N

N
N

HAL

open science

Instrumentation of the Jxta peer-to-peer framework
Rizi Mohanty

» To cite this version:

Rizi Mohanty. Instrumentation of the Jxta peer-to-peer framework. [Internship report] A04-R-471 ||

mohantyO4a, 2004, 45 p. inria-00099928

HAL Id: inria-00099928
https://hal.inria.fr /inria-00099928
Submitted on 26 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.inria.fr/inria-00099928
https://hal.archives-ouvertes.fr

Instrumentation of the Jxta peer-to-peer framework

Summer Training Report (May’03 - July’03)

Submitted in partial fulfillment of the requirements
for the degree of

Bachelor of Technology

by

Rizi Mohanty
Roll No: 01CS1036

under the guidance of

Professor Olivier Festor

Department of Computer Science and Engineering
Indian Institute of Technology
Kharagpur
November 30, 2004

Abstract

Nowadays, Peer-to-Peer (P2P) networks and services are increasingly present in the networking world.
Thus for this reason, management of such networks becomes important. In this summer training
report, we will discuss our model for the management of JXTA which is a generic platform for the
development of P2P applications. Our model is based on the generic management information model
[4] already developed and adds new classes in order to instantiate the JXTA model absolutely. Then
following the theoretical modeling is the part concerning the implementation of the model. This is to
be achieved by deploying agents on each peer and then finally collecting the information data from
each agent which would be done by a manager.

Acknowledgement

November 30, 2004

I would like to thank my guide, Prof. Olivier Festor for the consistent directions he has fed into
my work. I am also thankful to Guillaume Doyen for all the help that he gave me. His constant
motivation and encouragement proved to be extremely useful.

Rizi Mohanty
01CS1036

Contents

1 Introduction
2 Review of Literature
2.1 CIM . . . e e e
2.2 The P2P Extension e
2.3 Instantiation on Chord
2.4 SUMMArYo e e e e e e e e e
3 Project JXTA
3.1 JIXTA e
3.2 JXTA Elements e e
3.2.1 JXTA Peer e
3.2.2 JXTA PeerGroups o i v i e e
3.2.3 Network Transport e
3.2.4 ServiCes e e
3.2.5 Advertisements L.
3.2.6 JXTA Identifiers e
3.3 JXTA Protocols e
3.3.1 Core Specification Protocols L.
3.3.2 Standard Service Protocols
3.4 JXTA Monitor e
3.4.1 Overall Architecture
3.4.2 Endpoint Service Meteringo
3.4.3 Rendezvous Service Metering L o
3.4.4 Resolver Service Metering L L
3.4.5 Transport Metering
4 JXTA modeling
4.1 JXTA peer, JXTA PeerGroup and virtual topology model
4.2 JXTA communication model
4.3 JXTA servicesmodel
4.3.1 JXTA transport service model
4.3.2 JXTA endpoint service model o
4.3.3 JXTA resolver service o i it e e
4.3.4 JXTA Rendezvous Service v v i it it e

NeliNoN«)

10
11

13
13
13
13
14
14
15
16
16
16
16
17
17
18
19
19
20
20

5 Implementation of the JXTA management information model 35

5.1 Deployment of an Agent 35
5.1.1 JMX - Java Management Extensions 35
5.1.2 Agent Implementation 36

5.2 Prototype implementation Lo Lo Lo 39

5.3 SUmMmary e e e e e e e e 41

6 Conclusion 43

List of Figures

21

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

5.1

An overview of the CIM extension for P2P networks and services 10
The Overall Architecture of the Monitor Project 18
Endpoint Service Monitor Architecture 19
Rendezvous Service Monitor Architecture 19
Resolver Service Monitor Architecture 20
Transport Service Monitor Architecture 21
The peer and PeerGroup model 24
The communication model e 25
The service handler model 26
The transport service model 27
The detailed transport service classes o 28
The endpoint service model 29
The Detailed Endpoint Service Classes, 30
The resolver service model 30
The detailed resolver service classes e 31
The rendezvous service model e 32
The detailed rendezvous service classes 32
The dependency relationships 33
The composition-aggregation relationships 34
RMI scheme for manager and client 40

Chapter 1

Introduction

The term Peer-to-Peer refers to a class of systems and applications that employ distributed resources
to perform a critical function in a decentralized manner [4]. In other words P2P networking is built
on a distributed model where peers are software entities which play the role of both client and server.
The resources encompass computing power, data (storage and content), network bandwidth, and pres-
ence (computers, humans and other resources). The critical function can be distributed computing,
data/content sharing, communication and collaboration, or platform services. Typical P2P systems
reside on the edge of the Internet or in ad-hoc networks. Today, the most famous application domain
for P2P is file sharing with applications like Napster, Kaaza among others. However, we also have
applications covering many additional domains of the P2P model like distributed computing, instant
messaging etc.

The P2P model enables valuable service usage by aggregating and orchestrating individual shared
resources [4]. The use of existing infrastructures that belong to different owners reduces the costs
of maintenance and ownership. The decentralized topology increases fault tolerance by suppressing
any central point of failure, and improves both load balancing and scalability. Also, the distributed
nature of algorithms and some embedded mechanisms allow participating peers to keep a great level
of anonymity.

Due to the growth of the web in terms of the number of devices and content, P2P is becoming
increasingly popular. The existing applications are already dividing the whole P2P domain into various
sub-domains like file sharing, instant messaging and so on. Even though all these applications perform
different tasks, they all share many of the same properties, such as discovery of peers, resources, and
content transfer. Currently, application development is redundant, with developers solving the same
problems and duplicating similar infrastructure implementations. Most applications are specific to a
single platform and are unable to communicate and share content with other applications. In order to
overcome these problems JXTA! provides a generic platform with the basic functionalities necessary
for a P2P network. JXTA is a set of open, generalized P2P protocols that allow any connected device
on the network to communicate and collaborate as peers. JXTA seeks to overcome the potential
shortcomings in many of the existing P2P systems:

Interoperability: the JXTA technology is designed to enable peers providing various P2P services
to locate each other and communicate with each other.

Platform Independence: the JXTA technology is designed to be independent of programming

Lwww.jxta.org

languages, transport protocols, and deployment platforms.
Ubiquity: the JXTA technology is designed to be accessible by any device with a digital heartbeat.

While some P2P applications use built-in incentives as a minimal self management feature, ad-
vanced management services are required for enterprise oriented P2P environments. The generic P2P
management information model [4] already existing is basically an extension of CIM? [1, 6] classes
and its upon this generic model that a information model dedicated for a P2P application can be
developed. CIM has been used for the design of the model as it uses the object oriented model and
presents a large set of classes covering several domains of computing that can be easily reused and
extended.

JXTA, in order to be used more widely and also in enterprise domains, needs to provide perfor-
mance service level agreements and some way to manage the P2P domain. Without any management
of the JXTA P2P network, there is no way to evaluation in a fine grained way the performance of
the peers and the network. In this report we present the information model dedicated to JXTA. This
model is a sepcialization of the generic management information model [4]. With the theoretical model
in place the next step that is described is the model implementation and integration along with the
JXTA platform. The implementation was done using JMX? agents. These agents are to be used by
the manager to obtain the values of management data from the client peers.

This report contains the description of the information model developed and also implementation
of the agents on each peer. Finally the report discusses a very small managing application that can
be used to manage just a single peer being run on the JXTA platform with the manager also being
a JXTA peer. This small application defines the prototype which when extended would enable all
the peers in a domain to be managed. So the information model and management architecture part
of the management model are completed and discussed here. The prototype gives an idea about the
protocol being used.

2Common Information Model

3Java Management eXtension

Chapter 2

Review of Literature

The management model developed for JXTA is based on the generic management information model
defined in [4]. This in turn is derived from the CIM classes. In this chapter, the CIM classes of this
model and its extension are discussed with a small section on the Chord instantiation.

2.1 CIM

The DMTF Common Information Model [1, 6] is an approach to the management of systems and
networks that applies the basic structuring and conceptualization techniques of the object-oriented
paradigm. The approach uses a uniform modeling formalism that, together with the basic directory
of object-oriented constructs, supports the cooperative development of an object-oriented schema
across multiple organizations. A management schema is provided to establish a common conceptual
framework at the level of a fundamental typology both with respect to classification and association,
and with respect to a basic set of classes intended to establish a common framework for a description
of the managed environment. The management schema is divided into these conceptual layers:

Core Model: Its an information model [7] that captures notions that are applicable to all areas of
management.

Common Model: Its an information model [7] that captures notions that are common to particular
management areas, but independent of a particular technology or implementation. The common
areas are systems, applications, databases, networks and devices. The information model is
specific enough to provide a basis for the development of management applications. This model
provides a set of base classes for extension into the area of technology-specific schemes. The core
and common models together are expressed as the CIM schema.

Extension Schemes: represent technology-specific extensions of the Common model. These schemes
are specific to environments, such as operating systems.

2.2 The P2P Extension

This section presents the CIM extension for P2P networks and services [4] and an overview of the
design is represented in Figure 2.1. The CIM extension for the P2P networks and services aims at
providing a general management information model, that is topology-oriented, for such a type of
application. This way, it allows any P2P application to subclass it in order to provide dedicated

Resources Peer and Community Communication

[-PeerSharesResources - —— PeerUsesPipe —

(See P2P Model (Peer (See P2P Model (Peer and (See P2P Model (P2P
resource)) Community)) Communication))

ParticipatingPeers

ServicesUsesResources

P2P Services

(See P2P Model (P2P
Services))

A

Routing and Forwarding

(See P2P Model (Routing
and Forwarding))

Figure 2.1: An overview of the CIM extension for P2P networks and services

classes that will represent the specific application features best. Instances of these classes will provide
a distributed MIB! that a management application will use to administrate the application.
The Model is composed of five main parts that are:

The peer and community model: models the notion of peers, community, virtual topology and
links this abstraction to the current Core classes.

