
HAL Id: inria-00099899
https://hal.inria.fr/inria-00099899

Submitted on 26 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Making Cortically-Inspired Sensorimotor Control
Realistic for Robotics: Design of an Extended Parallel

Cellular Programming Model
Olivier Ménard, Stéphane Vialle, Hervé Frezza-Buet

To cite this version:
Olivier Ménard, Stéphane Vialle, Hervé Frezza-Buet. Making Cortically-Inspired Sensorimotor Con-
trol Realistic for Robotics: Design of an Extended Parallel Cellular Programming Model. International
Conference on Advances in Intelligent Systems - Theory and Applications - AISTA 2004, Nov 2004,
Luxembourg, 6 p. �inria-00099899�

https://hal.inria.fr/inria-00099899
https://hal.archives-ouvertes.fr


Making Cortically-Inspired Sensorimotor Control
Realistic for Robotics: Design of an Extended

Parallel Cellular Programming Model
Olivier Ménard
Loria1, Supélec2

1 Bât Loria, Campus Scientifique,
BP239, F-54506 Vandœuvre-lès-Nancy

Email: Olivier.Menard@supelec.fr

Stéphane Vialle
Supélec2

2 2, rue Edouard Belin
F-57070 Metz Cedex

Email: Stephane.Vialle@supelec.fr

Hervé Frezza-Buet
Supélec2

2 2, rue Edouard Belin
F-57070 Metz Cedex

Email: Herve.Frezza-Buet@supelec.fr

Abstract— This paper introduces a multi-layer software ar-
chitecture, that allows smart design and implementation of
complex cortical neural networks, and efficient parallel execution
on multiprocessor machines. The developer implements cortical
networks sticking to their natural fine grained formalism, without
caring about its mapping on coarse grained parallel computers.
The developer can use a set of graphical tools to easily develop
and debug the cortical systems.

Some experiments of new cortical model design on multipro-
cessor PCs are introduced, and some performance measurements
are given. This software suite is operational and currently in use
in our laboratory to control a robotic am through cortical neural
networks running on multiprocessor PCs.

I. INTRODUCTION

The artificial neural network approach in the field of Com-
puter Science supports the idea that some smart computation
can be designed on the basis of a set of fine grain processing
units, the artificial neurons, that are connected to exchange
information frequently. This kind of computational paradigms
seems to lead “naturally” to parallelism, since it is clearly
inspired from the nervous system of animals, where neurons
actually form huge interconnected networks of processing
units that all run continuously.

Of course, when brought from biology to Computer Science,
neural computation has had to be simplified, leading to many
models of computation. In most cases, these simplifications
led to some algorithms that have lost their intrinsically fine
grained and highly parallel nature. This is the case for classical
multi-layer perceptron [1], where computation of units has to
be centralized to feed the network forward successive layers,
and then to feed it back with error gradient in the reverse
order. Another famous case is the Self Organizing Maps by
Kohonen [2], where a maximum matching unit has to be
found in a sequential way. Moreover, the way such neural
network algorithms can be implemented on modern parallel
architectures is quite far from their fine grained parallelism.
Naive programmers expect to deal at the level of the neural
units, corresponding to fine grained computation with a lot
of elementary communications. But to run efficiently, modern
parallel machines need coarse grained programming, with

Generic and Parallel Neural 
Model of Computation: Grumpf

Cortical Application

Extended cellular programming
model: ParCeL-6

Low level communication library

Parallel and distributed machines

Neurons

Computing Units

Parallel Cells

Process and
Communications

Processors and 
Network

Fig. 1. Software architecture designed to easily define, implement and run
cortical systems on parallel architectures

a limited number of significant processes exchanging long
messages [3].

In this paper, a multilevel architecture is presented (see fig-
ure 1), that reconciles artificial neural networks to the intrinsic
parallelism one can expect from them and to execution on
modern and general purpose parallel computers. A high level
generic and parallel neural model of computation allows a
smart programming based on numerous computing units. A
medium level extended cellular programming model allows
to map these numerous computing units on some powerful
processors of modern parallel machines. Thus, running large
numbers of neurons becomes feasible, without any effort
from the neural network designer, allowing to address some
complex tasks as multi-joint robotic arm control, when no
model of the device is known.

