
HAL Id: inria-00096644
https://hal.inria.fr/inria-00096644v3

Submitted on 26 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Internalizing Modules as Agents in Concurrent
Constraint Programming

Remy Haemmerle, Francois Fages, Sylvain Soliman

To cite this version:
Remy Haemmerle, Francois Fages, Sylvain Soliman. On Internalizing Modules as Agents in Concurrent
Constraint Programming. [Research Report] RR-5981, INRIA. 2006. �inria-00096644v3�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50426924?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00096644v3
https://hal.archives-ouvertes.fr

in
ria

-0
00

96
64

4,
 v

er
si

on
 2

 -
 2

1
S

ep
 2

00
6

IS
S

N
 0

24
9-

63
99

ap por t
de r ech er ch e

Thème SYM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

On Internalizing Modules as Agents in Concurrent
Constraint Programming

Rémy Haemmerlé — François Fages — Sylvain Soliman

N° 5981

Septembre 2006

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le ChesnayCedex (France)

Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

On Internalizing Modules as Agents in ConurrentConstraint ProgrammingRémy Haemmerlé , François Fages , Sylvain SolimanThème SYM � Systèmes symboliquesProjet ContraintesRapport de reherhe n° 5981 � Septembre 2006 � 30 pagesAbstrat: Module systems are an essential feature of programming languages as theyfailitate the re-use of existing ode and the development of general purpose libraries. Thereare however two somewhat ontraditory ways of looking at modules in a given programminglanguage. On the one hand, module systems are largely independent of the partiulars ofprogramming languages, and several examples of module systems have indeed been adaptedto di�erent programming languages. On the other hand, the module onstruts often inter-fere with the programming onstruts, and may be redundant with other sope mehanismsof programming languages, suh as losures for instane. There is therefore a need to unifythe programming onepts and onstruts that are similar, and retain a minimum numberof essential onstruts to avoid arbitrary programming hoies. In this paper, we realize thisaim in the framework of linear logi onurrent onstraint programming (LCC) languages.We �rst show how delarations and losures an be internalized as agents in LCC. We thenpresent a modular version of LCC (MLCC), where modules are referened by variables andwhere implementation hiding is obtained with the usual hiding operator for variables. Wedevelop the logial semantis of MLCC in linear logi, and show the ompleteness of theoperational semantis for the observation of suesses and aessible stores. Finally we dis-uss a omplete module system for onstraint logi programming, derived from the MLCCsheme.Key-words: Modules, agents, losures, ode protetion

Sur l'internalisation des modules en tant qu'agents dansla programmation onurrente ave ontraintesRésumé : Les systèmes de modules sont un trait essentiel des langages de programmation,ar ils failitent la réutilisation du ode préexistant et le développement de bibliothèquesgénériques. Il y a ependant deux façons quelque peu ontraditoires de onsidérer lesmodules dans un langage de programmation. D'un oté, les systèmes de modules sontlargement indépendants des partiularités d'un langage de programmation, et plusieursexemples de systèmes de modules ont en e�et été adaptés à di�érents langages de programmation.D'un autre oté, les onstrutions de modules interfèrent souvent ave les opérateurs deprogrammation, et peuvent être redondants ave d'autres méanismes de liaison, tels queles fermetures par exemple. Il y a don un besoin pour uni�er les onepts et opérateurs deprogrammation qui sont similaires, et retenir un nombre minimal de onstrutions essentiellesa�n d'éviter des hoix arbitraires de programmation. Dans et artile, nous réalisons etobjetif dans le ontexte des langages de programmation onurrente ave ontraintes enlogique linéaire (LCC). Nous montrons d'abord omment les délarations et les fermeturespeuvent être internalisées omme des agents LCC, puis nous présentons une versionmodulairede LCC (MLCC) où les modules sont référenés par des variables logiques, et où le masquagede l'implantation est obtenu à l'aide de l'opérateur usuel de masquage des variables. Nousdéveloppons la sémantique logique de MLCC, et démontrons la orretion et la omplétudede la sémantique opérationnelle pour l'observation des stores aessibles et des suès.Finalement nous présentons un système de modules pour la programmation logique aveontraintes dérivé de MLCC.Mots-lés : Modules, agents, fermetures, protetion du ode

On Internalizing Modules as Agents in Conurrent Constraint Programming 31 IntrodutionModule systems are an essential feature of programming languages as they failitate there-use of existing ode and the development of general purpose libraries. There are howevertwo ontraditory ways of looking at a module system. On the one hand, a module systemis essentially independent of the partiulars of a given programming language. �Modular�module systems have thus been designed and indeed adapted to di�erent programming lan-guages [13℄. On the other hand, module onstruts often interfere with the programmingonstruts and may be redundant with other sope mehanisms supported by a given pro-gramming language, suh as losures for instane. There is therefore a need to unify theprogramming onepts and onstruts that are similar in order to retain a minimum numberof essential onstruts and avoid arbitrary programming hoies.In this paper, we study a omplete module system for linear onurrent onstraint (LCC)programming languages and show how modules and losures are uni�ed as a partiular kindof LCC agents in this framework.Linear onurrent onstraint programmingThe lass of Conurrent Constraint (CC) programming languages has been introdued in[17℄ as an elegant merge of onstraint logi programming (CLP) and onurrent logi pro-gramming. In the CC paradigm, CLP goals are onurrent agents ommuniating througha ommon store of onstraints, eah agent being able to post onstraints to the store, andto synhronize by asking whether a guard onstraint is entailed by the store. Both theoret-ial reasons onerning the logial semantis of CC languages [6, 18℄, and pratial reasonsonerning the need for a non-monotoni evolution of the store [2℄, led to a natural exten-sion of CC languages with onstraint systems based on Linear Logi (LL) [8℄, alled LinearConurrent Constraint (LCC) programming. By interpreting CC agents by LL formulae,it is indeed possible to identify CC operational transitions with LL dedutions, and obtainompleteness theorems for the observation of the set of aessible stores, as well as for theset of suess stores [6℄. This means that Linear Logi is the logi of CC agents. Moreover,the theorems still hold when onsidering onstraint systems based on Linear Logi insteadof lassial logi. From a programming point of view, LL onstraint systems are a re�ne-ment of lassial onstraint systems allowing for state hange and non-monotoni evolutionof the onstraint store, through the onsumption of linear logi tokens by linear impliation[6, 2℄. This makes it possible to enode imperative features in LCC and ombine them withonstraint programming.In this paper, we show that the linear tokens and the bang operator of LCC an beused to internalize CC delarations and proedure alls as onstraint posting and asking. Aquite general notion of losure an then be enoded as a banged agent with an environment,delarations orresponding to the ase of an empty environment. These results are then usedto de�ne the operational semantis of modular LCC (MLCC) languages, where modules arevariables and where implementation hiding is realized with the usual hiding operator forvariables.RR n° 5981

4 Rémy Haemmerlé , François Fages , Sylvain SolimanIn Setion 4 we provide an equivalent logial semantis where modular LCC agents areinterpreted by linear logi formulae, and prove ompleteness theorems for the observationof suess and aessible stores.Then in Setion 5, we derive from the MLCC sheme a powerful module system foronstraint logi programming. We illustrate the expressiveness of this module system withexamples of ode hiding, losure programming and module parameterization in CLP, anddisuss its implementation along the lines of its semantis in LCC.Finally, we onlude on these results and on their generality.Related WorkThe proposed internalization of delarations as agents goes somewhat in the opposite di-retion to that of de�nition-based logis, as desribed for instane in [10℄. Here we makede�nitions �rst-order objets, whih allows us to manipulate them easily, and to generalizethem to losures.There has been several programming languages developed in Linear Logi using theLogi Programming paradigm, like for instane LO [1℄, Lolli [12℄ or Lygon [11℄. However,for e�ieny reasons in these languages, there is no equivalent for the persistent asks (whihwould be impliations under a ! in most of these languages) and thus no diret enoding ofdynami lause assertions as we will do in Set. 2.4.3. The banged ask appears in the reentwork of [14℄ on the expressiveness of linearity and persistene in proess aluli for seurity.Conerning CC languages, the implementation of modules has not been muh disussed,being onsidered as an orthogonal issue. For instane, the MOZART-OZ language [15,4℄ ontains an ad-ho module system allowing for separate ompilation. Here we providea natural integration of module and programming onepts with the limited set of LCCprogramming onstruts.2 LCC with Delaration AgentsIn this setion, we give a presentation of the LCC languages where delarations are replaedby banged asks, whih we will all persistent ask. This new onstrut atually generalizesdelarations into persistent asks by allowing variables to remain free in a persistent ask andrepresent the environment.In this paper, a set of variables is denoted by x or y. The set of free variables ourringin a formula A is denoted by fv(A), a sequene of variables is denoted by ~x, A[~x\~t] denotesthe formula A in whih the free ourrenes of variables ~x have been replaed by terms ~t(with the usual renaming of bound variables, avoiding variable lashes). For a transitionrelation −→, −→⋆ denotes the transitive and re�exive losure of −→. The typewriter fontis used for programs, where, as in lassial Prolog programs, the identi�ers beginning by aapital letter represent variables.
INRIA