The communication model provides information about the way peers communicate in terms of
protocols and communication medias.

The resource model: informs about the resources a peer shares with another in order to contribute
to the smooth running of a service.

The service model: represents the services that can be provided and consumed in the context of
P2P networking.

The routing model: models the routing and forwarding services and the routing tables hosted by
peers.

2.3 Instantiation on Chord

The Chord framework is a P2P infrastructure for resource discovery. Its core principles confer good
and stable properties to it, in terms of average path length, load balance, information consistency and
resources distribution. Nonetheless, there is a need to monitor the performance of Chord systems on
a real network. This section gives a very brief idea about the P2P information model [5], dedicated
for the Chord framework.

Chord lies on a ring topology, a chord knows its predecessor and its successor. A consistent hash
method generates a key for each node from its IP address. Then, each node is located in a ring in
order to arrange keys in an increasing order. Each chord node is responsible for a particular range
of keys. The metrics defined in the context to evaluate the performance of the chord network are
incorporated into the model. The metrics are values like the total number of nodes, number of keys

'Management Information Base

in the ring and many more like that.

The management model for chord is performance-oriented and lies on the generic model for P2P
networks and services discussed in the previous section. The models are divided into the following
categories:

e The Chord Peer and Community Model
e The Chord Resources Model
e The Chord Service Model

e The Chord Routing Table Model

Each of these model consists of classes that are dedicated for Chord but in turn are subclasses of
the generic framework. The metrics are added in the proper classes so that the instantiation of these
classes would correctly represent the Chord topology. Thus these models all taken together enable the
evaluation of the global health state of a Chord community and to act consequently.

The goal of this instantiation on Chord are as follows:
e This instantiation proves that the model is valid by applying it on a real infrastructure.

e [t provides an instrumentation model for Chord. There exist theoretical models, simulations but
no real models that allow the performance evaluation of Chord in a real deployment.

2.4 Summary

In this chapter, we discussed the background that would be necessary in order to proceed further with
the actual work discussed in this report. The section on CIM presents the core and common model
in brief. The next section gives an overview of the generic management information model on which
the Chord instantiation is done. Finally the instantiation on Chord proves that the model is not just
correct on pen and paper but serves its purpose in a real infrastructure.

Chapter 3

Project JXTA

Even though most of the P2P solutions overlap in some shape or form, the current P2P applications
tend to use protocols that are proprietary and incompatible in nature, reducing the advantage offered
by gathering devices into P2P networks [2]. Each network forms a closed community, completely
independent of the other networks and incapable of leveraging their services. To evolve P2P into a
mature solution platform, developers need to create applications on a solid, well-defined base. JXTA
provides the solution in form of a platform to develop P2P applications. JXTA is simply a set of
protocol specifications, which is what makes it powerful. JXTA spares the developers of properly
designing protocols to handle the core functions of P2P communication.

JXTA as a platform needs monitoring in order to find out about the performance of the various
services under different network conditions. The theoretical model of JXTA does not provide any
performance guarantees since it is only a platform on top of which the P2P applications are to be
developed. Due to this reason it becomes even more important to monitor the services and the
implementation of the JXTA protocols.

3.1 JXTA

JXTA protocols establish a virtual network overlay on top of the Internet and non-IP networks, allow-
ing peers to directly interact and self-organize independent of their network connectivity [10]. These
protocols define the minimum required network semantic for peers to form and join a virtual network.
JXTA acts as a generic network substrate usable to build a wide variety of P2P networks. JXTA is
also designed to be independent of programming languages, system platforms, service definitions and
network protocols.

3.2 JXTA Elements

All P2P networks build upon fundamental elements and so does JXTA. The various core elements of
JXTA are discussed in brief in this section.

3.2.1 JXTA Peer

A JXTA peer is a node on a P2P network that forms the fundamental processing unit of any P2P
solution. JXTA defines the existence of three possible types of peers in any P2P network:

e Simple Peers

13

e Rendezvous Peers
e Router Peers

Also each peer on the network can act as one or more types of peer, with each type defining a
different set of responsibilities for the peer to the P2P network as a whole.

Simple Peers

A simple peer or edge peer is designed to serve a single end user, allowing the user to provide services
from his device and consuming services provided by other peers on the network. Because of their
limited network accessibility, simple peers have the least amount of responsibility in any P2P network
and are not responsible for handling communication on behalf of other peers.

Rendezvous Peers

In JXTA, a rendezvous peer provides other peers with a network location in order to discover other
peers and peer resources. A rendezvous peer can improve its performance by caching information and
also by forwarding the discovery requests to other rendezvous peers. In JXTA 2.0 implementation,
rendezvous peers form a super peer network. Thus it introduces the concept of a RPV ! to propagate
resolver queries and SRDI? to index advertisements on the RPV for efficient advertisement query
lookups. Thus the rendezvous super peers organize themselves into a loosely-coupled network. The
above idea is based on the concept of DHT?3.

Router Peers

A router peer provides a mechanism for peers to communicate with other peers separated from the
network by firewall or NAT* equipment. A router peer provides a go-between that peers outside the
firewall use to communicate with a peer behind the firewall and vice-versa. Routing a message through
multiple router peers might be necessary to allow two peers to communicate by using the router peers
to translate between two different and incompatible network transports.

3.2.2 JXTA PeerGroups

In JXTA since all the peers use the same protocols, the concept of peergroup becomes necessary to
subdivide the network space. Hence in JXTA a peergroup is defined as a set of peers, formed in order
to serve a common interest or goal dictated by the peers involved. Peergroups can provide services
to their member peers that aren’t accessible by other peers in the P2P network. Each peergroup is
uniquely identified by a unique peergroup ID. A peer can belong to multiple peergroups at the same
time but at boot time, every peer joins the NetPeerGroup. The NetPeergroup acts as a root peergroup
every peer initially belongs.

3.2.3 Network Transport

In order to exchange data, peers must employ some kind of mechanism to handle the transmission of
data over the network. This layer, called the network transport, is responsible for all aspects of data

'Rendezvous Peer View

2Shared Resource Distributed Index
3Distributed Hash Table

4Network Address Translation

transmission. The concept of network transport can be divided into three parts that are discussed in
this section.

EndPoints

Endpoints are the initial source or final destination of any piece of data being transmitted over the
network. An endpoint corresponds to the network interface used to send and receive data. This helps
the peer to send and receive data independent of the type of network transport being employed. A
peer endpoint is associated with each peer encapsulating all available physical network addresses for
the peer.

Pipes

Pipes are virtual communication channels used to send and receive messages between services and
applications. Pipes provide a virtual abstraction over the peer endpoints to provide the illusion
of virtual in and out mailboxes that are not physically bound to a specific peer location. Pipes can
connect to one or more peer endpoints. JXTA core pipes provide communication in only one direction.
The pipe ends are referred as the input pipe for receiving data and the output pipe for sending data.
Pipes are uniquely identified in pipe advertisements by a pipe ID. JXTA core pipes offer two modes
of communication:

A point-to-point pipe connects exactly two pipe ends with a unidirectional and asynchronous chan-
nel, an input pipe end that receives messages sent from the output end of the pipe. It can be
secure if desired.

A propagate pipe connects one output pipe to multiple input pipes. Message via this pipe is sent
to all listening input pipe ends in the current peergroup context.

Messages

Messages are the basic unit of data exchange between the peers and peers interact by sending and
receiving messages. A message is an ordered sequence of named and typed contents called elements.
In short we can define them to be containers for data to be transmitted over a pipe from one endpoint
to another.

3.2.4 Services

Services provide functionality that peers can engage to perform useful work on a remote peer [11].
This work might include transferring a file, providing status information, performing a calculation or
anything else. JXTA services can be broadly divided into two categories:

Peer Services: These services are the functionality offered by a particular peer on the network to
other peers. This service is available only when the peer is connected to the network.

Peergroup Services: These services are the functionality offered by a peergroup to member peers
of the group. The functionality could be provided by several members of the peergroup and
hence as long as one of these members is connected, the service is available.

Most of the functionality required to create and maintain a P2P network, such as the underlying
protocols to discover peers, could be considered as services. These core services provide the basic P2P
foundation used to build other, more complex services.

3.2.5 Advertisements

All network resources in the JXTA network, such as peers, peergroups, pipes and services are rep-
resented by advertisements. Advertisements are language neutral metadata structures resource de-
scriptors represented as XML documents. JXTA standardizes advertisements for the following core
JXTA resource: peer, peergroup, pipe, service, metering, route, content, rendezvous, peer endpoint,
transport.

3.2.6 JXTA Identifiers

Most items in JXTA P2P network need some piece of information that uniquely identifies them on
the network. This is turn leads to the JXTA addressing model and JXTA IDs. JXTA provides IDs
for the following: peers, peergroups, pipes and contents. IDs make the resources independent of their
physical locations.

3.3 JXTA Protocols

Every data exchange relies on a protocol to dictate what data is sent and in what order it is sent.
Its a way of structuring the exchange information between two or more parties using rules that have
previously been agreed upon. The JXTA protocols are six in number divided into two categories:

e Core Specification Protocols

e Standard Service Protocols

3.3.1 Core Specification Protocols

The functionality of all implementations is defined by the JXTA Core Specification protocols. These
are essential for all implementations of JXTA and cannot be done without. The Core Specification
consists of two protocols.

