocol run it is first checked whether m and Rι match, i.e., whether there exists a ground substitution σ
such that m =E Rισ. If so pSισq is returned as output. We always assume that the messages exchanged
between principals (and the intruder) are normalized — therefore, m is assumed to be normalized and
the output of the above rule is not Sισ but pSισq. This is because principals and the intruder cannot dis-
tinguish between equivalent terms and therefore they may only work on normalized terms (representing
the corresponding equivalence class of terms). Finally we note that since the different protocol rules may
share variables, some of the variables in Rι and Sι may be already bounded by substitutions obtained
from previous applications of protocol rules. We are not actually interested in a normal execution of a
protocol but rather in attacks on a protocol. This is the reason why the definition of a protocol contains
the initial intruder knowledge.

Condition 1. , in the above definition is not a restriction since the transformation performed by
a protocol rule and its normalized variant coincide. Condition 2. guarantees that when an output is
produced with Sι all variables in Sι are already “bounded”. Otherwise, the output of a protocol rule
would be arbitrary, since unbounded variables could be mapped to any message. Condition 3. guarantees
that the bounding of variables is deterministic. For example if the protocol rule ⊕({x, y}) ⇒ 〈x, y〉
is the first one and thus, x and y are not bounded, then this rule violates Condition 3: On receiving



⊕({a, b, c}), for instance, different substitutions are possible, including {x 7→ ⊕({a, b}), y 7→ c},
{x 7→ ⊕({b, d}), y 7→ ⊕({a, c, d})}, etc. In other words, a principal must guess a substitution. We have
shown in [8] that every deterministic protocol can be transformed in a protocol satisfying Condition 3.

The protocol informally described in Section 2 can formally be stated as follows: Agent a plays
role A and agent b role B; We define I = {1, 2, 3, 4}; The initial knowledge of the intruder is S =
{

0, � , � , � , ��� , ��� −1, � � , � � }, and the protocol rules are:

1 : 0 ⇒ {〈 � � , � 〉}p�
	
2 : {〈x �� , � 〉} � � ⇒{〈 � � ,⊕({x ��� , � })〉}p� �
3 :{〈x ��� ,⊕({ � � , � })〉}p� �⇒ {x ��� }p�
	
4 : { � � }p� � ⇒ 0

Our aim is to determine, given the initial knowledge of the intruder, the set of substitutions σ such
that this ordering of messages corresponds to a possible execution. Before proceeding further, we need
to formalize the deduction abilities of the intruder.

4 Threat Model

4.1 The Intruder

We assume that a protocol is run across a hostile environment where the source of the received messages
cannot be established. This environment is modeled by an evil actor, called the intruder, trying to reach
a state that should be banned by the protocol. If the goal of the protocol is to ensure the secrecy of a data
M , the forbidden states are those where the intruder knows M . If the goal of the protocol is to ensure
authentication of the participants, the forbidden states are those where a honest participant wrongly
assumes that a message M it has received originates from another participant.

An attack on a trace-based property of a protocol can be viewed as a particular interleaving of a finite
number of protocol sessions. For instance an attack on secrecy can be modeled by adding a message to
the protocol where the intruder has to send the confidential piece of data. If this extended protocol admits
a feasible execution then the initial protocol can be considered as insecure.

An execution is feasible if every message received by the honest agents can be derived by the intruder
from his initial knowledge and intercepted messages. Hence building an insecure protocol execution
reduces to a system of constraints to be solved in a particular term algebra. The variables to be solved
correspond to the part of the protocol messages that are not read by the honest agents (e.g. because they
are encrypted with an unknown key).

The security of the protocol is assessed versus an intruder as strong as possible. We assume it can
divert all messages sent by honest participants and add their content to its knowledge, it can send mes-
sages its knowledge permits to deduce under the identity of other actors, and may perform deductions
over its knowledge to this end.