On Internalizing Modules as Agents in Conurrent Constraint Programming 52.1 Linear Logi Constraint SystemsThe lass of LCC languages essentially extends CC languages by onsidering onstraintsystems based on Linear Logi [8℄ instead of lassial logi. From a programming point ofview, this extension introdues state hange and imperative features in onstraint languages.We reall here the usual de�nitions of a Linear Logi onstraint system (see for instane [6℄).De�nition 2.1 (Constraint Language) An atomi onstraint is a formula built from aset V of variables,a set ΣF of funtion symbols and a set ΣC of relation symbols, whih doesnot ontain ⊤, the neutral elements of additive linear onjuntions. The onstraint languageis the least set ontaining all atomi onstraints, marked or not by the unary exponentialonnetive ! (alled also �bang�) and losed by multipliative onjuntion (⊗) and existentialquanti�ation (∃).De�nition 2.2 (Constraint System) A linear onstraint system is a pair (C, C) where:� C is a onstraint language.� C is a subset of C × C whih de�nes the non-logial axioms of the onstraint system.We suppose that for all free variables ourring in c have a free ourrene in c1, . . . , cn.We will note ⊢C the least subset of C⋆×C ontaining C and losed by the of intuitionistilinear logi, noted in the following ILL (see appendix A for the omplete sequent alulus).Let C be a onstraint system. In the following, T will be the language of terms (noted t,
s, . . .) formed from V and ΣF .2.2 Syntax of LCC(C)The syntax of LCC(C) is presented here without delarations, only agents with two formsof ask agents.De�nition 2.3 The syntax of LCC(C) agents is given by the following grammar:
A ::= A ||A | ∃x.A | c | ∀~x(c → A) | ∀~x(c ⇒ A)As usual || stands for parallel omposition, the tell agent adds a onstraint to the store,

∃ hides variables in an agent and → stands for ask. The new onstrut ⇒ represents an askoperator, alled persistent ask, that always remains ative.Note that we do not provide an expliit hoie operator, sine the loal hoie operatoran easily be enoded with linear tokens and ask as follows:
A + B = ∃x(choice(x) || choice(x) ⇒ A || choice(x) ⇒ B)This enoding orresponds to the lassial enoding of + in CLP as two lauses with thesame head.RR n° 5981

6 Rémy Haemmerlé , François Fages , Sylvain Soliman2.3 Operational SemantisAs usual, the operational semantis of LCC is de�ned here with a strutural ongruene anda transition relation de�ned over on�gurations.De�nition 2.4 (Con�guration) A on�guration is a tuple 〈x; c; Γ〉 where x is a multi-setof variables, Γ a multi-set of agents and c a onstraint, alled store.De�nition 2.5 The strutural ongruene ≡ is the least ongruene satisfying the followingrule of parallel omposition:
〈x; c; A ||B, Γ〉 ≡ 〈x; c; A, B, Γ〉De�nition 2.6 The transition relation −→ is the least relation satisfying the rules of thetable 1.Equivalene 〈x; c; Γ〉 ≡ 〈x; c′; Γ′〉 −→ 〈y; d′; ∆′〉 ≡ 〈y; d; ∆〉

〈x; c; Γ〉 −→ 〈y; d; ∆〉Tell c ⊗ d ⊢C e
〈x; c; d, Γ〉 −→ 〈x; e; Γ〉Ask c ⊢C d ⊗ e

〈x; c; ∀~z(d → A), Γ〉 −→ 〈x; e; A[~s/~z], Γ〉Persistent ask c ⊢C d ⊗ e
〈x; c; ∀~z(d ⇒ A), Γ〉 −→ 〈x; e; A[~s/~z], ∀~z(d ⇒ A), Γ〉Hiding z 6∈ z ∪ fv(c, Γ)

〈x; c; ∃z.A, Γ〉 −→ 〈x ∪ {z}; c; A, Γ〉Table 1: Transition relationIn order to introdue the notion of prediates, ΣC is partitioned into {ΣD, ΣD} suhthat ΣD ontains 1. Intuitively, ΣD will ontain linear tokens whih should not be observed,i.e. prediates. The onstraint languages formed from ΣD and ΣD, are noted D and Drespetively.De�nition 2.7 (Observables) Let A be an LCC(C) agent suh that 〈∅; 1; A〉 ∗−→ 〈x; c; Γ〉.� the onstraint ∃x.c is an aessible store for A. INRIA

On Internalizing Modules as Agents in Conurrent Constraint Programming 7� the onstraint ∃x.c is a pseudo-suess for A, if Γ is a multi-set of persistent asks.� the onstraint ∃x.d is a suess of A, if it is a pseudo-suess for A suh that
〈x; c; Γ〉 6−→.� a suess d of A is a D-suess if d ∈ D.De�nition 2.8 (Operational Semantis)� Ostore(A) is the set of aessible store for the agent A.� Op-s(A) is the set of pseudo-suesses for the agent A.� OD-su(A) is the set of D-suesses for the agent A.2.4 ExamplesThe following examples illustrate, �rst, how usual delarations are reovered through theuse of persistent ask, and then how free variables are used to provide an environment.2.4.1 Dining PhilosophersThe lassial benhmark of expressiveness for onurrent languages is the dining philoso-phers. The problem onsists of N philosophers sitting around a table who do nothing butthink and eat. Between eah of them, there is a single fork. In order to eat, a philosophermust have both the fork on his right and the one on his left. As suggested in [2℄, this problemhas an extremely simple and elegant solution in LCC.An even more ompat solution is proposed here: the linear onstraint system in thisexample is a ombination of translation in ILL of standard equality onstraint over N andof linear onstraints token fork/1 and eat/1 with no other non-logial axioms than equalityaxiom shema: c(~x) ⊗ (~x=~y) c(~y) for any onstraint symbol c.Example(Dining Philosophers)

∀M, N.recphilo(M, N) ⇒ (
fork(M) ||
∀I(fork(I) ⊗ fork(I + 1 mod N) ⇒ eat(I)) ||
∀I(eat(I) ⇒ fork(I) ⊗ fork(I + 1 mod N)) ||
I 6= N → recphilo(M + 1, N))It is worth noting that the philosophers do not need to be relaunhed using a reursivedelaration as their enoding using persistent asks remains ative.

RR n° 5981

8 Rémy Haemmerlé , François Fages , Sylvain Soliman2.4.2 IteratorsA simple iterator an be enoded thanks to the persistent asks. A more omplete versionis provided in Set. 5.5 thanks to the modular onstruts, whih allow passing a variableassoiated to a persistent asks as argument of an iterator.Example(Iterator)
forall([]) ⇒ true ||
forall([H |T]) ⇒ arg(H) ⊗ forall(T) ||
∀X(arg(X) ⇒ Body) || forall(L)Here, the forall persistent ask will apply the ode of Body (alled through arg) to allthe elements of the list L.2.4.3 Dynami Clause AssertionIn the two previous examples we have no delaration sine in LCC they are replaed bypersistent asks. However, this allows us to go muh farther with for instane a very simpleand diret enoding of dynami lause assertions.The straightforward reursive implementation of the Fibonai sequene is an algorithmknown to be partiularly ine�ient, sine it omputes many values repeatedly. An elegantway to improve signi�antly the behavior of suh an algorithm is to store intermediaryomputed values using memoization. The omputation falls from exponential to linearomplexity.As the following example shows, the use of this tehnique is very natural in LCC. Themain idea is to use the naive reursive implementation, and to add in parallel ompositionwith the body of the main agent, the persistent:

∀F ′(fib(N, F ′) ⇒ F ′=F))in whih N and F are free variables, providing an environment. This agent will be inharge of onsuming the (future) alls to fib(N ′, F ′) asking for the omputation of the
N th Fibonai's number, and unify F ′ with the result that has already been alulated,transmitted through the variable F of the environment.Example(Fibonai):
∀N, F (fib(N, F) ⊗ N < 2 ⇒ F = N) ||
∀N, F (fib(N, F) ⊗ N > 1 ⇒ (

∃F1, F2.(fib(N − 1, F1) ⊗ fib(N − 2, F2) ⊗ F =F1 + F2) ||
∀F ′(fib(N, F ′) ⇒ F ′=F))Despite the fat that the worst omplexity of this program is still exponential, the hoieof a good strategy, for example seleting �rst �younger� persistent ask for onsuming lineartokens, leads to the result in a linear time.