Endpoint Routing Protocol (ERP)

ERP is the protocol by which a peer can discover a route ® used to send a message to another peer.
If a peer A wants to send a message to peer C, and there is no direct route between A and C, then
peer A needs to find the intermediary peer(s) to route the message to C. So ERP is used to manage
and determine the routing information.

Peer Resolver Protocol (PRP)

PRP is the protocol by which a peer can send a generic resolver query to one or more peers, and
receive responses for the query. The PRP protocol permits the dissemination of generic queries to one
or more handlers within the group and to match them with responses. Each query is addressed to a
specific handler name.

Ssequence of hops

3.3.2 Standard Service Protocols

The JXTA Core Specification defines the required components and behaviors for all JXTA implemen-
tations. In order to create a complete JXTA implementation there are some additional components
which should be provided. The JXTA Standard services are optional JXTA protocols and behav-
iors. Implementing these services will provide greater interoperability with other implementations
and broader functionality. The Standard Services protocols specification defines four protocols:

Rendezvous Protocol (RVP)

RVP is the protocol by which peers can subscribe or be a subscriber to a propagation service. Within
a peergroup, peers can be rendezvous peers, or peers that are listening to rendezvous peers. RVP
allows messages to be sent to all of the listeners of the service. RVP is used by the Peer Resolver
Protocol in order to propagate messages.

Peer Discovery Protocol (PDP)

PDP is the protocol by which a peer publishes its own advertisements, and discovers advertisements®
from other peers. PDP uses the Peer Resolver Protocol for sending and propagating discovery requests.

Peer Information Protocol (PIP)

PIP is the protocol by which a peer may obtain status information about other peers, such as state,
uptime, traffic load etc. PIP uses the Peer Resolver Protocol for sending and propagating peer
information requests.

Pipe Binding Protocol (PBP)

PBP is the protocol by which a peer can establish a virtual communication channel or pipe between
one or more peers. The PBP is used by a peer to bind the two or more pipe ends” of the connection
to a physical peer endpoint. PBP also uses Peer Resolver Protocol for sending and propagating pipe
binding requests.

3.4 JXTA Monitor

JXTA is an extensible framework of services available to a peer within a peergroup. Many of these
services will cause loads on the underlying systems. For standard JXTA services such a endpoint,
transport, rendezvous etc., the service load will correlate to overall memory utilization, overall thread
utilization and network connections and bandwidth. Also there is a need to determine the effects and
efficiencies of new service implementations for inclusion in peergroups. Thus the JXTA Metering and
Monitoring Project [3] creates and provides metrics for core JXTA services. The project also address
the following and many more issues:

e Increased productivity of JXTA Core development
e Provide metrics to tune and configure the JXTA networks

e Provide data to measure and prove scalability of JXTA

6peer, peergroup, pipe and content advertisements
"Input and output pipe ends

The goal of the JXTA MMP? is to provide a simple, dynamic and extensible framework for gath-
ering and reporting metrics about JXTA services running within peergroups. The types of metrics
maintained for a service will be defined per service implementation. The PIP is a conduit for obtaining
these metrics from remote peers. MMP includes the JXTA Monitor, which is a GUI for collecting and
rendering metered data. This provides a framework for displaying metrics in a tabular or graphical
manner.

3.4.1 Owverall Architecture

The MMP consists of an architecture that allows aggregation and dissemination of metrics from
JXTA services or any other type of monitor [3]. For services that provide metrics, publication of the
metric format will become part of the service definitions. Metrics for all the standard services are
already defined and will be discussed in the following part. A monitor is available for every local
peer in a peergroup that provides an API for obtaining either runtime metric totals for one or more
JXTA service or for registering listeners that will receive periodic updates of metric data. The peer
information service needs to be extended to provide mechanisms to request metrics from remote peers.

\\Monitor report

Request for
(Monitor filter) X .
PeerinfoService @ | =—=———==—- APlViewW +=m——m———
A
4
MonitorManager | @ =———=—=-—- SPlview ‘= =—e————
Y
| fa A Monit <—|>| Mos hin IVTA © H
| o! i A it i =I At N IVTA H

ServiceMonitor Meterable JXTA Service

Figure 3.1: The Overall Architecture of the Monitor Project

The important terms with respect to the MMP are:

Monitor Point

A monitor point is a source of data that is established on a local or remote peer for providing metered
data of a specified type at specified intervals.

Service Monitor

In order to collect a specific type of metric data from a service on a peer, there must be a dedicated
service monitor for running. This information about which service monitors are running is obtained

via the PIP.
Service Filter

The type of metrics received from a specific service monitor on a peer is determined by a service-specific
service filter corresponding to that type of service monitor.

8Metering and Monitoring Project

Monitor Filter

Since metric clients? may not be interested in all metrics for a peergroup, any request for metrics must
be accompanied by a monitor filter that specifies which service metrics are desired. Monitor filter is
a collection of service specific service filters.

3.4.2 Endpoint Service Metering

The endpoint service provides the following functionality:

e Receives messages and redirects them to registered listeners based upon a service name and
parameter pair.

e Provides messengers based upon endpoint address for sending messages.

e Provides a mechanism to propagate messages based upon a service name and parameter pair.

The architecture for the endpoint service monitor is shown in Figure 3.2.

EndpointServiceMetric

1 * (endpomtAddress) 1-1 (misc metrics)
1-* (serwceName/Param) 1-* (serwceName/Param)
InboundMetric OutboundMetric PropagateMetnc EndpointMetric

Figure 3.2: Endpoint Service Monitor Architecture

3.4.3 Rendezvous Service Metering

The rendezvous service maintains the propagation-web for the peergroup. While every peer provides
all the functionality of the rendezvous service, they interact with other peers in one of two roles -
client or rendezvous. Clients are connected to zero or one rendezvous, while a rendezvous will have
zero or more clients connected to them.

The architecture for the rendezvous service monitor is shown in Figure 3.3.

RendezvousServiceMetric

1-* (RendezvousConnection) 1-1 (misc metrics)

1-* (ClientConnection)

RendezvousConnectionMetric ClientConnectionMetric RendezvousMetric

Figure 3.3: Rendezvous Service Monitor Architecture

9Both local and remote

3.4.4 Resolver Service Metering

The resolver service provides a query and response framework. Within the resolver service there are
registered handlers for sending and receiving both queries and responses. The resolver service utilizes
the rendezvous service for the propagation of queries. In order to optimize the search of resources,
the concept of SRDI comes up and there are handlers for this also. Detailed metrics about specific
interactions with unicast endpoints are also maintained.

The architecture for the resolver service monitor is shown in Figure 3.4.

ResolverServiceMetric

1-* (handlerName) 1-1 (misc metrics)

1-* (handlerName)

QueryHandlerMetric SrdiHandlerMetric ResolverMetric
1-* (EndpointAddress) 1-* (EndpointAddress)
QueryDestinationMetric SrdiDestinationMetric

Figure 3.4: Resolver Service Monitor Architecture

3.4.5 Transport Metering

Transport metering does not correspond to any specific standard JXTA service or module. It provides
a framework for monitoring any type of transport layer that:

e Establishes and maintains transport-layer connections
e Sends and receives messages

e Broadcasts messages

Transport information in JXTA is kept per binding, where a binding corresponds to a transport
layer endpoint address. At any point of time, there can be at most one peer associated with the
peergroup that is managing the transport. The transport metric corresponds to a particular type of
transport'? and contains a list of binding metrics to actual peers.

Its possible due to the dynamic nature of JXTA that there can be more than one connection
between two peers at one point of time. One can be locally initiated '' and the other can be re-
motely initiated 2. The transport metrics are maintained separately for both the connections. The
architecture for the transport service monitor is shown in Figure 3.5.

The service monitors for pipe service and discovery service have not yet been implemented in the
JXTA MMP and hence their metrics are yet to be defined.

107 jke TCP, HTTP and so on
Unitiator connection
12 Acceptor connection

TransportServiceMetric

1-* (TCP-Unicast, Multicast,
ServletHTTP, ...)

l

TransportMetric

1-* (one per destination peer)

TransportBindingMetric

Figure 3.5: Transport Service Monitor Architecture

Chapter 4

JXTA modeling

Given the objective of managing the JXTA platform, we propose a management information model
for JXTA that is based upon the generic model for P2P networks and services already described in
section 2.2. But one of the points that needs to be stressed here is that the metrics used in the model
designed are the ones that already exist in the JXTA MMP [3] and were discussed in the previous
chapter. Since JXTA already has the metrics defined for each of the services, so instead of creating
another set of similar metrics, I decided to use the same ones in the management framework. This
provides following advantages:

e With the metrics are already incorporated inside the JXTA platform and instrumentation code
done, implementation of the JXTA management information model would become easier.

e In defining another set of metrics, we would need to change and update the whole JXTA frame-
work which is not our aim. Our goal is simply to manage the platform and provide performance
guarantees.

The model also depicts a similar architecture to that of the JXTA MMP so as to fit in the existing
metrics properly. The following sections present the JXTA model and the way the metrics have been
applied to it.