4.2 Intruder Deduction Rules

The knowledge of the intruder is represented by a set of normalized messages, i.e. is a subset of
pT(F ,X )q. The deductions that the intruder can perform from its knowledge are modeled by rewrite
rules l → r (read: From l deduce r) where l is a set of messages (a subset of T(F ,X )) and r is a
message (a term). The right-hand side of a rule is its result. We shall only consider rules l → r where
both l and r are in normal form (i.e. plq = l and prq = r). In order to have lighter notation, and under this
hypothesis, we omit the normalization function pq when not necessary. The available deduction rules
are split into two disjoint sets: Composition rules and decomposition rules.



Let l → r be a deduction rule. It is a decomposition rule iff there exists t ∈ l such that r is a strict
maximal subterm of t. Otherwise, it is a composition rule. We always assume r /∈ l, since such rules do
not permit to deduce new terms.

In Tables 4.2 and 2 we give the rules considered in this paper. The rule:

a1, . . . , an → p⊕(a1, . . . , an)q

is a composition rule if the right-hand side is a ⊕-term, and a decomposition rule if its head operator is
a constant or a free constructor.

Name Deduction rule
Lc,〈 , 〉 a, b → 〈a, b〉
Lc,{ }s a, b → {a}s

b

Lc,{ }p a, b → {a}p

b

Lc,⊕ a1, . . . , an → p⊕({a1, . . . , an})q

Table 1. Composition rules

Name Deduction rule Decomposed term Condition
Ld,〈 , 〉

1 〈a, b〉 → a 〈a, b〉 ∅
Ld,〈 , 〉

2 〈a, b〉 → b 〈a, b〉 ∅
Ld,{ }s {a}s

b
, b → a {a}s

b
b

Ld,{ }p {a}p

b
, b−1 → a {a}p

b
b−1

Ld,⊕ a1, . . . , an → p⊕({a1, . . . , an})q a1 ∅

Table 2. Decomposition rules

We note L the set of all deduction rules of the intruder.

Transition relation and derivations. Let E and F be two normalized sets of terms, and L a subset of L.
We write E →L F if there exists a rule l → r in L such that l ⊆ E and F = {r}∪E. We denote by →∗

the reflexive and transitive closure of →. If L = {l → r}, we simply note E →l→r F . Without loss of
generality, we also always assume that if E →l→r F , then r /∈ E. Under this assumption, a sequence of
transitions E1 →L . . . →L En is called a derivation on L. We say this derivation starts from E1 and has
goal En \ En−1. A derivation D : E →∗

L F starting from E and of goal t is defined to be well-formed
if F ⊆ Sub(E ∪ {t}).

We have proved in [9] the following useful result:

Proposition 1 (Existence of well-formed derivations) Let E be a normalized set of terms and t be a
term in normal form. There exists a well-formed formed derivation on L starting from E of goal t if, and
only if, there exists a derivation on L starting from E of goal t.

4.3 Set of Deducible Messages and Properties

Let R be any system of rewrite rules over sets of terms.



Definition 2 We note E
R

the set of messages deducible from E using the rewrite system R:

E
R

= {t | ∃E′, E →∗
R E′ and t ∈ E′}

In the case of intruder deduction system L, we simply note E the set E
L

. We have given the proofs of
the two following propositions as they are both easy and very important. Indeed, Proposition 3 permits
to link a set of messages with all the possible instantiations of the variables.

Proposition 2 Suppose F ⊆ E . Then E = F ∪ E

PROOF. This proposition is based on the fact that the operator is idempotent (E = E ) and growing
for ⊆ (E ⊆ F implies E ⊆ F ). The announced equality follows from these two properties by a double
inclusion argument.

Proposition 3 Let E and F be two sets of terms. We have E = F iff for all substitutions σ, we have
Eσ = Fσ

PROOF. The right to left direction is trivial: Consider the Identity substitution. To prove the left to right
direction, we note that for all sets of terms E, if E →∗

L E′, then E = E′ . The equality E = F implies
there exists a set of terms G such that E →∗ G and F →∗ G. Let σ be a substitution. One can check
that l → r ∈ L implies plσq → prσq ∈ L. Thus, we have pEσq →∗ pGσq and pFσq →∗ pGσq. By
construction, we have:

{

pGσq ⊆ pEσq

pGσq ⊆ pFσq

Thus, Proposition 2 permits to conclude.