INRIA

On Internalizing Modules as Agents in Conurrent Constraint Programming 9From a Logi Programming (LP) point of view, the persistent ask added at the endof the lause is nothing but a dynami lause assertion. Indeed the lassial Prolog built-in assert(p(X1,...,XN):-Body) ould be interpreted in LCC as the agent ∀X1,...,XN(p(X1,...,Xn) ⇒ Body). Moreover, variable renaming that assert/1made transparently,an be simply emulated by the expliit quanti�ation provided by the LCC operator ∃. LCCthus provides a theoretial framework, with a �rst order logial semantis, to dynami lauseassertion in the ontext of LP. It must be notied, however, that this implementation ofassert/1 is baktraking, i.e. that the asserted lause will be removed during the baktrak.This idea of providing an environment through free variables (like N and F for thelast persistent ask of the above example) atually enodes a losure, seen as ode with anenvironment. Note however that using only LCC does not prevent outside ode to lookinside the persistent ask, whih leads us to provide ode protetion through a system ofmodules, seen as restritions on the possible sope of some variables. Moreover, moduleswill provide simple tools to attah a variable to a persistent ask, and thus permit to pass apersistent ask as the argument of another all.3 Modular LCC3.1 Modular Constraint SystemsLet C be a onstraint system. To introdue the notion of modules, we suppose that ΣC isfurther partitioned into {ΣG, ΣM} suh that ΣG ontains = and 1 . The onstraints formedfrom ΣG (resp. ΣM) form the language G (resp. M) of built-in onstraints (resp. modularonstraints). Possibly banged atomi onstraints in G andM are noted g and m respetively.
c will be a notation for any onstraint in C.3.2 Syntax of MLCC(C)The syntax of MLCC extends the one of LCCwith a loalization operator of an agent is amodule:De�nition 3.1 The syntax of MLCC(C) agents is given by the following grammar:
A ::= t{A} | t :c | A ||A | ∃x.A | ∀~x(c → A) | ∀~x(c ⇒ A)The new onstruts t{A} stands for the loalization of agent A in the module t. The tellagent has now a new form: t :c, orresponding intuitively to adding the onstraint c of C inthe module named by the term t of T .3.3 Modular ConstraintsThe modularization of MLCC agents introdues a modularization of the onstraint store.

RR n° 5981

10 Rémy Haemmerlé , François Fages , Sylvain SolimanDe�nition 3.2 (Modular Store) A pre�xed onstraint m= t :m is an atomi onstraint(possibly banged) m of M pre�xed by a term t of T , t :m will be a notation for t :m1, . . . , t :mkif m=m1, . . . , mk.A modular store is a formula ∃x.(g|m) where g is a onjuntion of onstraints of Gwithout quanti�ation and m a multi-set of pre�xed onstraints.In the following we will use, or d to note modular stores and 1 to note the modularempty store (1|∅).De�nition 3.3 We de�ne an order on modular stores as follows:
transitivity

 >C d d >C ′ >C ′
substitution

g ⊢C t= t′ ⊗ g′

∃x.(g|m, t :m) >C ∃x.(g′|m, t′ :m)

entailment
g ⊗

⊗

m ⊢C g′ ⊗
⊗

m′

∃x.(g|m, t :m) >C ∃x.(g′|m, t :m′)By abuse of notation, we extend the tensor produt of linear onstraints to modularstores:De�nition 3.4 The onjuntion of two modular stores = ∃x.(g|m) and ′ = ∃x′.(g′|m′)is the store (⊗ ′) = ∃x, x′.(g ⊗ g′|m,m′) if x ∩ x′ = ∅.Lemma 3.5 (Monotoniity of ⊗) For all modular stores , d and d′ if d >C d′ then⊗ d >C ⊗ d′Proof: By indution on the proof π of (g′|m′) >C (g′′|m′′) we prove that (g ⊗ g′|m,m′) >C

(g ⊗ g′′|m,m′′). In this proof we suppose that all m's are not empty, if it is not the ase,just reall that c ⊗ 1 ⊢ c ⊢ c ⊗ 1.� π ends with transitivity: trivial.� π ends with substitution:
g′ ⊢C t= t′ ⊗ g′′

∃x.(g′|m, t :m) >C ∃x.(g′′|m, t′ :m)Thank to ⊗-left rule, we infer that g ⊗ g′ ⊢C g ⊗ t = t′ ⊗ g′′ and then onludeimmediately.� π ends with entailment:
g′ ⊗

⊗

m′ ⊢C g′′ ⊗
⊗

m′′

∃x.(g′|m, t :m′) >C ∃x.(g′′|m, t :m′′) INRIA

On Internalizing Modules as Agents in Conurrent Constraint Programming 11Thank to ⊗-left rule, we infer that
g ⊗ g′ ⊗

⊗

m′ ⊢C g ⊗ g′′ ⊗
⊗

m′′, and hene onlude.
�3.4 Operational SemantisWe will now provide a preise operational semantis to MLCC, based as usual on a notionof on�guration, through a transition relation and a strutural ongruene.De�nition 3.6 (Con�guration) A on�guration is a tuple 〈x; ∃y.(g|m); Γ〉 where x is amulti-set of variable, Γ a multi-set of loalized agents and ∃y.(g|m) a modular store suhthat y ∩ fv(Γ, x) = ∅De�nition 3.7 The strutural ongruene ≡ is the least ongruene satisfying the followingrule of parallel omposition:

〈x; ; t{A ||B}, Γ〉 ≡ 〈x; ; t{A}, t{B}, Γ〉De�nition 3.8 The transition relation −→ is the least relation satisfying the rules presentedin the table 2.This operational semantis enjoys the same kind of properties as the original LCC oper-ational semantis.Proposition 3.9 (Monotoniity) For every derivation δ = ((x; ; Γ) ∗−→ (x′; ′; Γ′)),there exists y free in δ, ∆ , and a modular store d suh as (x, y; ⊗d; Γ, ∆) ∗−→ (x′, y; ′ ⊗d; Γ′, ∆).Proof: By indution on the derivation δ:� For equivalene it is trivial.� For tell just note that thanks to the monotoniity of ⊗, if c ⊗ ∃y.(g|m) >C ′ then
c ⊗ ∃y.(g|m) ⊗ d >C ′ ⊗ d.� For ask and persistent ask note that thanks to the monotoniity of⊗, if >C ∃y.(g|m, t :
m) and d >C ∃y′.(g′|m′) then ⊗ d >C ∃y, y′.(g ⊗ g′|m,m′, t : m) and that if ⊗

g ⊗
⊗

m ⊢
⊗

g′′ ⊗
⊗

m′′ ⊗ d[~s/~z] then ⊗

(g ⊗ g′) ⊗
⊗

m ⊢
⊗

(g′′ ⊗ g′) ⊗
⊗

m′′ ⊗ d[~s/~z]� For hiding one just use the α-onversion to be sure that y is free in δ.� For other rules notie that they an be done in (x y; ⊗d; Γ, ∆) sine they do not haveondition about the hidden variables or the store.RR n° 5981

12 Rémy Haemmerlé , François Fages , Sylvain SolimanEquivalene 〈x; ; Γ〉 ≡ 〈x; ′; Γ′〉 −→ 〈y; d′; ∆′〉 ≡ 〈y; d; ∆〉

〈x; ; Γ〉 −→ 〈y; d; ∆〉Modularize 〈x; ; t{s{A}}, Γ〉 −→ 〈x; ; s{A}, Γ〉Tell d ⊢ ∃y.(g ⊗
⊗

m) ⊗ ∃y.(g|t :m) >C ′
〈x; ; s{t :d}, Γ〉 −→ 〈x; ′; Γ〉Ask > ∃y.(g|m, t :m) g ⊗

⊗

m ⊢ g′ ⊗
⊗

m′ ⊗ d[~s/~z]
〈x; ; t{∀~z(d → A)}, Γ〉 −→ 〈x; ∃y.(g′|m, t :m′); t{A[~s/~z]}, Γ〉Persistent Ask > ∃y.(g|m, t :m) g ⊗

⊗

m ⊢ g′ ⊗
⊗

m′ ⊗ d[~s/~z]
〈x; ; t{∀~z(d ⇒ A)}, Γ〉 −→

〈x; ∃y.(g′|m, t :m′); t{A[~s/~z]}, t{∀~z(d ⇒ A)}, Γ〉Hiding z 6∈ x ∪ fv(, Γ, t)
〈x; ; t{∃z.A}, Γ〉 −→ 〈x ∪ {z}; ; t{A}, Γ〉Table 2: Transition relation