The general neural network model is first discussed in next
section, with its limitations. Then, the way it is made parallel
on shared memory computers and on clusters is presented.
Last, the performance of the model is tested on a cortically
inspired architecture for sensori-motor control.

II. A GENERIC AND PARALLEL NEURAL MODEL OF

COMPUTATION

We have designed a computational model for artificial
neural networks that can be formalized as follows. This model



0

1

n

0
1

n

Link lists

Activities

grumpf::Unit

User data

A link allows to
read the activities
of a remote unit.

Fig. 2. Units and links in the grumpf formal model. A link is a
unidirectional read only access to the activities of some remote unit. For
convenience, links are put in lists.

is available [4] as a C++ library, named grumpf (graphical
utilities for the modeling of parallel functions), that provides
classes to implement a neural network in that context, and
provides graphical tools for viewing and debugging (see
figure 3). Let us mention here that the grumpf architecture
allows the design of neural models that can run on a remote
parallel machine, but that can be controlled and viewed by
TCP clients on a development PC. This property is hidden to
the programmer.

The formal model consists of a set of computational units,
connected together. Each unit allows the computation of a
fixed number of floating point values, its activities. Units can
have various number of activities in that set, but for a given
unit, the number of activities is kept constant.

Connection between units are made by the use of links. A
link is an unidirectional reading access, owned by a unit to read
activities of another unit (see fig. 2). This is closer to biology
than bidirectional links that are often used by classical neural
techniques, since real neurons provide their output on their
axon. From the axon, this output is read by synapses of the
dendritic tree of some other neurons. Last, for programming
convenience, links owned by a unit can be put in separate lists,
so that the unit can easy compute, for example, the mean of
the values got from links in list number 1, the max of some
other values got from links in list number 2, and so on.

Units in the model update their activities periodically. Up-
dating all the units once in the model defines a computation
step, and the model behavior is the result of successive
computational steps. Two updating policies are defined by the
model. The first one is synchronous updating (or full backup
update). This consists of taking all units in the model, and
compute the modification of their activities in some hidden
buffer, so that no modification really occurs at the level of each

unit. When all updates have been performed, before starting
next computational step, the stored modifications that have
been saved in the hidden buffer are applied to the unit. Then
the units actually change their activities. With this policy,
as one computation step consists of evaluating all the units
once, the order of evaluation is not meaningful. The second
kind of updating policy is the asynchronous one. At each
computational step, all the units are updated in random order,
and updating a unit immediately changes the state of its
activities.

These two kinds of updating policies are crucial in the for-
mal model, since they may lead to different results for a given
neural architecture. The former one, that is the synchronous
updating policy, is suitable for process like the famous game
of life by Conway, and is not that realistic when the grumpf
computational model is used for the design of biologically
inspired models, since neurons are not intrinsically synchro-
nized1. The latter updating policy, the asynchronous one, is
rather suitable for relaxation processes, as the one proposed
in the model of content addressable memory by Hopfield for
example [5]. Asynchronous updating policy is the one that
is actually used in the robotic application mentionned in this
paper to evaluate performances of the computational model.

To sum up, designing a neural architecture with such a for-
mal model, and in practical cases with the available grumpf
library, consists of designing first some kinds of unit, each one
having its specific updating process, then creating numerous
instances of units of these defined kinds, and last putting
connections between them. Once this set up is performed, the
cycles of computational steps have to be started. Then, the
behavior of the neural network is strictly the emerging result
of the local neural computations. With such an approach, it
is clear that implementing a multi-layer perceptron, or even a
Kohonen map is not easy, requiring computational tricks, but
the very purpose of the model is to help designers that want to
preserve the parallel and unidirectional nature of real neurons
in their models. This is the case for the model of sensori-motor
control used in this paper for illustration.

Last, let us mention that the grumpf library allows the
neural network designer to express his or her model as a fine
grained parallel system, and the efficient parallelization of that
system on modern general purpose parallel computers is not
in charge of the designer. To allow such an efficient auto-
matic binding between neural models and computer hardware
architectures, grumpf is grounded on an extended cellular
automata model (ParCeL-6) that is described now.