5 Simultaneous Construction Problems

We now introduce constraints that an intruder has to solve in order to build a protocol execution leading
to an attack.

Definition 3 A Construction Problem is a pair (E, t) noted E B t with E a finite subset of pT(F ,X )q

and t ∈ pT(F ,X )q. A substitution σ satisfies E B t iff ptσq ∈ pEσq. In this case, we note:

σ |= E B t

Definition 4 A Simultaneous Construction Problem (SCP) is a finite sequence (Ei B ti)i∈{1,...,n} of
construction problems. such that:

1. for all i ∈ {1, . . . , n} and for all x ∈ Var(Ei), there exists j < i such that x ∈ Var(tj) ;
2. for all i, j ∈ {1, . . . , n} with i < j, there exists Fj ⊆ Ej such that Fj = Ei

3. for all i ∈ {1, . . . , n}, if ⊕({u1, . . . , ul}) ∈ Sub(ti), then there exists at most one j such that
Var(uj) 6⊆ Var(t1, . . . , ti−1).

Moreover, we assume that if n ≥ 1, then E1 6= ∅. In the case of protocol analysis, this can be ensured
e.g. by stating that the intruder always knows her name. The last condition is true by the Condition 3.
on protocols when a SCP is built by an execution order over a protocol P . It will be easy to see that all
transformations on SCP’s that will be defined in the following preserve this property.



Definition 5 (Satisfiability of SCP) Let L be a set of deduction rules over sets of terms. A SCP C is
σ-satisfiable for L if:

for all E B t in C, σ |= E BL t

We note ����� (C) the set of substitutions σ such that C is σ-satisfiable.

The next definition will allow us to obtain a generic description of the set of solutions of an SCP.
Since attacks in our setting are substitutions let us define the set of prefixes of a set of substitutions.

Definition 6 (Prefix set) A set of substitutions Θ is a prefix of a set of substitutions Σ if:

{

∀σ ∈ Σ ∃τ ∃ρ ∈ Θ, σ = ρτ
∀τ ∈ Θ ∃ρ τρ ∈ Σ

The first condition ensures that all substitutions in the set Σ are instances of a substitution in the
prefix set. The second condition ensures that each substitution in the prefix set covers a non-empty
subset of Σ. Thus, if Θ is a prefix set of Σ, the set Θ is empty if, and only if, Σ is empty. Note that the
notion of prefix set is weaker than the notion of most general unifier (summarized as: All the instances
are solutions). Suppose Θ is the prefix set of a set Σ, and let τ ∈ Θ. Then there might exist a substitution
ρ such that τρ is not in Σ. For example, the set {Id} is a prefix set of any non-empty set of substitutions
Σ but unless Σ is the set of all substitutions, not all instances of Id are in Σ

Connection with Protocols. Let P = ({Rι ⇒ Sι, ι ∈ I},S) be a protocol with I = {1, . . . , n}. A
sequence of ground terms m1, . . . , mn forms a valid trace of the protocol if there exists a substitution
σ such that mi = pSiσq for all i ∈ I and if the intruder was able at every stage to deduce pRiσq. This
condition can be formalized as follows. Let Fi be the knowledge of the intruder after she has diverted
the i-th message. One has:

{

F0 = S
Fi = Fi−1 ∪

{

pSiσq
}

The intruder can deduce, at every stage, all mi if, for all i ∈ I, one has:

pRiσq ∈ Fi−1

Conversely, if these facts hold for σ, then pS1σq, . . . , pSnσq is a valid trace of the protocol.
Let us now define:

{

E0 = S
Ei = Ei−1 ∪ {Si}

From what precedes, all the valid traces of the protocol P are given by the solutions of the SCP:

C = E0 B R1, . . . , En−1 B Rn

However, the set ����� (C) may be infinite. In order to decide whether a protocol has a secrecy attack,
it is sufficient to be able to decide whether the SCP C associated to a protocol is satisfiable. But other
trace-based properties need a finer result to be decided. For example, one needs to know the possible
values of the protocol variables in order to decide if a given protocol has an authentication flaw. Thus,
our aim is not to decide the emptyness of the set C, but to find a finite and symbolic representation of it.
As a consequence, we will solve the following more general problem:

– ���
	����� (C): find a finite prefix set Θ of ����� (C);



5.1 Solved form

We first introduce the notion of SCP in solved form. This notion is a generalization of the one considered
in [23] for the Dolev-Yao intruder in the free theory. Given a set of variables X let us note FV(t) =
Factor(t) ∩ X .

Definition 7 (Solved form) Let C = (Ei B ti)i∈{1,...,n} be a SCP, and let X be the set of variables
appearing in C. We say C is in solved form if:

– ∀i ∈ {1, . . . , n} , FV(ti) = {xi} and i 6= j implies xi 6= xj ;
– X = {x1, . . . , xn}.

This notion is crucial because of the following proposition.

Proposition 4 Every SCP in solved form is satisfiable.

PROOF. Let C = (Ei Bti)i∈{1,...,n} be a SCP in solved form, and let X = {x1, . . . , xn}. The conditions
on the solved form imply that there exists a bijection between the construction equations Ei B ti and the
variables. Hence up to re-indexing if necessary, one has either ti = xi or ti = ⊕({xi, ti,1, . . . , ti,ni

}).
The third property of SCPs then implies that for all i ∈ {1, . . . , n}, one has Var(ti,1, . . . , ti,ni

) ⊆
Var(t1, . . . , ti−1). For i ∈ {1, . . . , n}, let ui = 0 if ti = xi and ui = ⊕({ti,1, . . . , ti,ni

}) otherwise.
The unification problem U :

∀i ∈ {1, . . . , n} , xi
?
= ui

is then in solved form: One obtains a solution σ by replacing, for i from 1 to n, all the variables y in ui

by yσ which is already computed. By definition of σ as a solution of U , we have:

pCσq = pE1σq B 0, . . . , pEnσq B 0

which is trivially satisfiable. Hence C has at least one solution σ.

6 Normalization of SCP’s

We introduce a normalization procedure for transforming an SCP into a simpler equivalent one. In the
remaining part of this subsection, we give some normalization rules on SCP’s. In this paper we only give
normalization rules to prove the completeness of L. For a faster constraint-solving algorithm one may
add more normalization rules as the ones given in [8] for free operators such as encryption and pairing.

Proposition 5 Let
C = Cα, E ∪ {ux} B t, Cβ

be a SCP such that there exists Ex B tx in Cα with FV(tx) = FV(ux) = {x}. Then C is equivalent to:

C′ = Cα, E ∪
{

p⊕({ux, tx})q
}

B t, Cβ

We note C ⇒⊕,l C
′.

Proposition 6 Let
C = Cα, E B {ux} , Cβ

be a SCP such that there exists Ex B tx in Cα with FV(tx) = FV(ux) = {x}. Then C is equivalent to:

C′ = Cα, E B
{

p⊕({ux, tx})q
}

, Cβ

We note C ⇒⊕,r C′.



Note that in Propositions 5 and 6, by definition of the normalization function pq, we have FV(p⊕({ux, tx})q) =
∅.

Proposition 7 For all rewrite system L, we have E
L

= F
L

iff for all substitutions σ, we have Eσ
L

=

Fσ
L

We write C ⇒ C′ if either C ⇒⊕,r C′ or C ⇒⊕,l C′. A SCP C is in normal form if there does not
exist C′ such that C ⇒ C′ and if all its subterms are in normal form for pq.

7 A System for Solving SCP

We transform the SCP using rules of a system L. These rules can be partitionned in two subsets: those
applying to terms whose root symbol, for a solution σ, is in the free theory, called Lf , and those applying
to xor terms, called L⊕. We now define these systems.