4.1 JXTA peer, JXTA PeerGroup and virtual topology model

The model is represented in Figure 4.1. In order to model a peer from a management point of view
in JXTA, we have designed the JXTAPeer class that inherits from the Peer class of the P2P model as
an extension of CIM classes. A peer in JXTA can be of one or more of the following types:

e Simple or Edge Peer
e Rendezvous Peer
e Relay Peer

The first attribute of the JXTAPeer class gives the time at which the peer started operation or
came up and hence gives an estimate of the time for which it has been in the network. Then the second
set of attributes give the basic idea about the type of peer it is. As described earlier, JXTA peer can
act as one or more type even though most commonly the peers are of edge type. So when there is a
transition from edge to rendezvous, it is indicated by the state of the attributes. These attributes are
best placed in this class as they give the idea about the peer and help the class in representing the

23

EnabledLogicalElement

(See Core Model)

A

System

(See Core Model)

4

*
AdminDomain * ComputerSystem
ComponentCS

ContainedDomain % (See Core Model) (See Core Model)
[* 1
HostedPeer
Community *
Communityld: string {key} Peer
Name: string {override, key}
A 1.n CreationClassName: string {key}
Name: string {override}
W 1.n | peerid: string {key} *
ParticipatingPeers IsBehindFirewall: boolean _l
ArrivalTime: date L

L P2PTopologicalLink
JxtaPeerGroup

Description: string

JxtaPeer

IsEdge: boolean
IsRendezvous: boolean
IsRelay: boolean

Figure 4.1: The peer and PeerGroup model

JXTA peer properly. A JXTA peer also has attributes like name, ID which are inherited from the
superclass and hence do not require to be defined in the subclass again. Another possibility was to
model each type of peer differently such as FdgePeer, RendezvousPeer and RelayPeer but then the
model would not correctly represent a peer, the reason being that a peer can transit between different
types. The JXTAP2PTopologicalLink association class which is represented in Figure 4.1 gives the type
of topological link between any two peers with the description of the link. This link establishes the
virtual topology of a JXTA network representing all the types of connections between peers. The
Description attribute in the class describes the type of link between the peers.

As for a peergroup in JXTA, the JXTAPeerGroup class is used to model it. It inherits from the
Community class of the P2P model. The only attribute in this class is the description of the peergroup
which is a part of the advertisement for a peergroup in JXTA. Also peers can belong to different
peergroups which is already modeled in the P2P model.

4.2 JXTA communication model

In JXTA, all the communications take place through endpoints. Pipes are abstractions over these
endpoints. The proposed model is represented in Figure 4.2. The endpoints are modeled by the
JXTAEndpoint class. This class is inherited from the CIM class of ProtocolEndpoint. The attributes
of the class consist of all the metrics defined in JXTA for the state of the endpoint. So it was logical
to put the endpoint state metrics in this class. These metrics are shown in Figure 4.7 under the
same class name as JXTAEndpoint. The metrics give an idea about the overall number of messages

received by the particular endpoint and other similar details. The EndpointStartTime attribute tells
the amount of time the endpoint has been running and when it started.

EnabledLogicalElement

(See Core Model)
A

NetworkPipe ProtocolEndpoint
InstancelD: string {key} EndpointOf (See Core and Networks
Directionality: uint16 {enum} * NetworkPipe 2 | Model (Protocol
AggregationBehavior: uint16 {enum} Endpoints))
* * * wo% 4
NetworkPipe
Composition
~PeerUsesPipe HostedNetworkPipe JxtaEndpoint
2 1
Peer Community
(See P2P Model (Peer (See P2P Model (Peer
and Community)) and Community))
A Tn 1.n A
ParticipatingPeers

JxtaPeer JxtaPeerGroup
(See Jxta Model (Peer (See Jxta Model (Peer
and Community)) and Community))

Figure 4.2: The communication model

The other class that is defined in the context of communication is the JXTAPipe class. This class is
used to model JXTA pipes which already have been presented in the previous chapter. One important
point that needs to be stressed here is the way we have modeled propagate pipes. It is done by
the attribute AggregationBehavior which describes the way the NetworkPipeComposition relation acts.
Propagate pipes are treated as a collection of unicast pipes with all having one common end to push
data but different ends to receive data. Another problem in the model is its inability to represent the
fact that in JXTA, pipes need not always be bound to two endpoints. Since pipe is a virtual entity, it
is identified by an advertisement and binding a pipe to a endpoint is necessary to transmit data. But
once the advertisement is created it needs not be bound to two endpoints immediately. This problem
though cannot be solved since the CIM classes are defined in a way as to bind a pipe to two endpoints.
So the changes in order to accommodate this need to be done in the generic information model. The
other features are basically similar to that of the generic model and hence need not be elaborated.

4.3 JXTA services model

JXTA services are the ones for which the MMP defines the metrics. Hence the models for services
become very important in the context of management. Services are implementations of the protocols
by which the entire JXTA platform and network operate. Thus, monitoring of services becomes
important in order to understand the amount of load handled by each peer and the network. As
detailed earlier, we have used the same metrics for the services as defined in the metering project.
Before going on to describe the model for each of the services we would like to discuss the overall
service model for JXTA. The model for transport services gives a good idea about the whole picture
and is represented in Figure 4.4. In case of JXTA we discuss all the services from a local view and

hence we inherit the JXTALocalService from the LocalP2PService of the P2P model. All the other
features remain the same and hence need not be discussed here.

LocalP2PService P2PServiceAccessPoint

JxtaLocalService JxtaHandler

1 0.1
JxtaHandlerForService

Figure 4.3: The service handler model

The class JXTAHandlers which is shown in Figure 4.3 is designed to help in modeling the handlers
for certain services. Handlers in JXTA perform the job of listeners and do the processing accordingly.
Say for example, the resolver service is used to send queries and responses also. When the discovery
service for a particular peer runs it uses the resolver service in order to send the discovery query and
also get the responses. So now there is a handler for discovery service registered with the resolver
service. The messages directed for this discovery service are received by the resolver service and then
processed by the handler for discovery. So this is how the handlers perform in JXTA. The JXTAHandler
class is inherited from the ServiceAccessPoint class of the core model of CIM as a handler functions to
a SAP!. There are no attributes defined for this class which acts as a superclass from where handler
for specific services are inherited. Now we will discuss the model for each service in details.

4.3.1 JXTA transport service model

The proposed model for transport service is shown in Figure 4.4. Even though JXTA does not define
transport as a service, it behaves in much the same way and hence is best modeled as a service along
with its metrics. Transport service is defined for the whole group and is the same in all the peers
of that group. The JXTALocalTransportService class inherits from the JXTALocalService class which
already has been discussed. Nevertheless the class does not contain the metrics for the service because
in the metering project, metrics are defined for each binding with an endpoint. So one can visualize
the transport service as being an aggregation of many such bindings in the whole group. The class
JXTATransportBinding models each binding and hence can inherit from ProtocolEndpoint class to get
the endpoint address to which it is bound and the protocol being used.

The metrics defined for transport service are defined in the way of attributes in the JXTATrans-
portBinding class. These metrics are shown in Figure 4.5. The attributes define things like the number
of bytes received, connections made and so on. The metrics can be separated into acceptor met-
rics and receiver metrics. Finally as a combination of both the metrics are also defined. This class
is responsible for making up the transport service. Another important modeling detail is that the
transport service uses JXTA endpoint in order to transmit data and which is modeled by the relation
TransportUsesEndpoint.

1Service Access Point

ProtocolEndpoint

(See Core and Networks
Model (Protocol Endpoints))

A

JxtaTransportBinding

LocalP2PService

T

JxtaLocalService

T

TransportUsesEndpoint

1

-

JxtaLocalTransportService

JxtaEndpoint

(See Jxta model
(Communication))

TransportServiceComponent

Figure 4.4: The transport service model

4.3.2 JXTA endpoint service model

The endpoint service in JXTA is one of the core services in the sense that it implements the endpoint
protocol which is a must for any peer running on JXTA. So an evaluation of the endpoint service
becomes very important and the model to do that is represented in Figure 4.6. As already discussed,
each peer binds to a particular endpoint and so does the endpoint service running on a particular peer.
For each endpoint service we can link it to a particular endpoint. So the metrics that monitor the
state of the endpoint are put in the JXTAEndpoint class of the communication model. These metrics
could have also been a part of the endpoint service model but it would imply the same thing, so it
was better to define them in the endpoint class itself.

In the endpoint service model, the JXTALocalEndpointService class is the one that models the
endpoint service running on a peer. Since each peer runs the endpoint service locally, we can inherit
from the JXTALocalService superclass. The endpoint service from the model has three types of metrics:

e inbound metrics;
e outbound metrics;

e propagation metrics.

Based on this already existing classification of metrics, we have defined the classes separately to
make up the whole endpoint service. It is also important to note the fact about JXTAHandlers in the
context of endpoint service. As shown in Figure 4.6, two types of metric classes are inherited from
the JXTAHandler class which we will discuss in brief. The description of the classes is what follows in
this section.

JXTAInbound class

The JXTAInbound class defines attributes to represent the inbound metrics for the endpoint service.
The detailed class diagram with all the attributes is represented in Figure 4.7. In the endpoint
service, this class represents the handlers for services that are registered to receive messages through
the particular endpoint service. So the JXTAInbound class is inherited from the JXTAHandler class
of the service model. It is dynamically instantiated for each service that receives messages via this
endpoint service. The class has attributes that give the service name for which it acts as the handler
and also the other details about messages received. By inheriting from the JXTAHandler class, we
were able to properly model the metrics as a part of the endpoint service but related to the services
that receive the message.

JxtaTransportBinding

JxtaTransportBinding (cont.)

