
HAL Id: inria-00100763
https://hal.inria.fr/inria-00100763

Submitted on 14 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Reusable NLP Components
Amalia Todirascu, Eric Kow, Laurent Romary

To cite this version:
Amalia Todirascu, Eric Kow, Laurent Romary. Towards Reusable NLP Components. Proceedings
of the Third International Conference on Language Resources and Evaluation, European Language
Resources Association (ELRA), May 2002, Las Palmas, Iles Canaries, Spain. pp.1116-1123. �inria-
00100763�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50426557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00100763
https://hal.archives-ouvertes.fr


Towards Reusable NLP Components

Amalia Todirascu ∗, Eric Kow ∗, Laurent Romary ∗,

∗Equipe Langue et Dialogue, INRIA
LORIA, Campus scientifique, BP 239, 54506 Vandoeuvre Cedex

{todirasc, kow, romary}@loria.fr

Abstract
We propose a methodology for transforming an NLP module into a reusable component, to be integrated it into a distributed and open
architecture. We illustrate the methodology by showing the adaptations needed tfor an LTAG parser to be transformed into a bundle of
parsing and lexical services.

1. Introduction
The availability of various NLP tools and linguistic

resources for several languages opens the possibility of
reusing and sharing them. Unfortunately, most of the tools
provide low portability (in particular due to application-
specific resource representation). Building an NLP tool or
adapting it for other languages requires considerable effort
in creating or updating linguistic resources (often incom-
plete) as well as in integrating into new applications.

This paper proposes a methodology to transform an ele-
mentary NLP module into a reusable component, integrated
into an open and distributed NLP architecture. The method-
ology requires input/output standardization, the choice of a
standard format for parameter resources and the definition
of a standardized communication protocol between various
components. We experimented this methodology with a
Lexicalized Tree Adjoining Grammars (LTAG) parser, il-
lustrating the problems arising in a real and somehow com-
plex situation.

The underlying objective of this work was originally to
be able to integrate such a parsing component into vari-
ous larger NLP environments corresponding to various de-
grees of complexity from a language engineering point of
view: a man-machine dialogue system in the context of
the IST/MIAMM project1 (a dialogue environment pro-
viding speech, graphical and haptic interface to a musical
database), an information extraction environment (a mes-
sage filtering application on computer security in collabo-
ration with the EADS/MSI company), an on-line network
of NLP services based on GRID techniques2.

2. General background and objectives
2.1. Existing initiatives towards the integration of

NLP components in unified architectures

A lot of research efforts have concentrated on the is-
sue of building reusable NLP components within specific
integrating frameworks. Several challenges were identified
(?) when transforming existing NLP modules into reusable
components: software challenges (defining APIs for each
type module), semantic challenges (the output of various

1see http://www.loria.fr/projets/MIAMM
2see http://www.loria.fr/projets/Guirlande

modules are not always semantically consistent), ’political’
challenges (the algorithm and resources are not always pub-
licly available for the research community).

Several projects propose environements for building
NLP complex applications, based on existing modules.
GATE is one of the most widely known, providing an envi-
ronement for integrating several NLP tools, from various
platforms, using readily NLP modules (a POS tagger, a
parser, a discourse expert, etc.) (?). GATE supports the
reuse of resources (as CELEX (?) and WordNet (?)) and
algorithms, and provides technical support for the I/O in-
terface, graphical interface and client-server structure for
NLP tools. The I/O interface conforms with a standard TIP-
STER annotation module. It provides such interesting fea-
tures as JAPE (regular expressions over annotations) and
GUK (enhanced unicode support). Despite its widespread-
ness, it requires huge amount of computer resources (mem-
ory, disk space) on a single computer environment, it is not
user friendly and it imposes a pipe-line architecture. The
SVENSK project aims also at reusing resources and algo-
rithms for Swedish (?), using GATE. From another per-
spective, SiSSA (?) is an infrastructure for prototyping
and validating NLP application architectures. It supports
different languages and platforms, it uses the XML rec-
ommendation for data interchange, it allows the reuse of
various processors and it is flexible as it only requires that
each new module be registered at a central SiSSA manager.
Each module implements a CORBA interface to communi-
cate with the others.