�The observables of interest for MLCC are de�ned as previously by replaing �onstraints�by �modular stores�, where generally, D is hosen equal to G:De�nition 3.10 (Observables) Let A be an MLCC(C) agent suh that 〈∅; 1; x{A}〉 ∗−→
〈y; ; Γ〉 for some x 6∈ fv(A).� the modular store ∃y. is an aessible store for A.� the modular store ∃y. is a pseudo-suess for A, if Γ is a multi-set of persistent asks.� the modular store ∃y. is a suess of A, if it is a pseudo-suess for A suh that

〈y; ; Γ〉 6−→.� The modular store ∃y.(g|m) is a D-suess for A, if it is a suess for A suh thatm = ∅ and ∃y.g ∈ D3.5 Example: Beyond Dining PhilosophersLet us improve on the example of Set. 2.4.1 in order to demonstrate the expressive powergained from the modular onstruts and from the persistent ask. INRIA

On Internalizing Modules as Agents in Conurrent Constraint Programming 13The module onstruts allow to extend the dining philosophers' example to a �banquet�of several tables of philosophers, where eah table is an independent module. The orre-sponding MLCC agent below reates N tables of P philosophers:Example(Banqueting Philosophers).
banquet{

∀I, N, P.recTable(I, N, P) ⇒
∃Table.T able{

∀J.recPhilo(J) ⇒ (
Table : fork(J) ||
fork(J) ⊗ fork(J + 1 mod P) ⇒

Table : eat(J) ||
eat(J) ⇒

Table : (fork(J) ⊗ fork(J + 1 mod P)) ||
J 6= P → Table : recPhilo(J + 1)) ||

Table : recPhilo(0)
} ||
I 6= N → banquet : recTable(I + 1, N, P)

} Sine the logial semantis of MLCC enjoys the same orretion properties than thatof LCC (see theorem 4.4 below), the phase semantis of Linear Logi an be used to provesafety properties in way similar to [6℄, suh as for instane here, that no philosopher an usea fork belonging to another table.3.6 Code ProtetionOne important feature of a module system is its apability to hide implementations andguarantee the protetion of module ode. In MLCC, the ode protetion property means thatif a module t{∃x(x{A} || B)} is omposed of an interfae B and a hidden implementation
A, then a parallel agent C annot add any onstraint of the form x :c nor unblok any of itsask with suh a onstraint. This leads to the following property:Proposition 3.11 (Code protetion) Let A, B and C be three MLCC agents, and t aterm of T. Let

M = t{∃x(x{A} || B)} || CIf A and B do not add any onstraint on x to the store , exept those of the form x :c,then C annot add any onstraint of the form x : c nor unblok any of its ask with suh aonstraint in a derivation from M .
RR n° 5981

14 Rémy Haemmerlé , François Fages , Sylvain SolimanProof: We will suppose that x is not free in C nor in . If that is not the ase, then x (theone under the ∃) will be renamed by α-onversion in order to use the Hiding rule.We thus have a on�guration of the form: (x ∪ {x}; ; x{A}, t{B}, C), suh that x 6∈
fv(C, , t). Let us prove that as long as A and B do not add onstraints on x exept thoseof the form x : c, x will remain bound in C and thus C will not be able to tell nor ask anyonstraint on x. This is indeed enough sine the restrition on A and B forbids that anyask (resp. tell) on another term is unbloked by (resp. unbloks) a tell (resp. an ask) on xsine x :c will never imply a onstraint like x = t with x bound in t.We only need to prove this property for one step of derivation, it will then hold forany �nite derivation by indution. Let us onsider all the ases of derivation. If x{A} or
t{B} are the hosen agents, then the property trivially holds sine C did not hange. If Cis the agent hosen for derivation, the rules Modularize and Tell obviously don't hangeanything w.r.t. x being bound in C. The Hiding rule might make a bound variable free,but sine we have {x} ∪ x as �rst member of our on�guration, we know that the Hidingrule will only apply to another variable. The ase of the Equivalene rule is treated byindution on the equivalent on�gurations. For the Ask and Persistent Ask rules, theonly risk is that the renaming of the variables under ∀ replaes some of them by a termontaining x. However remember that the only replaement happens on variables appearingin a linear token d, when ⊢ ′ ⊗ d[t(x)/y]. From the lemma below and knowing that x isbound in , the above impliation with x free in t is impossible, i.e. x remains bound afteran Ask or a Persistent Ask rule. �Lemma 3.12 If x ∈ fv(m) suh as m is linear token and c ⊢C m ⊗ d then x ∈ fv(c)Proof: By indution on the proof π of c ⊢C m ⊗ d where d is an arbitrary onstraint. Justreall that we have supposed in the de�nition of C that all free variables ourring in theright hand side of a non-logial axiom appears in its left hand side. �4 Logial SemantisOne striking feature of LCC languages is their simple semantis in Linear Logi [6, 16, 18℄allowing for various proof methods oming from Linear Logi. In this setion, we generalizethe results of [6℄ to the riher fragment of LL ontaining banged impliations as used inMLCC programs.De�nition 4.1 In a module t, onstraints, agents and store are translated into formulas inthe following way (in the following we suppose with no loss of generality that x 6∈ fv(t) and
x ∩ fv(t) = ∅):

(c ⊗ d)t = ct ⊗ dt

(∃x.c)t = ∃x.ct g(s1, . . . , sn)t = g(s1, . . . , sn)
(!c)t =!ct m(s1, . . . , sn)t = ṁ(t, s1, . . . , sn)

INRIA

On Internalizing Modules as Agents in Conurrent Constraint Programming 15
(∃x.A)t = ∃x.At

s{A}t = As (s :c)t = cs

(A || B)t = At ⊗ Bt (∀x(c → A))t = ∀x(ct
⊸ At)

(∀x(c ⇒ A))t =!∀x(ct
⊸ At)For any multi-set Γ = (γ1, . . . , γn) of agents or pre�xed onstraints we de�ne Γt =

γ1
t ⊗ · · · ⊗ γn

t and ∅t = 1. Finally agents, Stores and Con�gurations are translated intoformulae in the following way, where x ∈ fv(A, , Γ):
∃y. (g|

⊎

i{ti :mi})
† = ∃y.

(

g ⊗
⊗

i
mi

ti

)

A† = Ax 〈y; ; Γ〉† = ∃y.(† ⊗ Γx)

(C†, C†) is the onstraint system formed from (ΣG ⊎ Σ̇M), ΣT and V suh that i�
c1, . . . , cn C c then cx

1
, . . . , cx

n C† cx with x 6∈ fv(c, c1, . . . , cn) and that for all ṁ ∈ Σ̇M

ṁ(x, ~z), !x = y ⊢C† ṁ(y, ~z).Lemma 4.2 Let Γ be a sequene of onstraints, c be a onstraint and x be a variable freein Γ and c, if Γ ⊢C c then Γx ⊢C† cx.Proof: By indution on the proof of Γ ⊢C c. �Lemma 4.3 (Soundness of >C) For all modular stores and d if >C d then † ⊢C† d†.Proof: As previously we suppose that all g's and all m's are not empty, if it is not the asethat just reall that c ⊗ 1 ⊢ c ⊢ c ⊗ 1.By indution on the proof π of >C d:� π ends with transitivity rules: >C ′ ′ >C d >C dBy indution hypothesis, † ⊢C† ′† and ′† ⊢C† d†, then thanks to ut rule, we have† ⊢C† d†.� π ends with substitution:
g ⊢C t= t′ ⊗ g′

∃x.(g|m, t :m) >C ∃x.(g′|m, t′ :m)

g ⊢C t= t′ ⊗ g′

g ⊢C† t= t′ ⊗ g′
l 4.2

g ⊗ mt ⊢C† t= t′ ⊗ g′ ⊗ mt
⊗-r x=y′ ⊗ mx ⊢C† my

t= t′ ⊗ mt ⊢C† mt′
∀

g ⊗ mt ⊢C† g′ ⊗ mt′
ut

RR n° 5981

16 Rémy Haemmerlé , François Fages , Sylvain Soliman� π ends with entailment:
g ⊗

⊗

m ⊢C g′ ⊗
⊗

m′

∃x.(g|m, t :m) >C ∃x.(g′|m, t :m′)

g ⊗
⊗

m ⊢C g′ ⊗
⊗

m′

g ⊗
⊗

mt ⊢C† g′ ⊗
⊗

m′t l 4.2
g ⊗

⊗m† ⊗
⊗

mt ⊢C† g′ ⊗
⊗m† ⊗

⊗

m′t
⊗-R

∃x.(g ⊗
⊗m† ⊗

⊗

mt) ⊢C† ∃x.(g′ ⊗
⊗m† ⊗

⊗

m′t)
∃

�Theorem 4.4 (Soundness) Let κ and κ′ be two on�gurations.If κ ≡ κ′ then κ† ⊣⊢C† κ′†If κ ∗−→ κ′ then κ† ⊢C† κ′†Proof: By indution on ≡ and ∗−→:� for parallel omposition, equivalene and modularize it is immediate;� for hiding, ∃x.(A ⊗ B) ⊣⊢ A ⊗ ∃x.B and ∃x.A ⊣⊢ A if x 6∈ fv(A);� for tell:
d ⊢ g ⊗