III. AN EXTENDED CELLULAR PROGRAMMING MODEL

As detailed in previous section, grumpf hides to the
developer the difficulty to map fine grained units on coarse
grained parallel architectures, by the use of a parallel model
of cellular automata-based computation. Some generic parallel
libraries (like P-Threads or MPI) have existed from many

1This is not in contradiction with the fact that some emerging synchronism
can be observed within a neural population, but this discussion is out of the
scope of this paper.



Parallel computer
(server)

Development
computer
(client)

Fig. 3. Highly customizable graphical clients allow the viewing and the debugging at runtime of the neural grumpf parallel process running on a computing
server

years, but they are more suitable to implement medium and
coarse grained parallel algorithms. At the opposite, some
parallel libraries of cellular automata are available to imple-
ment fine grained applications on modern parallel architectures
(Carpet[6],CDL[7]), but they appear too restrictive for our
applications. For example, our actual cortical systems need
to connect distant cells, not just neighbor ones.

So we have designed a new cellular and parallel program-
ming model, that is implemented by the ParCeL-6 library,
presented in this section.

A. A cellular network interacting with a sequential program

Previous ParCeL projects have shown a pure cellular model
is hard to program. So, a ParCeL-6 program is composed
of a sequential and classical program (the main program) that
initializes the management of a cellular network, creates at
less a part of this network, calls some cellular net routines
(usually in a computation loop), and finally removes this
cellular network and its data structures.

At the beginning of a ParCeL-6 program no cell exist.
The main program has to create the first cells before to run
the first cellular computing cycle. Then new cells can be
created or some cells can be removed by already existing cells
or from the main program at next inter-cycles. But in many
applications all the cells are created from the main program
before the first cellular computing cycle starts and are never
removed. When a cell is created a host processor is pointed
out (with respect to statistic load balancing), and a unique
registration number is affected to this cell. This number allows
to identify the cell in all the cellular network, and the cell is
created directly on its host processor and will stay on it.

B. A cyclic cell activation

A ParCeL-6 cellular network has a cyclic running: the
main program frequently calls a routine that runs one cellular
computing cycle, then each cell is activated only once.

Inside a cell computing cycle, all cells are conceptually
activated in parallel, and the cycle ends when the longest
cell finishes its computation. However, when implemented on
modern and general purpose computers and processors, many
cells are managed per processor and cells on one processor
will be run sequentially. To clarify this situation, ParCeL-6
programming model specifies that:

• no assumption can be done on the order of cell executions
on a processor,

• it is possible for the application programmer to change
this cell execution order, to check if it impacts on the
result of its program, but he or she can not specify the
exact order of cell executions.

C. Cell composition

Each ParCeL-6 cell is a kind of virtual light-process, that
has a private memory space. It is composed of:

• some private variables, that can be scalar variables, or
arrays, or dynamic and extensible data structures,

• some pointers on executable code (5 functions, see fur-
ther) to run when the cell is activated,

• some parameters (read only) set by the main program
when the cell is created, and that can be updated at each
inter-cycles by the main program,

• an output: an array of ”double”, with a size fixed at the
cell creation,

• some input channels (some private variables with a spe-
cific data type), that can be created dynamically, and that



need to be explicitly connected to the output of other
cells,

• a registration number, fixed at the cell creation, that
identifies the cell in the entire cell network.

D. Functions controlling the cell behavior

The behavior of a cell is defined by three routines: one
for its first activation cycle (init function), one for its last
activation cycle (term function), and one for all its other
activation cycles (iter function). All these functions are fixed
at the cell creation. Usually, the init cell function is used
to allocate and initialize some cell private variables, and to
connect the input channels of the cell to some cell outputs. The
term function is basically used to free some private variables,
disconnect the input channels, and sometimes to save some
data on disk.

Two other functions allows a cell to react on death or birth
of other cells, at the end of each computation cycle. These
functionalities concern highly dynamic cellular systems and
have not been used yet.

E. Request commands for cellular network management

Some commands exist to manage the cell network topology:
to create and kill cells, and to connect (and disconnect) the
input channel of a cell to the output of another cell. These
commands are requests and their execution is split into two
parts: a first small part that ends very quickly and mainly
stores a definition of the job to do, and a second part that
really does the job at the end of the cellular computing
cycle. This second part is usually time consuming and needs
some communications between processors. Finally, at the next
computing cycle all requests have been entirely executed and
the cellular network has been updated.