The notation σ ∈ mgu (u, t) means that the substitution σ is a most general solution of the unification

problem u
?
= t over the theory E = E1∪E2, with E1 the free theory over standard Dolev-Yao operations

(concatenation –〈 , 〉–, symmetric key encryption –{ }s– and public key encryption –{ }p–), and E2 is
the ACUN theory of the ⊕ operator and 0. Note that the set of most general unifiers is either empty or
finite up to renaming.

7.1 The Rules in Lf

In Figure 1 the symbol f is any free operator in {〈 , 〉 , { }s
, { }p}. Intuitively, the Comp rule is the

counterpart for the SCPs of the rules of Table 4.2 that are associated with free constructors. Symmetri-
cally, the Dec rule is the counterpart of the rules of Table 2 associated with free constructors.

The Unif rule plays a different role. It is applied when the term to be built is in the knowledge of the
intruder once a substitution is applied.

�������
:

Cα, E B t, Cβ

(Cα, E B x1, E B x2, Cβ)σ
σ ∈ mgu (t, f(x1, x2))

�	��

:

Cα, E B t, Cβ

(Cα, E B Cond(f(x1, x2)), E ∪ Res(f(x1, x2)) B t, Cα)σ
u ∈ E, σ ∈ mgu (u, f(x1, x2))

���� �
:

Cα, E B t, Cβ

(Cα, Cβ)σ
u ∈ E, σ ∈ mgu (u, t)

Fig. 1. System Lf of transformation rules.

7.2 The Rules in L⊕

The rules in L⊕ are used to treat specifically the case of the xor operator. They are given in Figure 2.
The �
����� ⊕ (resp. ����� ⊕) rule has no real counterpart in Tables 4.2 and 2. On the other hand, the� ��� � � ⊕ rule corresponds to the application of a deduction rule:

a1, . . . , an → p⊕({a1, . . . , an})q



�������
⊕ :

Cα, E B ⊕ ({t1, . . . , tn}), Cβ

Cα, E B t1, E B ⊕ ({t2, . . . , tn}), Cβ

�	��

⊕ :

Cα, E B t, Cβ

Cα, E B ⊕ ({t2, . . . , tn}), E ∪ {t1} B t, Cβ

⊕({t1, . . . , tn}) ∈ E

� � ��� �
⊕ :

Cα, E B t, Cβ

(Cα, Cβ)σ
U ⊆ E, σ ∈ mgu (

L

u∈U
u, t)

Fig. 2. System L⊕ of transformation rules.

regardless of whether this is a composition or decomposition rule.
We note C →l C′ if l is an applicable rule of L.

7.3 Restrictions on the Application of Rules in L

Consider a rule of L:
C = Cα, ��� , Cβ

C′

Note that in the above notation, Cα is a SCP, but not Cβ. We do several hypotheses on C and C’ for
such a rule to be applicable.

First, we assume the SCP C is normalized. This means that, when applying rules, one should start
from a SCP in normal form, and each SCP deduced must be normalized before being employed in further
deductions.

Second, we impose in the above rule that Cα has to be empty or in solved form. Moreover, we impose
that if a rule applies on a term u or t, then:

FV(u) = FV(t) = ∅

Since the SCP is normalized, this is always the case for a term on the left-hand side of a construction
problem. If the rule applies on the right-hand side t of E B t, this restriction implies this problem is not
in solved form.

In order to ensure termination, we also forbid the application of the Dec rule twice on the same term.
This may be formalized using e.g. tagging of terms.

7.4 Decidability of Prefix(C)

We prove in [11] that the transformation system presented, together with the normalization rules, permits
to decide the problem Prefix(C). Starting from C, rules of L are applied to generate as many SCPs as
possible. For each generated SCP C’, let σC′ be the substitution applied along the deductions starting
from C and ending in C’. Finally, let us define:

ΠC = {σC′ | C′ in solved form}

We prove:

1. Termination: The procedure terminates, and thus ΠC is finite;



2. Correctness: Every σ ∈ ΠC is a prefix of a substitution in ����� (C);
3. Completeness: For every τ ∈ ����� (C), there exists σ ∈ ΠC such that σ is a prefix of τ .