⊗m ⊗ (g|m) >C ′
〈x; ; s{t :d}, Γ〉 −→ 〈x; ′; Γ〉

d ⊢C g ⊗
⊗

m′

dt ⊢C† g ⊗
⊗

m′t l 4.2 ⊗ (g|m) >C ′† ⊗ g ⊗
⊗

m′t ⊢C† ′† l 4.3† ⊗ dt ⊢C† ′† cut

∃x.(† ⊗ dt ⊗ Γ†) ⊢C† ∃x.(′† ⊗ Γ†)
∃,⊗� for ask: >C ∃y.(g|m, t :m) g ⊗

⊗

m ⊢C g′ ⊗
⊗

m′ ⊗ d[~s/~z]
〈x; ; t{∀~z(d → A)}, Γ〉 −→

〈x; ∃y.(g′|m, t :m′); t{A[~s/~z]}, Γ〉First of all notie that if y ∩ fv(t) = ∅ then (A[s/y])t = At[s/y]. Now let ′ = (g|m, t :
m), ′′ = (g′|m, t :m′) and B = (dt

⊸ At).
π1 =

g ⊗
⊗

m ⊢C g′ ⊗
⊗

m′ ⊗ d[~s/~z]

g ⊗
⊗

mt ⊢C† g′ ⊗
⊗

m′t ⊗ dt[~s/~z]
l 4.2′† ⊢C† ′′† ⊗ dt[~s/~z]
⊗ INRIA

On Internalizing Modules as Agents in Conurrent Constraint Programming 17
π2 =

 >C ∃y.′† ⊢C† ∃y.′† l 4.3
π2

π1 ′′† ⊗ dt[~s/~z], B[~s/~z] ⊢C† ′′† ⊗ At[~s/~z]
⊗, ⊸′†, B[~s/~z],⊢C† ′′† ⊗ At[~s/~z]
ut†, ∀z.B,⊢C† ∃y.′′† ⊗ At[~s/~z]

∃,∀

∃y.′†, ∀z.B,⊢C† ∃y.′′† ⊗ At[~s/~z]
ut

∃x.(† ⊗ ∀z.B ⊗ Γ†) ⊢C† ∃x.(∃y.′′† ⊗ At[~s/~z] ⊗ Γ†)
∃,⊗� for persistent ask: > ∃y.(g|m, t :m) g ⊗

⊗

m ⊢ g′ ⊗
⊗

m′ ⊗ d[~s/~z]
〈x; ; t{∀~z(d ⇒ A)}, Γ〉 −→

〈x; ∃y.(g′|m, t :m′); t{A[~s/~z]}, t{∀~z(d ⇒ A)}, Γ〉By using the previous notation for ′, ′′ and B we have:†, ∀z.B, !∀z.B, Γ† ⊢C† † ⊗ ∀z.B⊗!∀z.B ⊗ Γ†
⊗†, !∀z.B, Γ† ⊢C† † ⊗ ∀z.B⊗!∀z.B ⊗ Γ†
!

∃x.(†⊗!∀z.B ⊗ Γ†) ⊢C† ∃x.(† ⊗ ∀z.B⊗!∀z.B ⊗ Γ†)
∃,⊗By using the result of the previous ase we an onlude.

�Lemma 4.5 (Completeness of >C) For all modular stores and d, if † ⊢C† d† then >C d.Proof: Let ()−† be a partial translation of multi-sets of onstraints into non quanti�edstores de�ned as follow:
g−† = (g|∅) ṁ(t, ~s)−† = (∅|t :m(~s))

(!g)−† = (!g|∅) (!ṁ(t, ~s))−† = (∅|!t :m(~s))
(c ⊗ c′)−† = c−† ⊗ c′−† (Γ, ∆)−† = Γ−† ⊗ ∆−†First we prove the intermediary result: for every multi-set of onjuntions of onstraints Γand every onjuntion of onstraints d if Γ ⊢C† d then Γ−† >C d−†. We prove this result byindution on the proof π of the sequent Γ ⊢C† d.� π is an axiom of the form Γx ⊢C† dx suh as Γ ⊢C d:let (Γx)−† = (g|x : m) and (dx)−† = (g′|x : m′). Now just use the entailment rule toonlude.RR n° 5981

18 Rémy Haemmerlé , François Fages , Sylvain Soliman� π is an axiom of the form ṁ(x, ~z), x = y ⊢C† ṁ(y, ~z): in suh a ase just use thesubstitution rule.� π ends with ut:
Γ ⊢C† c c, ∆ ⊢C† d

Γ, ∆ ⊢C† dBy indution hypothesis, Γ−† >C c−† and c−†⊗∆−† >C d−†. Thanks to monotoniityof ⊗ (lemma 3.5) and using the transitivity rule we an onlude that Γ−† ⊗ ∆−† >C

d−†.� π ends with ⊗-left: trivial� π ends with ⊗-right:
Γ ⊢C† c ∆ ⊢C† d

Γ, ∆ ⊢C† c ⊗ dBy indution hypothesis Γ−† >C c−† and ∆−† >C d−†. By using the monotoniity of
⊗ (lemma 3.5) we have Γ−† ⊗ ∆−† >C c−† ⊗ ∆−† and c−† ⊗ ∆−† >C c−† ⊗ d−†. Byusing the transitivity rule we have �nally Γ−† ⊗ ∆−† >C c−† ⊗ d−†.� π ends with one of the four rules for !: Just notie that the four following sequents aretrue:� c ⊗ d ⊢ c⊗!d for derelition;� !c ⊢ c for promotion;� c ⊢ c⊗!d for weakening;� c⊗!d⊗!d ⊢ c⊗!d for ontration.Now it is easy to prove by an indution on that for every non quanti�ed store , wehave (†)−†. Hene we prove the result on non quanti�ed store. From here we an onludeeasily by noting that if c ⊢ d then ∃x.c ⊢ ∃x.d �Lemma 4.6 For any onstraint c of C, there exists a set of variables x not free in c and on-straint without quanti�ation g of G and a multi-set of atomi onstraints (possibly banged)

m of M suh that c ⊣⊢ ∃x.g ⊗
⊗

mProof: By indution on c:� c is an atomi onstraint (possibly banged) of G: trivial.� c is an atomi onstraint (possibly banged) of M: c ⊣⊢ 1⊗ c.� c = c′ ⊗ c′′: By indution hypothesis we have c′ ⊣⊢ ∃x′.(g′ ⊗
⊗

m′) and c′′ ⊣⊢
∃x′′.(g′′

⊗

m′′). We an suppose without lost of generality that x′ ∩ fv(c′′) = ∅ and
x′′ ∩ fv(c′) = ∅ and hene easily onluded. INRIA

On Internalizing Modules as Agents in Conurrent Constraint Programming 19� c = ∃x′.c′: trivial.
�Lemma 4.7 For any multi-set of agents t1{A1}, . . . , tk{Ak} and any onstraint c, if

At1
1

. . . Atk

k ⊢C† c then there exists a derivation (∅;1; t1{A1}, . . . , tk{Ak})
∗−→ (x; ; !Γ) where† ⊢C† c and !Γ is a sequene of persistent asks , the variables x are free in c.Proof: Let us prove the result, by indution on the sequent At1

1
, . . . , Atk

k ⊢C† c where the
Ai's are agents and c a onstraint. We shall onsider without loss of generality, that in πthe left introdution of ∀ and of ⊸ are always onseutive (if it is not the ase, the rulesan be permuted to obtain suh a proof, see for example [7℄, noting that the promotion isthe only ase of unpermutability with ∀-left appears only in the onstraint part, the rightside of the sequent, and thus never bellow a ⊸-right).First remark that this indution is meaningful. Indeed the only uts whih annot beeliminated in an ILL proof deal with non-logial axioms, so they are of one of the followingform:

Γ† ⊢C† c c ⊢C† d

Γ† ⊢C† d

c ⊢C† c′ Γ†, c′ ⊢C† d

Γ†, c ⊢C† dHene the appliation of the ut rule introdues sequents in whih the new formula on theright is always a onstraint. On the other hand the formulae on the left hand side remainsub-formulae of translation of agents.One remarks also that (At)s = At and s{t{A}} −→ At hene we an suppose withoutlost of generality that all Ai's are not of the form t′i{A
′
i}.By indution on the proof π of At1

1
, . . . , Atk

k ⊢C† c:� π is an axiom: c ⊢C† d. Sine c is a onstraint, Γ is of the form t{s : c′} suh that
c′s = c. Let = ∃y.(g|s :m) suh that ∃y.(g⊗

⊗

m) ⊣⊢ c′ (we know it is possible thanksto the lemma 4.6). Then we have, by using the rule tell, (∅;1; t{s : c′}) −→∗ (∅; ; ∅)and by using the lemma 4.2 † ⊢C† c.� π ends with a ut:
Γ† ⊢ c c ⊢ d

Γ† ⊢ d
or c1 ⊢ c2 Γ†, c2 ⊢ d

Γ†, c1 ⊢ dThe former ase is immediate. In the latter there are two possible sub-ases the axiomis either of the form c′x
1

⊢C† c′x
2
suh c′

1
⊢C c′

2
or of the form x=y⊗ ṁ(x,~t) ⊢C† ṁ(y,~t).By y indution hypothesis we know that (∅;1; Γ, c2)

∗−→ (x;d; !Γ′) suh that ∃x.d† ⊢C†

d. Just notie that the appliation of the tell rule that redues the agent orrespondingto c2 an be applied on c1 sine c′
1
⊢C c′

2
and ′ ⊗ ((x = y)|x :m(~t)) ⊢ c′ ⊗ (∅|y :m(~t)).� π ends with 1-left: note that (∅;1; t{s :1},Γ) −→∗ (∅;1;Γ)

RR n° 5981

20 Rémy Haemmerlé , François Fages , Sylvain Soliman� π ends with a ⊗-left:
Γ†, A ⊗ B ⊢C† c

Γ†, A, B ⊢C† c ⊗ d� either B ⊗ B′ is the translation a parallel omposition of two agents, in suh aase one an use the parallel omposition rule.� or B ⊗ B′ is the translation of a onstraint of the form t : (d ⊗ d′), in suh a asejust notie that (∅;1; x{t : (d ⊗ d′)}, Γ) and (∅;1; x{t : d}, x{t : d′}, Γ) have thesame pseudo-suesses.� π ends with a ⊗-right:
Γ† ⊢C† c ∆ ⊢C† d

Γ†, ∆† ⊢C† c ⊗ dBy indution hypothesis, we know there exists a derivation (∅;1; Γ) ∗−→ (x; ; !Γ′) and
(∅;1; ∆) ∗−→ (y;d; !∆′) suh ∃x.† ⊢C† c and ∃y.d† ⊢C† d. Thanks to the monotoniityof ∗−→ we an infer that (∅;1; Γ, ∆) ∗−→ (x; ; !Γ′, ∆) ∗−→ (x, y; ⊗ d; !Γ′, !∆′). Toonlude we just notie that aording to indution hypothesis, ∃x y.(⊗d)† ⊢C† c⊗dif x ∩ fv(d, d) 6= ∅ and y ∩ fv(, c) 6= ∅.� π ends with ∃-right: immediate� π ends with ∃-left:

Γ†, At ⊢C† c

Γ†, ∃x.At ⊢C† cBy indution hypothesis, we have (∅;1; t{A}, Γ) ∗−→ (y; ; !Γ′)) with ∃y.† ⊢C† c. Aswe an suppose without lost of generality x 6∈ y ∩ fvΓ (sine we work modulo α-onversation) and as (∅;1; t{∃x.A}, Γ) ∗−→ (x;1; t{A}, Γ), by monotoniity of ∗−→ wehave
(∅;1; t{∃x.A}, Γ) ∗−→ (x, y; ; !Γ′). Beause x 6∈ fv(c) and ∃y.† ⊢C† c, we have
∃x.∃y.† ⊢C† c� π ends with (thanks to the preliminary remarks on the permutability of rules):

Γ† ⊢C† dt[~s/~z] ∆†, At[~s/~z] ⊢C† c
Γ†, ∆†, dt[~s/~z] ⊸ At[~s/~x] ⊢C† c

Γ†, ∆†, ∀~z.(dt
⊸ At) ⊢C† cBy indution hypothesis we have (∅;1; Γ) ∗−→ (y;d; !Γ′) suh that ∃y.d† ⊢C† dt[~s/~z].By lemma 4.6 we know also there exists a onstraint ∃x′.(g⊗

⊗

m) suh that ∃x′.(g⊗
⊗

m) ⊣⊢ d[~s/~z] and then by lemmas 4.2 and 4.5 we infer that d >C ∃x′.(g|t :m). Thusby using the monotoniity of ∗−→ and by applying the ask rule, one has (∅;1; t{∀~z(c →
A)}, !Γ) ∗−→ (x;d; t{∀~z(c → A)}, !Γ′) −→ (x;1; Γ′, t{A[~s/~z]}). Moreover by indution

INRIA

On Internalizing Modules as Agents in Conurrent Constraint Programming 21hypothesis, (∅;1; t{A[~s/~z]}, ∆) ∗−→ (y; ; !∆′) with ∃y.† ⊢C† c, hene by using oneagain the monotoniity of ∗−→ we infer (∅;1; Γ, ∆, t{∀~z(c → A)}) ∗−→ (x, y; ; !Γ′, !∆′).As ∃y′′y.† ⊢C† c if ∃y.† ⊢C† c and y′′ ∩ fv(c) = ∅ we an onlude.� π ends with a derelition. Thanks to the preliminary remarks on the permutability ofrules there are only two sub-ases:
Γ†, dt ⊢C† c

Γ†, !dt ⊢C† c
or Γ†, ∀~z.(dt

⊸ At) ⊢C† c

Γ†, !∀~z.(dt ⊸ At) ⊢C† cIn the former ase, it is lear, just reall that !c ⊢ c. In the latter by indutionhypothesis, (∅;1; Γ, t{∀~x(d → A)}) ∗−→ (y; ; !Γ′), with ∃y.† ⊢C† c. Therefore byreplaing in the previous derivation the ask rule that redue the t{∀~x(d → A)} agent(this redution is neessary, otherwise !Γ′ would not be a sequene of persistent asksonly), by the persistent ask rule we obtain (∅;1; t{∀~x(d ⇒ A)}, Γ) ∗−→ (y; ; ∀~x(d ⇒
A)}, !Γ′). The result is then immediate.� π ends with a promotion:

!Γ† ⊢C† !c

!Γ† ⊢C† cBy indution hypothesis, (∅;1; !Γ) ∗−→ (y; ; !Γ′) with ∃y.† ⊢C† c. Just reall that
!c ⊢ c to onlude.� π ends with a weakening:

Γ† ⊢C† c

Γ†, !dt ⊢C† c
or Γ† ⊢C† c

Γ†, !∀x(dt ⊸ At) ⊢C† cIn the former ase it is enough to notie that (∅;1; s{t :!d}, Γ) ∗−→ (∅;1; Γ) sine
!dt ⊢ 1. In the latter one just remarks that the addition of some persistent asks to amulti-set of an agent does not hange its pseudo-suesses.� π ends with a ontration:

Γ†, !dt, !dt ⊢C† c

Γ†, !dt ⊢C† c
or

Γ†, !∀x(dt
⊸ At), !∀x(dt

⊸ At) ⊢C† c

Γ†, !∀x(dt ⊸ At) ⊢C† cIn the former, just note that for d suh that d† ⊣⊢!dt (that is possible thanks to thelemma 4.6), we have !dt ⊢ d† ⊗ d†. In the latter having two ourrenes of the agent
∀z(d ⇒ A) does not hange anything, sine all onstraint onsumed by two identialpersistent asks an be onsumed by only one.RR n° 5981

22 Rémy Haemmerlé , François Fages , Sylvain Soliman
�Now, for a set S of onstraint of C†, let us note ↓ S = {c ∈ C†|∃d ∈ S, d ⊢C† c}Proposition 4.8 (Observation of pseudo-suesses) For every MLCC(C) agent A, wehave:

↓ (Op-s(A)†) = {c ∈ C† | A† ⊢C† c}Proof: One inlusion is obvious by applying the soundness theorem and by noting that for
!Γ, c ⊢ c. The other is a diret onsequene of the previous lemma. �Theorem 4.9 (Observation of stores) For every MLCC(C) agent A, we have:

↓ (Ostore(A)†) = {c ∈ C† | A† ⊢C† c ⊗⊤}Proof: One inlusion is still obvious by applying the previous theorem 4.4 and by notingthat Γ, c ⊢ c ⊗ ⊤. For the other inlusion use the previous proposition, above the rightintrodution of the tensor onnetive in c⊗⊤ and note that the property is preserved by allleft introdution rules. �Beause our translation of MLCC agents implies the use of bangs (!) for the persistentasks, we are not able to exatly haraterize �nal stores (and hene suesses). Indeed therule of weakening for the ! allows forgetting a formula orresponding to a persistent askbefore it onsumes any onstraints it ould. Nonetheless by supposing some properties overthe onstraints onsumed by the persistent asks, we an haraterize preisely an interestingsubset of suesses.De�nition 4.10 (D-over agent) An agent is D-over if no guard c of its persistent asksbelongs to D.De�nition 4.11 (D-proof system) We will say that C is a D-proof onstraint system, iffor any onstraint d of D and any onstraint c of C we have:if d ⊢C c ⊗⊤ then c ∈ DTheorem 4.12 (Observation of D-suess) Forany D-over agent A, if C is a D-proof system we have:
↓ (OD-su(A)†) = {d ∈ D | A† ⊢C† d}Proof: One inlusion is obvious. Thank to the proposition 4.8, we know that for ev-ery onstraint d of D, there exists a derivation (∅;1; x{A}) ∗−→ κ = (y;d; t1{∀z1(c1 ⇒

A1)}, . . . , tk{∀zk(ck ⇒ Ak)}) suh that ∃y.d† ⊢C† d. Now to prove the other inlusion, wejust need to prove that suh a κ is irreduible.First note that if C is D-proof, then C† is D-proof too. Then let us suppose that κ isreduible, in other word there exists a persistent ask ti{∀zi(ci ⇒ Ai)} (1 ≤ i ≤ k) in κ suhthat d >C ∃z.(g|m, ti :m) and g ⊗
⊗

m ⊢C g′ ⊗
⊗

m′ ⊗ ci[~s/~zi]. Thanks to lemma 4.3, wehave ∃z.(g ⊗
⊗m† ⊗ mti) ⊢C† c and then, sine C† is D-proof, we infer that g ∈ D, m = ∅and m = ∅. Hene we have g ⊗ 1 ⊢C ci[~s/~zi] ⊗ ⊤ whih ontradits the hypotheses, sine

ci 6∈ D, qed. �INRIA

On Internalizing Modules as Agents in Conurrent Constraint Programming 235 A Module System for CLPThrough simple syntatial restritions, the MLCC sheme presented above an be instan-tiated into a powerful yet simple module system for Constraint Logi Programming (CLP)languages. This resulting language, alled mCLP for modular CLP, has been implementedin a �proof of onept� prototype available for download at the following address:http://ontraintes.inria.fr/�haemmerl/pub/mlp.tgz5.1 mCLP SyntaxWe adopt for mCLP a pragmati syntax lose to that of lassial CLP systems. The syntaxde�ned by the following grammar distinguishes delarations from goals as usual:G ::= module(T,E){D} | T:p(S1,...,Sn) |p(S1,...,Sn) | (S1,...,Sn) | G,G | G;GD ::= p(S1,...,Sn) :- G.D | p(S1,...,Sn).D |:- G.D | ǫwhere T is a term, E a list of variables, S1,...,Sn a sequene of terms, a onstraint of Cand p a prediate onstrut using the prediate symbols alphabet ΣM .An mCLP delaration is either a lause, a fat or a goal of the form :- G. exeuted atthe initialization of the module.Besides the usual onjuntion, disjuntion and onstraint posting goals, the goal module(T,E){D} denotes the instantiation of a module T with the implementation D and the environ-ment E. This environment is simply a list of global variables whose sope is the entire modulelauses. If T is a free variable, the resulting module is anonymous, whereas if T is an atom(or a ompound term), it is a named module.The goal T:p(S1, ..., Sn) denotes the external all of the prediate p/n de�ned inthe module T, whih is distinguished from the loal all, noted T:p(S1, ..., Sn), of theprediate p/n de�ned in the urrent module.5.2 Interpretation of mCLP into MLCCClassial lauses are interpreted by persistent asks waiting for the linear token that representsthe proedure all. The module environment provides a new feature allowing for globalvariables in a module. Formally, the interpretation of mCLP goals and delaration in MLCCis de�ned by [[G]]T and [[D]]T
E
where T is the urrent module and E the urrent environment:

[[G1, G2]]
T = [[G1]]

T || [[G2]]
T [[P]]T = T :P

[[G1; G2]]
T = [[G1]]

T + [[G2]]
T [[C]]T = T : (!C)

[[module(S, E){D}]]T = S{[[D]]S
E
} [[S :P]]T = S :P

RR n° 5981

24 Rémy Haemmerlé , François Fages , Sylvain Soliman
[[:- G.D]]T

E
= ∃Y[[G]]S || [[D]]T

E

[[p(~t).D]]T
E

= ∀~X(p(~X) ⇒ ∃Y[[~X=~t]]S) || [[D]]T
E

[[p(~t) :-G.D]]T
E

= ∀~X(p(~X) ⇒ ∃Y[[~X = ~t, G]]S) || [[D]]T
Ewhere ~X is a set of fresh variables and Y = fv(~t, G) \ E.This translation is supposed to work on the linear onstraint system (CP , CP) suh that

CP is the smallest set respeting the following onditions:� If (C C◦ C) then (C CP C) .� For any prediate symbol p (

p(~X),~X=~Y CP p(~Y)
)

.where C◦ is the translation of the non-logial axioms of the lassial onstraint system Cinto linear logi (using for example the well know Girard's translation lassial logial intolinear logi [8℄).Notie that all the [[A]]T
E
are C-over (see Def. 4.10) and that CP is C-proof (see Def. 4.11),therefore all results of previous Setion, and in partiular theorem 4.12, an be applied tomCLP programs.5.3 Global VariablesModule environments introdue global variables, i.e. variables shared among the di�erentlauses of the module. This onstrut an be used for instane to avoid passing an argumentto numerous module prediates. However, these variables are still usual, baktrakable, logivariables.The following ode illustrates the use of a global variable Depth to implement a Prologmeta-interpreter with a fair searh strategy proeeding by iterative deepening [19℄.The prediate lause looks for lause de�nitions [5℄; the prediate for(I,Begin,End)produes a hoie point where I will be assigned any of the integer values between Beginand End (see for instane [3℄).Example(Iterative Deepening)::-module(iter_deep, [Depth℄){solve(G):-for(Depth,1,1000),write('Depth: '),write(Depth),nl,iterative_deepening(G,0).iterative_deepening(_,I) :-I >= Depth,!, INRIA

On Internalizing Modules as Agents in Conurrent Constraint Programming 25fail.iterative_deepening(((A,B)),I) :-!,iterative_deepening(A,I),iterative_deepening(B,I).iterative_deepening(A,_) :-lause((A:-true)),!.iterative_deepening(A,I) :-lause((A:-B)),J is I+1,iterative_deepening(B,J).}5.4 Code HidingAs above, one an use an environment to make a variable global to a module, but this time,this variable will be used to keep an anonymous inside module hidden from the outside.Sine the name of the inside module is this variable, only known to the lauses inside themodule de�nition, the orresponding implementation is aessible only from the lauses ofthe outside module.This is illustrated in the following program that provides the sort prediate and hidesthe implementation quiksort prediate.Example(Quiksort)::- module(sort, [Impl℄){sort(List,SortedList):-Impl:quiksort(List, SortedList).:- module(Impl, [℄){quiksort([℄,[℄).quiksort([X|Tail℄, Sorted) :-split(X, Tail, Small, Big),quiksort(Small, SortedSmall),quiksort(Big, SortedBig),list:append(SortedSmall,[X|SortedBig℄, Sorted).
RR n° 5981

26 Rémy Haemmerlé , François Fages , Sylvain Solimansplit(X, [℄,[℄,[℄).split(X, [Y|Tail℄, [Y|Small℄, Big) :-X<Y, !,split(X, Tail, Small, Big).split(X, [Y|Tail℄, Small, [Y|Big℄) :-split(X, Tail, Small, Big).}.}. The ode protetion property 3.6 ensures that no all to the quiksort prediate ispossible outside the sort prediate.5.5 ClosuresThe lassial notion of losure an be reovered through the de�nition of modules with aprediate arg/1 waiting for the argument to apply the persitent ask (orresponding to thelauses of arg/1).This makes it possible to de�ne iterators on data strutures suh as forall or existson lists, passing the losure as an argument as follows:Example::- module(iterator, [℄){forall([℄, _).forall([H|T℄, C) :- C:arg(H), forall(T, C).exists([H|_℄, C) :- C:arg(H).exists([_|T℄, C) :- exists(T, C).}. The usual domain/3 (or fd_domain/3) built-in prediate of �nite domain onstraintsolvers, an be implemented using the list iterator on its arguments:Example(fd_domain):fd_domain(Vars, Min, Max):-module(Cl , [Min, Max℄){arg(X) :- Min=<X , X=<Max.},(list(Vars) -> iterator:forall(Vars, Cl) ;var(Vars) -> Cl:arg(Vars)).
INRIA