If some requests are impossible to execute, such as kill a
cell already killed, or connect to a dead cell, then the request
fails, but in any cases the cell network status remains coherent.
For example, if several requests are emitted to kill the same
cell, its term function is executed only once.

F. Cell communications

Communications between the sequential main program and
the cellular network happen at the beginning and at the end
of any cellular computation cycle. When the cellular network
is inactive, the main program can send new parameters to the
cells: global parameters for all cells (like camera images that
would be the inputs of a neural network) or a set of specific
parameters (different parameters for each cell). Moreover, at
any inter-cycle the main program is able to collect individual
results from each cell in a global result data structure.

Communications between cells go through communication
channels that have to be explicitly established in the cell be-
havior functions. These connections are unidirectional and can
evolve dynamically during the ParCeL-6 program execution:
new input channels can be created and connected, or existing
ones can be re-connected to other cell outputs. To connect
one of its input to the output of another cell, a reader cell has

just to know the registration number of the writer cell. This
registration number is passed to the reader cell into one of its
parameters (usually by the main program).

Finally, the main program, or some ”mother cells”, create
a lot of cells, send cell registration numbers to each cell into
its parameters, and run the cell computation. Then each cell
establishes its own connections during its init step, and starts
its computation. This cell network construction has appeared
a comfortable solution during our past experiments with a
previous ParCeL project [8].

G. Inter-cell communication protocols

It exists three kinds of cell output in ParCeL-6 model
(direct, buffered and hybrid outputs), and an explicit command
to refresh an input channel (p6refresh(...)). This leads
to three different communication protocols between cells.

1) Direct communications: An input channel connected to
a direct cell output will update its value immediately after a
refresh command, but at most one time per cycle. Any other
refresh command on the same input channel during the same
cycle will be ignored, but other input channels of this cell, or
input channels of other cells can be refreshed. This mechanism
ensure a direct access to the connected output but only one
time per cycle and per input channel. Note that if several input
channels are connected to the same output, each input channel
will accept a refresh command at the current cycle, and then
different input channels can read different values.

The direct outputs and their refreshing mode lead to a
kind of asynchronous running: cells are activated in parallel,
they exchange data during the computation cycles, and the
exchanged values depend on the different computation times
they need to update their outputs. So, the program result can
change with the number of processors and with the parallel
architecture used.

2) Buffered communications: An input channel connected
to a buffered cell output will be updated automatically but only
between cellular computing cycles (at inter-cycles). Explicit
refresh commands will be ignored. So, during a computing
cycle all input channel values are fixed, and all cells connected
to the same cell output read exactly the same value. So,
the order of the cell computations has no impact on the
communications, and the program execution becomes totally
determinist, not depending on the number of processors.

The buffered outputs and their refreshing mode lead to a
kind of synchronous running (full backup update).

3) Hybrid communications: An input channel connected
to an hybrid cell output will have an intermediate refreshing
mechanism: Not so on demand than a connection to a direct
output, not so rare than a connection to a buffered output.

Hybrid cell outputs lead to a compromise between asyn-
chronous and synchronous executions. Some experiments on
relaxation problems and on cortical systems have shown
the asynchronous mode leads to fast convergence of cel-
lular networks (less computing cycles are needed), but to
long execution times because on demand refresh generate
unplanned communications that disturb the computations. At



PE-i PE-j

writer cell
first reader cellfirst refresh command

output value propagation 

other reader cells
ignored refresh commands

and local copy reading 

local copy

Shared memory

PE PE PE
Multiprocessor machine

Fig. 4. Example of hybrid cell communications mechanism of ParCeL-6.1 on shared memory parallel machine. Several cells on a same processor read
the hybrid output channel of a cell located on another processor, and access to the same value: a local copy get by the first refresh command.