Thus, ΠC is a prefix set of ����� (C) and we can state the following theorem:

Theorem 1 The problem Prefix(C) is decidable.

8 Example

We now illustrate our procedure on the attack example of Section 2. Let us note E0 =
{ � , � , � � , � � , � , ��� , ��� −1

}

the initial knowledge of the intruder and:

– E1 = E0 ∪ {{〈 � � , � 〉}p�
	 }
– E2 = E1 ∪ {{〈 � � ,⊕({x �� , � })〉}p� � }
– E3 = E2 ∪ {{x ��� }p�
	 }

Given the protocol description in Section 3, the SCP corresponding to the search of an attack is:

E0 B 0, E1 B {〈x �� , � 〉}p� � ,
E2 B {〈x ��� ,⊕({ � � , � })〉}p� � , E3 B { � � }p� �

The first construction problem can be eliminated by the Unif rule. In order to simplify notations, let
Cβ = E2 B {〈x ��� ,⊕({ � � , I})〉}p� � , E3 B { � � }p� � .The intruder immediately decompose the message
sent by a.

E1 B {〈x ��� , � 〉}p� � , Cβ

E1 B ��� −1, E1 ∪ {〈 � � , � 〉} B {〈x �� , � 〉}p� � , Cβ

��� �

E1 ∪ {〈 � � , � 〉}B {〈x �� , � 〉}p� � , Cβ

����� �

E1 ∪ { � � , � , 〈 � � , � 〉} B {〈x ��� , � 〉}p� � , Cβ

��� �

From now on, we note E ′
1 = E1∪{ � � , � , 〈 � � , � 〉}. We apply twice the Comp rule on the first remaining

problem:
E′

1 B {〈x ��� , � 〉}p� � , Cβ

E′
1 B 〈x ��� , � 〉 , E′

1 B � � , Cβ

�
�����

E′
1 B x ��� , E′

1 B
� , E′

1 B � � , Cβ

� � � �

The Unif rule again permits to eliminate the second and third construction problem since � and � �
are in E0. Note that up to this point, all the rules applied preserve the satisfiability, and thus could be
implemented as normalization rules. The next step is non-deterministic, since the intruder does not know
� � −1.

Let σ be the most general unifier of the two terms {〈x ��� ,⊕({ � � , � })〉}p� � and {〈 � � ,⊕({x ��� , b})〉}p� � .
A simple calculation shows that σ is given by:

σ :

{

x ��� 7→ � �
x ��� 7→ ⊕({ � � , � , � })

Let us note E′
3 = E3σ. We have:

E′
3 = E1 ∪ {{〈 � � ,⊕({ � � , � })〉}p� � , { � � }p�
	 }



The rule inference is:

E′
1 B x �� , E2 B {〈x ��� ,⊕({ � � , � })〉}p� � , E3 B { � � }p� �

E′
1 B ⊕ ({ � � , � , � }), E′

3 B { � � }p� �
� � � �

The
� ��� � � ⊕ rule can be applied (with the identity substitution) to remove the first constraint:

�
, � , � � , . . . B ⊕ ({ � � , � , � }), E3 B { � � }p� �

E′
3 B { � � }p� �

� ��� � � ⊕

Before proceeding further, the intruder decomposes the message { � � }p�
	 :

E′
3 B { � � }p� �

E′
3 B ��� −1, E′

3 ∪ { � � } B { � � }p� �
�����

E′
3 ∪ { � � } B { � � }p� �

� � � �

Finally, this last constraint is eliminated through the application of the rule Comp followed by two
applications of the rule Unif with the identity substitution.

E′
3 ∪ { � � } B { � � }p� �

E′
3 ∪ { � � } B � � , E′

3 ∪ { � � } B � �
�
�����

E′
3 ∪ { � � } B � �

����� �

∅

����� �

In this case, the substitution found was:

σ :

{

x ��� 7→ � �
x ��� 7→ ⊕({ � � , � , � })

Note that in this case, the substitution is ground. As a consequence, and by definition of solved forms,
this implies that the final SCP produced is empty. Unless other sequences of transformations leading to
different substitutions are found, this means that there is only one feasible execution of this protocol.