On Internalizing Modules as Agents in Conurrent Constraint Programming 275.6 Module ParameterizationParameterized modules greatly enhane the programmer apabilities to re-use ode by mak-ing its module implementation depend on other modules.Combining the idea of using the environment to parameterize a losure, and the odehiding features demonstrated above, one an obtain a module with a hidden implementation,parameterized from outside.The following example shows how to parameterize the previous sort module by reatinga generi_sort/2 prediate that dynamially reates a sorting module (its �rst argument)using the omparison prediate given as seond argument.Example(Parameterized quiksort)::- module(sort, [℄){generi_sort(Sort, Order) :-module(Sort, [Order, Impl℄){sort(List, SortedList):-Impl:quiksort(List, SortedList).:- module(Impl, [Order℄){quiksort([℄,[℄).quiksort([X|Tail℄, Sorted) :-split(X, Tail, Small, Big),quiksort(Small, SortedSmall),quiksort(Big, SortedBig),list:append(SortedSmall,[X|SortedBig℄, Sorted).split(X, [℄,[℄,[℄).split(X, [Y|Tail℄, [Y|Small℄, Big) :-Order:geq(X,Y), !,split(X, Tail, Small, Big).split(X, [Y|Tail℄, Small, [Y|Big℄) :-split(X, Tail, Small, Big).}.}.}.
RR n° 5981

28 Rémy Haemmerlé , François Fages , Sylvain Soliman6 ConlusionWe have shown that a powerful module system for linear onurrent onstraint program-ming (LCC) languages an be internalized into LCC, by representing delarations by persis-tent asks, referening modules by variables and thus bene�ting from implementation hidingthrough the usual hiding operator for variables. We have presented the operational seman-tis of MLCC programs, showing a ode protetion property, and proving the equivalenewith the logial semantis in linear logi for the observation of stores and suesses.These results have been illustrated with an instantiation of the MLCC sheme to on-straint logi programs, leading to a simple yet powerful module system for CLP supportingode hiding, losures and module parameterization.We believe that this natural integration of module systems into programming languagesis of a quite general sope for programming languages having logial variables.Referenes[1℄ J.-M. Andreoli and R. Pareshi. Linear objets: Logial proesses with built-in inheri-tane. New Generation Computing, 9:445�473, 1991.[2℄ E. Best, F. S. de Boer, and C. Palamidessi. Conurrent onstraint programming with in-formation removal. In Proeedings of Coordination, Leture Notes in Computer Siene.Springer-Verlag, 1997.[3℄ D. Diaz. GNU Prolog user's manual, 1999�2003.[4℄ D. Duhier, L. Kornstaedt, C. Shulte, and G. Smolka. A higher-order module disiplinewith separate ompilation, dynami linking, and pikling. draft, 1998.[5℄ P. D. A. Ed-Dbali and L. Cervoni. Prolog: The Standard. Springer-Verlag, New York,1996.[6℄ F. Fages, P. Ruet, and S. Soliman. Linear onurrent onstraint programming: opera-tional and phase semantis. Information and Computation, 165(1):14�41, Feb. 2001.[7℄ D. Galmihe and G. Perrier. On proof normalization in linear logi. Theoretial Com-puter Siene, 135(1):67�110, 1994.[8℄ J.-Y. Girard. Linear logi. Theoretial Computer Siene, 50(1), 1987.[9℄ R. Haemmerlé and F. Fages. Modules for Prolog revisited. Tehnial Report RR-5869,INRIA, 2006.[10℄ L. Hallnäs. A proof-theoreti approah to logi programming. ii. programs as de�nitions.Journal of Logi and Computation, 1(5):635�660, Ot. 1991.
INRIA

On Internalizing Modules as Agents in Conurrent Constraint Programming 29[11℄ J. Harland, D. J. Pym, and M. Winiko�. Programming in lygon: An overview. In Pro-eedings of the Fifth International Conferene on Algebrai Methodology and SoftwareTehnology, Munih, pages 391�405, July 1996.[12℄ J. S. Hodas and D. Miller. Logi programming in a fragment of intuitionisti linearlogi. Information and Computation, 110(2):327�365, 1994.[13℄ X. Leroy. A modular module system. Journal of Funtional Programming, 10(3):269�303, 2000.[14℄ C. Palamidessi, V. Saraswat, F. Valenia, and B. Vitor. On the expressiveness oflinearity vs persistene in the asyhronous pi-alulus. In Pro. of LICS'06, pages59�68. IEEE Computer Soiety Press, 2006.[15℄ P. V. Roy, P. Brand, D. Duhier, S. Haridi, M. Henz, and C. Shulte. Logi programmingin the ontext of multiparadigm programming: the Oz experiene. Theory and Pratieof Logi Programming, 3(6):715�763, Nov. 2003.[16℄ P. Ruet and F. Fages. Conurrent onstraint programming and mixed non-ommutativelinear logi. In Pro. of Computer Siene Logi CSL'97, volume 1414 of Leture Notesin Computer Siene, pages 406�423. Springer-Verlag, Aug. 1997.[17℄ V. A. Saraswat. Conurrent onstraint programming. ACM Dotoral DissertationAwards. MIT Press, 1993.[18℄ V. A. Saraswat and P. Linoln. Higher-order linear onurrent onstraint programming.Tehnial report, Xerox Par, 1992.[19℄ M. E. Stikel. A prolog tehnology theorem prover: implementation by an extendedprolog ompiler. Journal of Automated Reasoning, 44:353�380, 1988.A Intuitionisti Linear LogiWe give here a brief desription of the intuitionisti version of Linear Logi (ILL) with itssequent alulus [8℄.De�nition A.1 (Formulae) The intuitionisti formulae are built from atoms p, q, . . . withthe multipliative onnetives ⊗ (tensor) and ⊸ (linear impliation), the additive onne-tives & (with) and ⊕ (plus) the exponential onnetive ! (bang), and the universal ∀ andexistential ∃ quanti�ers.De�nition A.2 (Sequents) The intuitionistisequents are of the form Γ ⊢ A, where A is a formula and Γ is a multi-set of formulae.
RR n° 5981

30 Rémy Haemmerlé , François Fages , Sylvain SolimanThe sequent alulus is given by the following rules, where the basi idea is that thedisappearane of the weakening rule makes the onjuntion ⊗ ount the ourrenes of for-mulae, and the impliation ⊸ onsume its premise:Axiom - Cut
A ⊢ A

Γ ⊢ A ∆, A ⊢ B

∆, Γ ⊢ BConstants
Γ ⊢ A

Γ,1 ⊢ A
⊢ 1 Γ ⊢ ⊤

⊥ ⊢
Γ ⊢

Γ ⊢ ⊥
Γ,0 ⊢ AMultipliatives

Γ, A, B ⊢ C

Γ, A ⊗ B ⊢ C

Γ ⊢ A ∆, B ⊢ C

∆, Γ, A ⊸ B ⊢ C

Γ ⊢ A ∆ ⊢ B

Γ, ∆ ⊢ A ⊗ B

Γ, A ⊢ B

Γ ⊢ A ⊸ BAdditives
Γ ⊢ A

Γ ⊢ A ⊕ B

Γ ⊢ B

Γ ⊢ A ⊕ B

Γ, A ⊢ C Γ, B ⊢ C

Γ, A ⊕ B ⊢ C

Γ, A ⊢ C

Γ, A & B ⊢ C

Γ, B ⊢ C

Γ, A & B ⊢ C

Γ ⊢ A Γ ⊢ B

Γ ⊢ A & BBang
Γ, A ⊢ B

Γ, !A ⊢ B

!Γ ⊢ A

!Γ ⊢!A

Γ, !A, !A ⊢ B

Γ, !A ⊢ B

Γ ⊢ B

Γ, !A ⊢ BQuanti�ers
Γ, A[t/x] ⊢ B

Γ, ∀xA ⊢ B

Γ ⊢ A

Γ ⊢ ∀xA
x 6∈ fv(Γ)

Γ, A ⊢ B

Γ, ∃xA ⊢ B
x 6∈ fv(yΓ, B)

Γ ⊢ A[t/x]

Γ ⊢ ∃xA

INRIA

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le ChesnayCedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université- ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399