EndpointAddress: string
ProtocolName: string

InitiatorState: string

AcceptorState: string
InitiatorTransitionTime: unit64
AcceptorTransitionTime: uint64
AcceptorBytesReceived: uint32
AcceptorBytesSent: uint32
AcceptorConnections: uint32
AcceptorConnectionsClosed: uint32
AcceptorConnectionsDropped: uint32
AcceptorConnectionsFailed: uint32
AcceptorMessagesReceived: uint32
AcceptorMessagesSent: uint32
AcceptorReceivedFailures: uint32
AcceptorSentFailures: uint32
AcceptorSentProcessingTime: uint64
AcceptorTimeConnected: uint64
AcceptorTotalTimeConnected: uint64
AcceptorTimeToConnect: uinté4
AcceptorTimeToFail: uinté4
InitiatorBytesReceived: uint32
InitiatorBytesSent: uint32
InitiatorTotalTimeConnected: uint64
InitiatorConnections: uint32
InitiatorConnectionsClosed: uint32
InitiatorConnectionsDropped: uint32
InitiatorConnectionsFailed: uint32
InitiatorMessagesReceived: uint32
InitiatorMessagesSent: uint32
InitiatorReceiveFailures: uint32
InitiatorSentFailures: uint32
InitiatorSentProcessingTime: uint64
InitiatorTimeToConnect: uint64
InitiatorTimeToFail: uint64
InitiatorTimeConnected: uint6é4
NumPings: uint32

NumFailedPings: uint32

PingTime: uint64

PingFailedTime: uint64
NumPingsReceived: uint32

BytesReceived: uint32

BytesSent: uint32

Connections: uint32

ConnectionClosed: uint32

ConnectionDropped: uint32

ConnectionFailed: uint32

MessagesReceived: uint32

MessagesSent: uint32
ReceiveFailureProcessingTime: uint64
ReceiveFailures: uint32
ReceiveProcessingTime: uint64
SendFailureProcessingTime: uint64
SendFailures: uint32

SendProcessingTime: uint64
TotalTimeConnected: uinté4

TimeToConnect: uinté4

AveragePingTime: uint64
AveragePingFailedTime: uint64
AcceptorReceiveFailureProcessingTime: uint64
AverageAcceptorReceiveFailureProcessingTime: uint64
AverageAcceptorReceiveProcessingTime: uint64
AcceptorSendFailureProcessingTime: uint64
AverageAcceptorSendFailureProcessingTime: uint64
AverageAcceptorSendProcessingTime: uint64
AverageAcceptorTimeToConnect: uint64
AverageAcceptorTimeToFail: uint64
InitiatorReceiveFailureProcessingTime: uint64
AveragelnitiatorReceiveFailureProcessingTime: uint64
AveragelnitiatorReceiveProcessingTime: uint64
InitiatorSendFailureProcessingTime: uint64
AveragelnitiatorSendFailureProcessingTime: uint64
AveragelnitiatorSendProcessingTime: uint64
AveragelnitiatorTimeToConnect: uint64
AveragelnitiatorTimeToFail: uint64
AverageReceiveFailureProcessingTime: uint64
AverageReceiveProcessingTime: uint64
AverageSendFailureProcessingTime: uint64
AverageSendProcessingTime: uint64
AverageTimeToConnect: uint64
AverageTimeToFail: uint64
AcceptorReceiveProcessingTime: uint64
InitiatorReceiveProcessingTime: uint64

Figure 4.5: The detailed transport service classes

JXTAPropagate class

The JXTAPropagate class is very similar to the JXTAlnbound class. It is also instantiated for each
service that needs to propagate messages. In this case the attributes represent the way messages are
not received but propagated. This is the only difference between the two classes else the way they
are modeled is almost similar. This class also inherits from the JXTAHandler superclass. The detailed
class diagram presenting all the attributes is shown in Figure 4.7.

The endpoint service is made up of many such JXTAlInbound and JXTAPropagate objects for each
of the different services that rely on the endpoint service. An example of such a service is the pipe
service. The JXTAEPInboundDependency class and the JXTAEPPropagateDependency are shown in
Figure 4.12. These classes relate the way endpoint service is formed or composed of the handlers.

JXTAOutbound class

In JXTA endpoint service, messages are sent to particular destination addresses using an endpoint.
So the outbound metrics are defined per destination endpoint address. The JXTAOutbound class is
used to model the outbound metrics. The class inherits from the ProtocolEndpoint class of the core
CIM model. This is done in order to represent the fact that the outbound metrics are for a particular
destination endpoint. So a composition of many instances of the JXTAOutbound class makes up the
outbound part of the endpoint service. The detailed class diagram with all the attributes is shown in
Figure 4.7. The attributes in the class represent the metrics related to messages that are being sent

JxtaLocalService JxtaHandler
(See Jxta Model (Service (See Jxta Model (Service
Handler model)) Handler model))
A 7y
JxtaLocalEndpointService Jxtalnbound JxtaPropagate
1 1 1 * *
JxtaEPInboundDependency
JxtaEPPropagateDependency
ProtocolEndpoint
JxtaEPOutboundComponent (See Core and Networks
Model (Protocol Endpoints))
* JxtaOutbound

Figure 4.6: The endpoint service model

to the destination endpoint using the endpoint service under discussion.

So the endpoint service is composed of three kinds of metrics which all have been modeled and
proper relationships were established between these classes and the endpoint service as a whole.

4.3.3 JXTA resolver service

Resolver service, one of the two core services of the JXTA, implements the Peer Resolver Protocol.
The model that we propose for the resolver service is represented in Figure 4.8. As discussed in
the previous chapter, the resolver service is used to handle queries and responses. It also handles
the SRDI? queries and responses for rendezvous peers. The JXTALocalResolverService class models
the resolver service of JXTA and is inherited from JXTALocalService class since resolver service runs
for each peer locally. The attributes defined in this class are shown in Figure 4.9. These attributes
represent the overall view of the resolver service in a sense that it gives the total number of queries
that were not processed and so on. The finer metrics for the resolver service can be classified into two

types:
e Query Handler Metrics

e SRDI Handler Metrics

The resolver service is used to propagate or send queries and receive responses on behalf of other
services like the discovery service, pipe service etc. So in order to model the metrics properly, we used
the same approach as in endpoint service being that of handlers.

JXTAQueryHandler class

The JXTAQueryHandler class inherits from the JXTAHandler class so as to represent the fact that query
metrics are defined for each service that uses the resolver to send queries and receive responses. The
detailed class diagram with its attributes is shown in Figure 4.9. The attribute HandlerName gives
the service name for which this class is instantiated since it uses the resolver service. Another point

2Shared Resources Distributed Index

JxtaEndpoint

Jxtalnbound

EndpointStartTime: Date

EndpointUpTime: uint64
InvalidincomingMessage: uint32
NoListenerForincomingMessage: uint32
ErrorProcessingincomingMessage: uint32
NoDestinationAddressForincomingMessage: uint32
NoSourceForDemuxMessage: uint32
DiscardedLoopbackDemuxMessage: uint32
IncomingMessageFilteredOut: uint32
IncomingMessageSentToEndpointListener: uint32
DemuxMessageProcessed: uint32

ServiceName: string
ServiceParameter: string
NuminboundQueued: uint32
NuminboundDropped: uint32
TimeToDroplnbound: uint64
NuminboundDeQueued: uint32
TimelninboundQueue: uint64
NuminboundProcessed: uint32
TimeToProcessinbound: uint64
AverageTimelninboundQueue: uint64
AveragelnboundDropTime: uint64

AveragelnboundProcessTime: uint64

JxtaOutbound

JxtaPropagate

NumOutboundQueued: uint32
NumOutboundDropped: uint32
TimeToDropOutbound: uint64
NumOutboundDeQueued: uint32
TimelnOutboundQueue: uint64
NumOutboundProcessed: uint32
TimeToProcessOutbound: uint64
NumOutboundFailed: uint32
TimeOutboundToFail: uint64
AverageTimelnOutboundQueue: uint64
AverageOutboundDropTime: uint64
AverageOutboundProcessTime: uint64

ServiceName: string
ServiceParameter: string
NumPropagations: uint32
NumPropagatedTo: uint32
AverageNumTransports: uint32
NumFilteredOut: uint32
NumErrorsPropagated: uint32
PropagationTime: uint64
AveragePropagationTime: uint64

Figure 4.7: The Detailed Endpoint Service Classes

JxtaLocalService

(See Jxta Model (Service
Handler model))

A

JxtaLocalResolverService

JxtaHandler

(See Jxta Model (Service
Handler model))

7y

JIxtaQueryHandler

JxtaSrdiHandler

1 1 * *
|—JxIaQueryHandIerDependency J

JxtaSrdiHandlerDependency

Figure 4.8: The resolver service model

is that many such handlers can be registered in the resolver service for each service that needs the
resolver. This is indicated by the JXTAQueryHandlerDependency relation class. Finally we can say
that query metrics are defined per handler and also modeled in the same way with handlers being
interfaces for higher level services.

JXTASrdiHandler Class

The JXTASrdiHandler class also inherits from the JXTAHandler class of the service model. This class
is very much similar to the JXTAQueryHandler class. The only difference is that this class contains
metrics related to SRDI and not general queries. SRDI is an algorithm by which JXTA makes the
discovery of resources faster by using a rendezvous super peer network. The detailed class diagram
and attributes are shown in Figure 4.9. In this figure also the HandlerName attribute behaves the
same way giving the service that uses resolver to send and receive SRDI messages.