 0
 20
 40
 60
 80

 100
 120
 140

1 2 3 4

T
ot

al
 e

xe
c.

 ti
m

e 
(s

)

Number of processors

direct
hybrid

buffered

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 3 4
Sp

ee
du

p(
P)

Number of processors

direct
hybrid

buffered

Fig. 5. Execution time and speedup vs sequential execution in direct mode, of a cortical control application on a 4-processor PC

the opposite, synchronous mode leads to slower convergence
(it needs more computing cycles) but runs each cycle faster.
Hybrid communication mode aims to converge fast and run
fast. But details of this communication mode are not specified
and depend on the architecture used (shared memory multi-
processors, distributed memory clusters, grids, ...). We have
currently designed two hybrid modes, one for shared memory
machines and one for clusters (see further).

IV. TWO DERIVED ParCeL-6 MODELS AND

IMPLEMENTATIONS

A. ParCeL-6.1 model for shared memory architectures

Classical shared memory architectures (SMP) and some
hardware distributed shared memory architectures (DSM)
support efficiently the memory sharing paradigm, and al-
low to implement efficiently all features of ParCeL-6
model. ParCeL-6.1 is a derived programming model of
ParCeL-6 designed for these architectures, and respects all
features of ParCeL-6 model.
ParCeL-6.1 defines an hybrid cellular communication

mode that leads to less communications between processors
but still includes some on demand refresh of input channels.
An input channel value is updated only after an explicit refresh
command (like in direct mode), but only one time per cycle
and per processor (not per cell). When several input channels
located on a same processor are connected to a same hybrid
cell output, the first refresh command executed on one of these
input channels will update all these input channels for the
current cycle (the next refresh commands will be ignored), see

figure 4. Usually any cell asks to refresh its input channels
before to read them, so all cells of a processor that are
connected to a same hybrid output channel will read the same
value (according to the first refresh command executed). But
different processors will execute their refresh commands at
different time, and can get different values of a same output
channel.

With a medium number of processors the different cells
connected to a same hybrid cell output are statistically spread
on different processors, and each processor hosts several of
these cells. So, on a large number of processors this hybrid
communication model still leads to an asynchronous running,
but accesses less often the cell outputs than the direct mode,
and less disturbs the computations.

B. ParCeL-6.2 model for distributed memory architectures

Distributed memory architectures, like clusters and grid, are
interesting because they can scale until hundreds or thousands
of processors. But usually they do not support a memory
sharing paradigm, and can not run efficiently all features of
ParCeL-6 programming model. For example, the direct cell
communication mode would not reach good performances.
So, a new derived programming model has been defined:
ParCeL-6.2.

Hybrid communication mode is a critical feature of
ParCeL-6.2, and is different of the hybrid mode of
ParCeL-6.1 in order to be adapted to distributed memory
architectures. A prototype of ParCeL-6.2 is running on
cluster since July 2004. But its hybrid communication mode



is still under development, the current performances are not
satisfying.

V. EXPERIMENTS AND PERFORMANCES

The ability of the ParCeL-6 and grumpf suite to be used
in practical cases has been tested on a robotic application.
The application consists of controlling an articulated robotic
arm so that the hand reaches visual targets. The point on
this experiment is that it relies on an original bijama
model of cortically-inspired computation. Applying bijama
to such realistic problems [9] leads to the definition of many
elaborated computational cells. The smart and easy design
of such a model is provided by the C++ classe of grumpf
librairies and assorted graphical tools, but the feasibility of the
neural approach is ensured by the automatic parallelism that
is obtained from ParCeL-6.

A technical specificity of ParCeL-6.1 is to be imple-
mented and optimized to run efficiently on cheap multipro-
cessor PCs. These machines have a poor memory sharing
mechanism, that need optimized parallel implementations to
get performances on irregular computations. Figures 5 shows
some performance measurements of bijama cortical appli-
cation run on a 4-processor PC (4xPIII-Xeon-700MHz, 2MB
cache memory/processor). Execution time decreases for any
kind of cell output used, and parallel runs always speedup.
As expected direct mode is the slowest mode and buffered
mode is the fastest, but the interesting result is the hybrid
mode runs as fast as buffered mode while communications
remain partially on demand. Moreover, when compared to the
sequential run of the direct mode, the buffered and hybrid
modes exhibit greater speedup than direct one, and speedup
difference seems to increase. Buffered and hybrid modes run
faster and scale better than direct mode.