9 Conclusion

For sake of clarity we have not considered the issue of authentication flaws detection. This goal can be
modelled by disequations between parts of messages sent and received. These disequations state that
either the sender is not the one that is expected or the value received is different from the sent one.
Note that the decidability result of [9] does not work with disequations and therefore cannot be easily
extended to authentication properties. However the procedure we have presented in this paper computes
a finite prefix set of all substitutions satisfying an execution order π. Applying the substitutions in the
prefix set on the inequalities it should be easy to deduce whether some of them are satisfiable and thus
if there exists an authentication flaw.

As future works we plan to finish the implementation of the protocol analysis procedure and tune
it by exploiting possible optimizations of the unification algorithms as they were proposed by [3]. We
shall also investigate other theories (e.g. abelian groups) to which the approach applies trying to find a
general criteria.



References

1. R. Amadio and D. Lugiez. On the reachability problem in cryptographic protocols. In Proceedings of CON-
CUR’00, volume 1877 of Lecture Notes in Computer Science, 2000.

2. A. Armando and L. Compagna. Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to
Planning. In Foundation of Computer Security & Verification Workshops, Copenhagen, Denmark, July 25-26
2002.

3. F. Baader and K. Schulz. Unification in the union of disjoint equational theories: Combining decision proce-
dures. In D. Kapur, editor, Proceedings of the 11th International Conference on Automated Deduction, volume
607 of Lecture Notes in Artificial Intelligence, pages 50–65. Springer-Verlag, 1992.

4. D. Basin, S. Mödersheim, and L. Viganò. An On-The-Fly Model-Checker for Security Protocol Analysis.
In Einar Snekkenes and Dieter Gollmann, editors, Proceedings of ESORICS’03, LNCS 2808, pages 253–270.
Springer-Verlag, 2003. Available at http://www.avispa-project.org.

5. M. Boreale. Symbolic trace analysis of cryptographic protocols. In Proceedings of the 28th International
Conference on Automata, Language and Programming: ICALP’01, LNCS 2076, pages 667–681. Springer-
Verlag, Berlin, 2001.

6. M. Boreale and M. G; Buscemi. Symbolic analysis of crypto-protocols based on modular exponentiation.
In Proceedings of the Mathematical Foundations of Computer Science 2003, 28th International Symposium
(MFCS 2003).

7. N. Borisov, I. Goldberg, and D. Wagner. Intercepting mobile communications: the insecurity of 802.11. In
Proceedings of MOBICOM 2001, pages 180–189, 2001.

8. Y. Chevalier. Résolution de problèmes d’accessibilité pour la compilation et la validation de protocoles cryp-
tographiques. PhD thesis, LORIA, Université Henri Poincaré Nancy I, Vandoeuvre-les-Nancy, France, Decem-
ber 2003.

9. Y. Chevalier, R. Kuesters, M. Rusinowitch, and M. Turuani. An NP Decision Procedure for Protocol Insecurity
with XOR. In Proceedings of the Logic In Computer Science Conference LICS’03, June 2003. Long version
available as Technical Report RR-4697, INRIA, France.

10. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. Deciding the Security of Protocols with Diffie-
Hellman Exponentiation and Products in Exponents. In Proceedings of the Foundations of Software Technol-
ogy and Theoretical Computer Science, FSTTCS’03, Lecture Notes in Computer Science. Springer, December
2003. Long version available as Christian-Albrecht Universität IFI-Report 0305, Kiel (Germany).

11. Y. Chevalier, M. Rusinowitch, M. Turuani, and L. Vigneron. A simple constraint-solving decision procedure
for protocols with exclusive or. Research Report 5224, INRIA, 2004. http://www.inria.fr/rrrt/
liste-2004.html.