4.3.4 JXTA Rendezvous Service

The model that we propose for the rendezvous service is shown in Figure 4.10. The JXTALocalRen-
dezvousService class is used to model the rendezvous service and inherits from the JXTALocalService

JxtaQueryHandler JxtaLocalResolverService

HandlerName: string NuminvalidSrdiMessages: uint32

Registered: boolean NumsSrdiMessagesToUnknownHandler: uint32
Numresponses: uint32 NumberInvalidResponses: uint32
ResponseProcessingTime: uint64 NumberResponsesToUnknownHandler: uint32
AverageResponseProcessingTime: uint64 NumberlnvalidQueries: uint32

ResponseTime: uint64 NumberQueriesToUnknownHandler: uint32

AverageResponseTime: uint64
NumResponsesErrors: uint32
NumQueries: uint32
NumQueriesRepropagated: uint32
QueryProcessingTime: uint64
AverageQueryProcessingTime: uint64
NumQueryErrors: uint32
NumQueriesSentinGroup: uint32
NumQueriesSentViaWalker: uint32
NumQueriesSentViaUnicast: uint32
NumErrorsSendingQueries: uint32
NumErrorsPropagatingQueries: uint32
NumResponsesSentinGroup: uint32
NumResponsesSentViaWalker: uint32
NumResponsesSentViaUnicast: uint32
NumErrorsSendingResponses: uint32
NumErrorsPropagatingResponses: uint32
NumQueriesSent: uint32
NumQuerySendErrors: uint32
NumResponsesSent: uint32
NumResponsesSendErrors: uint32

JxtaSrdiHandler

HandlerName: string

Registered: boolean

NumProcessed: uint32
NumberErrorsWhileProcessing: uint32
NumToUnregisteredHandler: uint32
TotalProcessTime: uint32
NumMessagesSentViaWalker: uint32
NumMessagesSentViaUnicast: uint32
NumErrorsSendingMessages: uint32
NumErrorsPropagatingMessages: uint32

Figure 4.9: The detailed resolver service classes

class as it runs on each peer that uses the service. The detailed class diagram and its attributes are
shown in Figure 4.11. This class gives an overall idea about the state of the service running on the
peer. It has attributes which give the state in which the peer is currently (edge or rendezvous). Then
there are attributes to give the number of transitions between states and counters about the number
of messages that are propagated. Thus this class gives an overview of the service.

The rendezvous service is active is two cases:

e When the peer acts as a rendezvous
e When the peer behaves as a client to another rendezvous peer

Thus for this reason, we designed the model in such a way so as to separate the model to have the
client side metrics as well as the rendezvous side metrics. It is clear from the metering model that
metrics of the two types are maintained by the service. The metrics of the first kind are represented in
Figure 4.10 by the JXTARendezvous class. This represents the rendezvous side metrics for a connection
between the rendezvous and a client. It has the attributes like the peer ID of the client and the state
of the peer. Then also the metrics like number of connections established between them is noted down
by some attributes. So in all it represents the information that is maintained by the client about the
rendezvous. The detailed class diagram and attributes are shown in Figure 4.11. Another important
point that needs to be stressed is the super class from which the class it is inherited. As designed
in the model it inherits from the EnabledLogicalElement class of the CIM core model. This is done
because there were no other subclasses of the EnabledLogicalElement class that could have been used
to satisfy the purpose. Thus is was best suited to inherit it from the EnabledLogicalElement class.

The other class JXTARendezvousClient, is similar to the previous class discussed but only different
in the sense that it gives the client side metrics. It can be better explained in the following manner
that this class contains attributes that give information about the particular connection of the client
to the rendezvous. These attributes are defined per client connection to the rendezvous. These are
the metrics defining the connection by the particular client to the rendezvous. Metrics define various
things like the lease time, number of connections made and so on. This architecture is based on the

JxtaLocalService
EnabledLogicalElement
(See Jxta Model (Service
Handler model)) (See Core Model)
y A
JxtaLocalRendezvousService JxtaRendezvous JxtaRendezvousClient

1 1 * *

JxtaRendezvousComponent

JxtaRendezvousClientComponent

Figure 4.10: The rendezvous service model

metering model itself. So the overall model depicts the rendezvous service quite satisfactorily. The
attributes of the JXTARendezvousClient and shown in Figure 4.11.

JxtaLocalRendezvousService

JxtaRendezvous

State: string

TransitionTime: Date

Egde: boolean

Rendezvous: boolean
EdgeStartTime: Date
TotalEdgeTime: uint64
NumEdgesTransitions: uint32
RendezvouStartTime: Date
TotalRendezvousTime: uint64
NumRendezvousTransitions: : uint32
NumReceivedProcessedLocally: uint32
NumReceivedRepropagatedinGroup: uint32
NumReceivedinvalid: uint32
NumReceivedDead: uint32
NumReceivedLoopback: uint32
NumReceivedDuplicate: uint32
TotalReceivedUndelivered: uint32
TotalReceived: uint32
NumPropagated: uint32
NumpFailedPropagating: uint32
NumRepropagated: uint32
NumFailedRepropagating: uint32
NumPropagatedToPeers: uint32
NumFailedPropagatingToPeers: uint32
NumPeersPropagatedTo: uint32
NumPropagatedIinGroup: uint32
NumPropagatedToNeighbors: uint32
NumWalks: uint32

NumFailedWalks: uint32
NumWalkedToPeers: uint32
NumFailedWalkedToPeers: uint32
NumPeersWalkedTo: uint32
TimeAsEdge: uint64
TimeAsRendezvous: uint64

Peerld: string

State: string

TransitionTime: Date

Lease: uint64
BeginConnectionTime: uint64
Connected: boolean

Connecting: boolean
TimeConnected: uint64
Disconnected: boolean
DisconnectTime: uint64
NumConnectionsBeguns: uint32
NumConnectionsEstablished: uint32
NumConnectionsRefused: uint32
TotalTimesToConnect: uinté4
LastLeaseRenewalTime: uint64
NumLeaseRenewals: uint32
NumbDisconnects: uint32
TotalTimeConnected: uinté4
TimeConnectionEstablished: Date

JxtaRendezvousClient

Peerld: string

State: string

TransitionTime: Date
Connected: boolean
TimeConnected: uint64
TimeConnectionEstablished: Date
Disconnected: boolean
DisconnectTime: uint64

Lease: uint64
LastLeaseRenewalTime: uint64
NumConnects: uint32

NumLeaseRenewals: uint32

NumbDisconnects: uint32
NumConnectionsRefused: uint32
NumErrorsAddingClient: uint32
NumUnableToRespond: uint32
TotalTimeConnected: uinté4

Figure 4.11: The detailed rendezvous service classes

The dependency relational classes used in the models and not previously defined are shown in
Figure 4.12. Similarly the composition relational classes used are represented in Figure 4.13.

Finally we need to mention that only these four services have been modeled by us because the
JXTA MMP defines metrics for these four only till date. When the metrics for the other services
would be defined then one can easily incorporate that in the existing model. This would just require
to model the other services as they would be defined in due time by the JXTA community. So in this
chapter, we gave the description of all the models and their classes with justification as to why they
are modeled in the way they are. So at the end of it, we are now ready with a satisfactory information

Dependency

Antecedent: ref ManagedElement {key, *}
Dependent: ref ManagedElement {key, *}

4
SAPSAPDependency ServiceAccessBySAP

Antecedent: ref ServiceAccessPoint {*}

Antecedent: ref Service {*}
Dependent: ref ServiceAccessPoint {*}

Dependent: ref ServiceAccessPoint {*}

A A

JxtaEPInboundDependency

P2PServiceAccessBySAP

Antecedent: ref Jxtalnbound {*} -
Dependent: ref JxtaLocalEndpointService {1} Antecedent: ref P2PService {1}
Dependent: ref P2PServiceAccessPoint {1..*}

A

JxtaEPPropagateDependency

Antecedent: ref JxtaPropagate {*} JxtaHandlerForService

Dependent: ref JxtaLocalEndpointService {1}

Antecedent: ref IxtaLocalService {1}
Dependent: ref JxtaHandlers {1}

JxtaQueryHandlerDependency

Antecedent: ref IxtaQueryHandler {*}
Dependent: ref IxtaLocalResolverService {1}

JxtaSrdiHandlerDependency

Antecedent: ref JxtaSrdiHandler {*}
Dependent: ref IxtaLocalResolverService {1}

ProvidesEndpoint

(See Core Model)

TransportUsesEndpoint

Antecedent: ref JxtaLocalTransportService {1}
Dependent: ref JxtaEndpoint {1}

Figure 4.12: The dependency relationships

model to proceed with. The result is quite satisfactory because all the options were tried out before
coming down the final solution of each separate model. Thus we can now move on to the architecture
and protocol part of the management model.

Component
GroupComponent: ref ManagedElement {key, *}
PartComponent: ref ManagedElement {key, *}

A

TransportServiceComponent
GroupComponent: ref JxtaLocalTransportService {1}
PartComponent: ref JxtaTransportBinding {*}

JxtaEPOutboundComponent

GroupComponent: ref JxtaLocalEndpointService {1}
PartComponent: ref JxtaOutbound {*}

JxtaRendezvousComponent
GroupComponent: ref JxtaLocalRendezvousService {1}
PartComponent: ref JxtaRendezvous {*}

JxtaRendezvousClientComponent

GroupComponent: ref JxtaLocalRendezvousService {1}
PartComponent: ref JxtaRendezvousClient {*}

Figure 4.13: The composition-aggregation relationships

Chapter 5

Implementation of the JXTA
management information model

In the previous chapter, we discussed the information model that was designed for managing the JXTA
P2P network. The model handled the various domains such as peers, peergroups, topology, pipes and
all the services for which JXTA has metrics defined. After the design of the model the next part of
the work was to implement the model.