But the very gain is that, whereas buffered mode changes
the network behavior from the correct direct mode, hybrid
mode improves execution speed, while keeping properties of
the direct mode. The influence of the updating mode has been
evaluated on the CNFT algorithm described in [10], and in our
cortical model [9]. This implements a relaxation mechanism
in a bidimensional neural fields, leading to a competition from
on-center off-surround connexions within the neurons. The
result, in direct mode, is a bubble of activation, as predicted by
the theory. In buffered mode, the neural network goes into an
infinite oscillating state and is unable to stabilize on bubbles.
Using hybrid updating mode doesn’t prevent from oscillating
states, at least for few processors. In our experiments, this
effect disappears when using eight ParCeL-6 process (2 per
real processor of a 4-processor PC), since in that configuration
the dynamics of bubbles is similar to the one predicted by the
theory, as with direct mode.

VI. CONCLUSION AND PERSPECTIVES

Our multi-layer architecture for smart design and efficient
parallel execution of cortical neural networks is operational on
multiprocessor PCs. It is currently in use in our laboratory to

design new cortical models and to control a robotic arm from
a 2-Opteron and a 4-PentiumIV machines.

The graphical interface of grumpf is still under develop-
ment, and new functionalities will appear soon to improve
cortical network design and debug.

The cluster version of ParCeL-6 is developed in the
framework of the Grid-eXplorer project (French ACI project),
in collaboration with researchers from Loria laboratory. It uses
the SSCRAP[11] communication library developed at Loria
laboratory, and some experiments on a large grid of several
hundred machines is planned for 2005.

These perspectives allow to consider larger sets of neurones
has being conceivable. This meets the need for more elabo-
rated cortical architectures, with many more neural modules,
for realistic robotic applications.

ACKNOWLEDGMENT

This research is supported by the Mirrorbot and Robea
projects, and by the Region-Lorraine (France). Authors want
to thank Jacques Weidig and Anca Ghitescu for grumpf
developments, Laurent Casse and Radu Kopetz for ParCeL-6
implementation and optimization, and Jens Gustedt and Mo-
hamed Essaidi for preliminary discussion about ParCeL-6.2
programming model.

REFERENCES

[1] F. Rosenblatt, “The perceptron: a probabilistic model for information
storage and organization in the brain,” in Neurocomputing: Fundations
of Research (1989), J. A. Anderson and E. Rosenfeld, Eds. The MIT
Press, 1958, pp. 89–92.

[2] T. Kohonen, Self-Organization and Associative Memory, ser. Springer
Series in Information Sciences. Springer-Verlag, 1989, vol. 8.

[3] Y. Boniface, F. Alexandre, and S. Vialle, “A bridge between two
paradigms for parallelism: Neural networks and general purpose mimd
computers,” IJCNN-99: International Join Conference on Neural Net-
works, July 1999, washington DC, USA.

[4] Http://www.metz.supelec.fr/˜ersidp/Software/Grumpf/Root.html.
[5] J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the theory of

neural computation. Addison Wesley, 1991.
[6] D. Talia, “Solving problems on parallel computers by cellular program-

ming,” Proc. of the 3rd Int. Workshop on Bio-Inspired Solutions to
Parallel Processing Problems BioSP3-IPDPS, LNCS, Springer-Verlag,
pp. 595–603, May 2000, cancun, Mexico.

[7] K.-P. V. S. W. C. Hochberger, R. Hoffamnn, “Cellular processing
environment,” PARELEC98, 1998, bialystok, Poland.

[8] Y. Boniface, F. Alexandre, and S. Vialle, “A library to implement neural
networks on MIMD machines.” LNCS vol. 1685, Proceedings of Euro-
Par’99, pp. 935–938, 1999, Toulouse, France.

[9] O. Ménard and H. Frezza-Buet, “Rewarded multi-modal neuronal self-
organization: Example of the arm reaching movement,” in International
Conference on Advances in Intelligent Systems - Theory and Applica-
tions, 2004, Luxembourg.

[10] J. G. Taylor, “Neural networks for consciousness,” vol. 10, no. 7, pp.
1207–1225, 1997.

[11] M. Essadi, I. G. Lassous, and J. Gustedt, “Sscrap: Soft synchronized
computing in rounds for adequate parallelization,” INRIA, Research
report RR-5184, May 2004.