12. Y. Chevalier and L. Vigneron. A Tool for Lazy Verification of Security Protocols. In Proceedings of the
Automated Software Engineering Conference (ASE’01). IEEE Computer Society Press, 2001. Long version
available as Technical Report A01-R-140, LORIA, Nancy (France).

13. Y. Chevalier and L. Vigneron. Automated Unbounded Verification of Security Protocols. In E. Brinksma and
K. Guldstrand Larsen, editors, 14th International Conference on Computer Aided Verification, CAV’2002, vol-
ume 2404 of Lecture Notes in Computer Science, pages 324–337, Copenhagen (Denmark), July 2002. Springer.

14. J. Clark and J. Jacob. A survey of authentication protocol literature: Version 1.0. Available via http://www.
cs.york.ac.uk/˜jac/papers/drareview.ps.gz, 1997.

15. H. Comon-Lundh and V. Shmatikov. Intruder Deductions, Constraint Solving and Insecurity Decision in Pres-
ence of Exclusive or. In Proceedings of the Logic In Computer Science Conference, LICS’03, pages 271–280,
2003.

16. Grit Denker, Jonathan Millen, and Harald Rueß. The CAPSL integrated protocol environment. Technical
report, SRI International, October 2000.

17. M. Fiore and M. Abadi. Computing symbolic models for verifying cryptographic protocols. In Proc.14th IEEE
Computer Security Foundations Workshop, Cape Breton, Nova Scotia, June 2001.

18. Pierre Ganty Giorgio Delzanno. Automatic verification of time sensitive cryptographic protocols. In TACAS,
LNCS, pages 342–356. Springer-Verlag, 2004.

19. Jean Goubault-Larrecq. A method for automatic cryptographic protocol verification. In Dominique Méry
Beverly Sanders, editor, Fifth International Workshop on Formal Methods for Parallel Programming: Theory
and Applications (FMPPTA 2000), number 1800 in Lecture Notes in Computer Science. Springer-Verlag, 2000.
http://www.dyade.fr/fr/actions/vip/jgl/cpv.ps.gz.



20. Y. Lakhnech L. Bozga and M. Perin. Hermes: An automatic tool for the verification of secrecy in security
protocols. In Proceedings of the Computer-Aided Verification Conference CAV’03, volume 2725 of Lecture
Notes in Computer Science, pages 219–222. Springer-Verlag, 2003.

21. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In Margaria and
Steffen, editors, Tools and Algorithms for the Construction and Analysis of Systems (TACAS), volume 1055 of
Lecture Notes in Computer Science, pages 147–166, 1996.

22. Catherine Meadows. The nrl protocol analyzer: an overview. Journal of Logic Programming, 26(2):113–131,
1996.

23. J. K. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic protocol analysis. In
ACM Conference on Computer and Communications Security, pages 166–175, 2001.

24. J.C. Mitchell, V. Shmatikov, and U. Stern. Finite-state analysis of ssl 3.0. In Seventh USENIX Security Sympo-
sium, pages 201–216, 1998.

25. L. C. Paulson. Mechanized proofs for a recursive authentication protocol. In 10th Computer Security Founda-
tions Workshop, pages 84–95. IEEE Computer Society Press, 1997.

26. Sandro Etalle Ricardo Corin. An improved constraint-based system for the verification of security protocols.
In SAS, LNCS, pages 326–341. Springer-Verlag, 2002.

27. M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions is NP-complete. In
Proc.14th IEEE Computer Security Foundations Workshop, Cape Breton, Nova Scotia, June 2001.

28. Peter Ryan, Steve Schneider, Michael Goldsmith, Gavin Lowe, and Bill Roscoe. The Modelling and Analysis
of Security Protocols. Addison Wesley, 2000.

29. P.Y.A. Ryan and S.A. Schneider. An attack on a recursive authentication protocol. Information Processing
Letters, 65, 1998.

30. V. Shmatikov. Decidable analysis of cryptographic protocols with products and modular exponentiation. In
Proceedings of thirteenth European Symposium on Programming ESOP’04, volume 2986 of Lecture Notes in
Computer Science, pages 355–369,. Springer-Verlag, 2004.