Instead of implementing the whole architecture of a fully working manager and client peers, we
developed a small application that enables one peer to access the metrics of another peer. Based on
this prototype, the application can be enhanced to make a proper management application in order
to monitor the JXTA P2P network and peers in it.

The implementation of the model can be basically divided into two parts:

e In the first part, it requires to deploy a management agent on each peer that will collect all the
metrics defined for each of the services and other domains. This agent would be local to the
peer and collect the monitor information from the JXTA platform with metering on.

e In the second part, it requires to develop a protocol and an application based on this protocol by
which a manager can access all the data of a peer from the agent deployed on the peer. Hence
by this way the manager can have an overall idea about the network and peers.

5.1 Deployment of an Agent

In this section, we present the agent that will run on each peer and its implementation. For the
implementation of the agent the middleware selected was JMX! of Sun Microsystems?. This is due
to the simple reason that JMX is one of the standard available solutions for the management of Java
objects. Thus it becomes easier and also more powerful to use JMX for the implementation of the
agent to be run on each peer.

5.1.1 JMX - Java Management Extensions

JMX defines architecture for software and network management in Java programming language. The
important terms that are used in the context are:

1Java Management Extensions
Zwww.java.sun.com

35

MBean Interface: This interface needs to be first defined for the Java object that wants to be
managed and then the class implements this interface [9]. The interface defines which attributes
and operations are to be exposed for management. The naming convention of the methods and
attributes is very important as it is from where the JMX agent will realize which attributes to
expose and which not.

JMX Agent: The agent is via which the objects are managed. The MBeans which are registered
with the agent can be managed through JMX. There are also adaptors like the HTML adaptor
with which one can directly view the attributes of the objects being managed and their values.
These adaptors need to be registered in the agent.

This was just a very brief idea of the important components that have been used in the implemen-
tation and hence need to be looked into first.

5.1.2 Agent Implementation

In the context of JXTA and the model that we designed, the agent that runs on each peer needs to
register the objects as soon as they are formed. For this purpose Standard MBeans [9] are sufficient.
In order to dynamically register objects in the agent, the first thing would be to start the agent as
soon as the peer boots and run it in the background. For this purpose, initially the idea was the start
the agent by a new command in the shell. But this again had its drawbacks in the sense that shell is
not a part of the platform and may not be used at all by some peers. So to start running the agent for
all kinds of peers it was important to integrate the agent with the platform itself. For this purpose,
we put the code to start the agent in the class which starts the platform namely Boot. Another point
that relates with the agent is that the Agent class is where the server attribute is defined and hence it
was made static so that all the MBeans would be registered with the same server.

So with the agent running in the background from the beginning, the next step consists in register-
ing the Java objects. The objects to be registered are the ones that are part of the model presented in
the previous chapter. Once these objects are registered, one can view the metrics using a HTML adap-
tor. So following are the details about all the objects defined in the model that would be registered
with the agent.

JXTA Peer

JXTA does not define any specific class for a peer, rather a peer and its attributes are obtained from
PeerAdvertisement class. This does not help the cause since a peer advertisement maybe created many
a times and will be registered that many times resulting in duplicate MBeans. Thus the name of the
object becomes important in this case. So to help the manager, the peers are registered under the
following domain name - ["peergroupID”: Type = Peer, PeerName = "name”, PeerID = 7id”]. By this
the domain becomes the peer group and hence all the peers are registered under the group. It gives
an idea about the group as a whole. The new interface of PeerAdvMBean was added and changes were
made in the PeerAdv class to implement the interface as well as register the peer advertisement. Since
the name of the object remains the same, the peer advertisements are not registered many times but
just once.

JXTA Peergroup

Similar to the peer, there are no concrete classes for defining a peergroup and so again to register groups
we have used peergroup advertisements. Going along the same lines as for a peer, the duplicacy prob-

lem was solved by the naming of the objects in the following manner - [JXTA PeerGroups: GroupName
= "name”, GroupID = 7id”]. In the domain of JXTAPeerGroups, all the discovered groups along
with their name and identity are registered. The new interface added was PeerGroupAdvMBean and
the class where the advertisement is registered with the agent is PeerGroupAdv.

JXTA Pipe

Again similar to JXTA peer and peergroup, pipes have no concrete classes which can be registered with
the agent and its attributes exposed for management. So as discussed before, the pipe advertisements
are the ones that are registered with the agent. This is done as soon as the pipes are created, because
creation of a pipe means that the pipe advertisement is also created and hence it serves the purpose.
The naming scheme is also similar except for that it lies in a separate domain of JXTA pipes. The
new interface added was PipeAdvMBean and changes to register them at creation time were done in
the PipeAdv class.

JXTA Transport Service

As for the transport service, it has metrics in the form of transport bindings. So for the service as
a whole there are many such bindings and this leads to their creation at different times. The best
possible solution was to register them as and when they are created. For this, the changes to register
had to be made in the class where the metrics are defined since these metrics are exposed and also
an instance would be created for each binding. The TransportBindingMetric class is where the changes
were made. Actually this is the class the contains all the metrics and hence an object of this registered
when the constructor of the class is called. The constructor after creating the object registers it in
the agent that is already running. The naming scheme becomes important and a static name would
not suffice and many instances of the object are created over the time that the peer runs. Also since
the transport service is for the whole group, there is no possibility of transport metrics being different
when taken from different peers. Transport service as JXTA specifies can be monitored only for the
World Peer Group. So the naming convention used is as follows - [WorldPeerGroup — TransportService:
EndpointAddress = "ep address”, PeerID = ”id”]. This registers all the metrics for the World Peer
Group and all of them are named according to the endpoint address and peer ID. The new interface
added for the pupose was TransportBindingMetricMBean and the registration as discussed is done in
the class TransportBindingMetric.

JXTA Endpoint Service

In case of the endpoint service there are four different types of metrics to be registered and also
they are different for different peers running the service. The domain is the peergroup in which the
service is running, since it gives the manager a view of the whole group. Under this domain we again
differentiate the service for each member peer and hence the peer ID comes into the context. The
naming scheme for all four of them is going to be very similar and of the following type:

Endpoint State: This kind of metric is defined per peer and hence occurs only once for every peer.
So a static naming scheme is quite proper for this. The naming scheme used for this is -
["peergroupID”:PeerID = 7id”, Type = Endpoint Status/. So for each peer in a group there is
one such object registered that gives the endpoint status. The new interface added for this was
EndpointMetricMBean and changes are made in the EndpointMetric class.

Inbound Metric: This kind of metric can be of any number for a peer and hence need dynamic
naming to accommodate all of them. The naming scheme that we have used is as follows -

[peergroupID”:PeerlD = "id”, Type = Endpoint - Inbound Metrics, ServiceName = "name”,
ServiceParams = "params”]. For each service the inbound metrics are registered and can be
accessed from the agent. As before the new interface added was InboundMetricMBean and the
modifications are done in InboundMetric class.

Propagation Metric: This is similar to that of the inbound metrics with the only difference being
that in the naming it becomes Endpoint - Porpagation Metrics. Rest all is same and the interface
added for the MBean was PropagationMetricMBean and the class where it is registered was
PropagationMetric.

Outbound Metric: In case of outbound metrics, the difference between the various instances is
going to be the endpoint address to which the messages are sent. Hence for a proper naming
scheme the destination endpoint address has to be a part of the name and it is as follows
- ["peergroupID”:PeerID = "id”, Type = Endpoint - Outbound Metrics, EndpointAddress =
“epaddrs”]. The OutboundMetricMBean interface was added and the OutboundMetric class was
updated to allow the registration of the object.

JXTA Resolver Service

Similar to the endpoint service, the resolver service has three types of metric objects that need to be
registered with the agent. Again the domain is the peer group and the service is differentiated for
each peer leading to the inclusion of the peer ID in the object name. The naming scheme is as follows
for each type:

Resolver State: Similar to the endpoint state, this is also defined per member peer of a group and
static naming scheme is quite suitable. The naming scheme used is - ["peergroupID”:PeerID =
”id”, Type = Resolver Status/. Thus for each peer there is one such object registered that gives
the resolver status. The new interface added for this was ResolverMetricMBean and changes were
made in the ResolverMetric class.

Query Handler Metric: Again similar to that of inbound metric, we need dynamic naming for
these kind of metrics also. The naming scheme used in the implementation is as follows -
["peergroupID”:PeerID = 7id”, Type = Resolver - Query Handler, ServiceName = "name”].
For each service the query handler metrics are registered and can be accessed from the agent.
The new interface added was QueryHandlerMetricMBean and the modifications were done in
QueryHandlerMetric class.

SRDI Handler Metric: This is exactly similar to the query handler metrics except for the fact that
its for SRDI queries rather then normal queries. So the naming becomes - ["peergroupID”: PeerID
= 7id”, Type = Resolver - Srdi Handler, ServiceName = “name”]. The new interface added
was SrdiHandlerMetricMBean and the class implementing it was SrdiHandlerMetric class.

JXTA Rendezvous Service

Similar to the resolver and endpoint services, the rendezvous service has three types of metric objects
that need to be registered with the agent. Still the domain remains the peer group and the service is
differentiated for each peer leading to the inclusion of the peer ID in the object name. The naming
scheme is as follows for each type:

Rendezvous State: Similar to the endpoint state, this is also defined per peer member and a static
naming scheme can be used for this object. The naming scheme used is - ["peergroupID”:PeerID

= "id”, Type = Rendezvous Status/. Thus for each peer there is one such object registered that
gives the rendezvous status. The new interface added for this was RendezvousMetricMBean and
changes are made in the RendezvousMetric class.

Rendezvous Metric: There is a need of dynamic naming for the rendezvous metrics as they are
going to be more than one for one peer running the service. The naming scheme used is as
follows - ["peergroupID”:PeerID = "id”, Type = Rendezvous - Rendezvous Connection, Ren-
dezvousPeerID = "id”]. So for each instance created, agent registers it with a different object
name based on the parameters in the name. The new interface added was RendezvousConnec-
tionMetricMBean and the modifications are done in the RendezvousConnectionMetric class.

Rendezvous Client Metric: In this case as well there is a need for dynamic naming since there
are many client connection metric object instances to be registered with the agent. So the
naming scheme that follows is very much similar to that of the rendezvous connection metric
objects - ["peergroupID”:PeerID = "id”, Type = Rendezvous - Client Connection, ClientPeerID
= "id”]. The interface was ClientConnectionMetricMBean and the class implementing it was
ClientConnectionMetric.

Thus it is all about the implementation of the agent and registration of the MBeans in it. All of
these MBeans can be seen with the help of the HIT'ML adaptor that is also registered with the agent.
The values of the attributes keep changing with time and hence give an idea about the change of
metrics.

5.2 Prototype implementation

With the agents deployed on each peer, now the next phase of the work would be to design a manage-
ment application to take advantage of the agents. The original aim was to proceed in the direction of
managing JXTA using the JXTA protocols itself. That would mean to get the value of the metrics
from a client via these protocols like pipe service and so on. In order to proceed in that direction, the
first step was to develop an application to demonstrate the working of the management protocol.

The application developed would behave as a prototype on which the larger model would be built.
In this prototype that we have built, there is a manager peer and a client peer. Both of these peers
run the JXTA platform with agents deployed along with them. Then the steps of the protocol are:

1. Once the manager peer boots up, its sends discovery queries using the JXTA Peer Discovery
Protocol. According to the current scheme, a peer that wants to be managed names itself in
the following format - 'Manageable_Name’. So in the discovery request, the manager peer only
tries to discover those peers that have their name starting with 'Manageable_’. This discovery
request is done using a separate thread so that it allows the manager peer to send out requests
periodically in the background.

2. Then the process goes further once the client peer starts running or is already running and
replies to the discovery query. One important thing to note here is that until the manager peer
discovers the client there is no further action. So this step ensures that the client responds to the
query and lets the manager know about its existence. Also when the client boots up it creates
an input pipe and listens for any request for information by the manager.

3. After the client peer has been discovered, in the manager creates an output pipe from the
same pipe advertisement which the client had used to create the input pipe. Then using this

output pipe, the manager sends requests in the form of a string to the client to send back
management information. This string for the current implementation is designated as REQUEST
FOR MANAGEMENT INFORMATION . After sending the data, the manager creates an input
pipe at its own end from a different pipe advertisement and waits for information from the client.

4. The client peer receives this string or request and based on that creates an output pipe. For the
output pipe it uses the advertisement that the manager had used in the previous step. Through
this pipe, the client sends its IP and also the port on which the RMI? adapter is running. The
RMI scheme for this case is represented in Figure 5.1.

5. The manager peer on receiving the data, uses the IP and port to access any particular MBean
registered with the agent running on the client peer. Now the manager is able to extract
information from the client as it wants about any particular metric.

Manager
T
1
1
]
Y
RMI Adaptor
JMX Agent
_ - Java MBeans
Jxta Peer

Figure 5.1: RMI scheme for manager and client

There are a few things in the above steps that need explanation. One of the first things is the
idea of the client peer name. This scheme sounds a bit odd and so another idea is to create a peer
group namely Managed Group and then all the peers that join the group would be eligible for being
managed. But this is not so important as we are just trying to provide a prototype and hence we
proceeded with the idea of the client naming scheme. The other thing that needs attention is the
concept of RMI. RMI [8] is a way provided by JMX in order to manage remote objects. By the use
of RMI, one can access the attributes and operations of a MBean registered with an agent running
on a different machine via its IP and port number. This is very similar to RPC* and provide the
opportunity to access operations through a connection between the two machines. In this case, we
make RMI from the manager peer and access the attributes of the MBean on the using its object
name. This MBean needs to be registered with the agent on the client peer for the above purpose.

In the prototype, the main drawback is that the object name of the MBean needs to be known in
order to establish a RMI access. But the manager peer has no knowledge of the names with which the
MBeans are registered on the remote peer. This leads to the fact that only statically name objects
can be accessed by this method. That too needs the manager being provided the knowledge about

3Remote Method Invocation
4Remote Procedure Call

the names of the objects. So its better to somehow send information about the object names through
JXTA pipes.

5.3 Summary

So in this chapter we have discussed about the deployment of the agent and the small application
developed. This application forms the base from which further developments can be done to make the
management framework fully working. The agents also give the local peer an idea about the metrics
of the services that it is running. Thus with the small application running and functioning properly,
the architecture of the management framework is kind of set and the protocols need to be bettered.

Chapter 6

Conclusion

In this report, we have proposed a JXTA specific management information model that is based on the
generic management information model 2.1 for P2P networks and services. This model is organiza-
tion, functionality and topology oriented and covers all the aspects of JXTA. It deals with the notion
of JXTA peer, its belonging to various peergroups and also the topological link between the peers.
It describes all the possible types of links between the peers of various types. Then the model also
realizes the concept of a JXTA pipe and endpoints. It makes a distinction between the three types of
core pipes and also realizes the propagate pipe through aggregation of unicast pipes. Next the report
moves onto the part where we discuss about the model for services. JXTA services form the most
important part of the model with respect to the metrics. The services model discusses the transport
service, endpoint service, resolver service and rendezvous service in details. It incorporates the metrics
in classes that are derived from the generic information model. The placement of the metrics in their
respective classes is also justified in the report and the other possibilities were discussed.

The design of the information model for JXTA is a big step towards proving that the generic man-
agement information model 2.1 need not only be correct on pen and paper. The model as it has been
shown by the instantiation on Chord previously, works fine for a real P2P network. The instantiation
on JXTA is even more important due to the reasons that JXTA is a platform that provides a common
ground for the development of P2P applications. Also the extent of JXTA is another important point
that makes the instantiation so important. The model now gives an abstract view of the JXTA P2P
network.

Then as for the implementation, it was necessary to show that the model is not just valid theoreti-
cally but on real network. The agents running on each peer are like the information base for that peer
and its from where the manager will get the values of the required metrics. Then the small prototype
application decides on how the manager can interact with the clients using JXTA for discovery and
transfer of some information. This concept again needs to be stressed to make it more universal and
compliant with JXTA.

There is still work to be done in this direction to provide a full blown management framework
and application. First, it would be to make minor modifications in the protocol in order to allow the
manager to interact with many peers at a time. This is the most important point since the manager
should be able to monitor the whole group and not just a single peer. Secondly, the protocol could
be changed in such a manner as to allow the manager to obtain the names of the objects for RMI. In
fact a option is to deliver the object names to the manager via a pipe. This would again use JXTA
protocols to monitor JXTA. The final result of the work can be very interesting.

43

Finally, coming down to the summer internship, it has been a pleasant experience for me to work
here along with the team. There were many things new to me on which I were able to gain valuable
knowledge. Over the period of time, there were many topics to learn like the whole of Project JXTA
and the MMP. Then during the implementation, I obtained a good insight of JMX and RMI. The
information model part was my first try at modeling and was for me perhaps the most valuable
experiance of the internship.

Bibliography

1]

[10]

[11]

W. Bumpus, J. W. Sweitzer, P. Thompson, Westerinen; A. R., and R. C. Williams. Common
Information Model. Wiley, 2000.

JXTA Community. The jxta metering and monitoring project. http://meter.jxta.org, 2003.

JXTA Community. The jxta metering and monitoring project architecture. http://meter.jxta.org,
2003.

G. Doyen, O. Festor, and E. Nataf. A cim extension for peer-to-peer network and service man-
agement. In J. De Souza and P. Dini, editors, Proceedings of the 11th International Conference
on Telecommunication (ICT’2004), number 3124 in LNCS, pages 801-810, 2004.

G. Doyen, E. Nataf, and O. Festor. A performance-oriented management information model for
the chord p2p framework. In J. Vicente and D. Hutchison, editors, Management of Multimedia
Networks and Services (MMNS’2004), number 3271 in LNCS, pages 200-212, 2004.

Distributed Management Task Force. Common information model (cim) specification, version
2.2. www.dmtf.org/standards/documents/CIM/DSP0004.pdf, June 1999.

Distributed Management Task Force. Common information model (CIM) all models, version 2.8.
www.dmtf.org/standards/cim, 2004.

Mike Jasnowski. JMX Programming. Wiley, 2002.

J. Lindfors, M. Fleury, and The JBoss Group. JMX : Managing J2EE with Java Management
Extensions. SAMS Publishing, 2002.

Sun Microsystems. Project jxta v2.0 Java programmer’s guide.
www.jxta.org/docs/JxtaProgGuide_v2.pdf, 2003.

Brendon J. Wilson. Jzta. New Riders Publishing, 2002.

45