All these projects require an implementation of I/O in-
terface API (which is application-dependent) for each mod-
ule. We do not intend to propose another NLP architec-
ture, but we propose a standard methodology for transform-
ing NLP tools into reusable components, based on existing
standards for protocol and I/O interface. Our methodology
is based on simple XML-like format for exchanging data,
free of security constraints (as in CORBA). The architec-
ture is completely descentralized and flexible.

2.2. Towards the definition of a parsing service

LTAG parsers are good examples of low reusability of
resources: existing parsers use a variety of resource for-
mats (XTAG grammar (?), Feature Tree Adjoining Gram-
mars (FTAG (?), SGML (?)). Complete resources are avail-



able for English (lexicon and grammar), but they are not re-
ally available for French or for other languages. Resources
and parsers are intimately related so that it is far from to,
say, use en XTAG grammer as parameter of another pars-
ing module. Still, some experiments have been conducted
in providing grammar servers on-line (?), but with no intent
to connect such ”services” to parsing components proper.
In this context, the standardization of TAG resource for-
mats was a necessary step and has resulted in the TAGML
proposal (?), an XML application for representing elemen-
tary TAG trees and forests3. To illustrate the methodology,
we adapted the Lopez parser (?) to use TAGML-based lin-
guistic resources and to provide XML-based output. The
component is incorporated into a distributed architecture,
where it is combined with an independant resource server
and user interface. Those two components, as we will see
in this paper, have been designed to be fully independant
from the specificities of the parser. In particular, sharing
resource servers avoids redundancy, duplication or creation
of new resources. One of our aims here was to make sure
that the parsing results could be used both as an indepen-
dant resource, but also to annotate the primary linguistic
content provided as an input to the parser. This induced
some constraints on the definition of the transmission pro-
tocol which should had the specific feature of keeping track
of resource reference within the architecture.

3. Standardization
One of the crucial points to achieve an easy deployment

and re-use of NLP modules is to make sure that there ex-
ists, for a given type or class of NLP components, the right
standards for representing the various linguistic knowledge
structures that will be used as input, output or parameter for
this module. Unfortunately, even if there has been numer-
ous attempts to define common formats for such object as
lexica (e.g. Genelex), basic annotations (Eagles guidelines
for part of speech tagging (?)), or multilevel annotation
(CES, Mate), none of these initiatives have led to interna-
tionally approved standards, essentially because of the lack
of a wide recognition independant from any funded project
or industrial pressure group. As a direct consequence, most
of the existing NLP architectures or environment have de-
veloped their proprietary description formalisms for spec-
ifying the data transiting between internal components, as
we have observed in the comparative table (see figure??).

In this context, the creation of the new committee
TC3/SC4 within ISO provides the first real international
framework
General perspective — syntax/semantics
•Wide agreement on W3C as a stable technical background
— XML
• Necessity to provide ways to specify one’s format while
ensuring interoperability principles with similar data that
would be provided or consumed by other components
(kind-of semantics)

3A revised version of TAGML is under discussion to provide
more coverage of implementers’ needs (representation of deriva-
tion trees, beeter representation of feature structures (closer com-
patibility with the TEI FS chapter) and should be published in the
near future

Go deeper into this (cf.(?)) by identifying, in a given
format the underlying information organization (meta-
model) and what can be seen as a parameterization of such
structures (data-categories).
Cf. Part of speech tagging:
While there can be a general agreement on the basic mecha-
nisms needed to represent data tagged for POS (embbeding
of word and multiword units, alternatives to cope with am-
biguities etc.), each tagger will implement its own tagset
corresponding both to the language that it is dealing with
and the granularity of description that one aims at. In the
context of international standardization, there is thus a need
to provide reference sets of data categories that a given ap-
plication will use to define its own subset.
Still, it can be useful to suggest a reference syntax (or a
family thereof) for such specific layers as POS tagging that
may make things even easier for someone who does not
want to implement his own dialect.

To illustrate how we standardized the existing linguis-
tic TAG resources, we present some properties of TAGML,
chosen as a resource format, and the input/output format.

3.1. Application: TAGML resources

TAG (?) lexicons associate with lexical entries all the
syntactic trees which represent all the possible combina-
tions of the lexical entry with other words. These trees (el-
ementary trees) are combined during the parsing process
by two operations: substitution and adjunction. To avoid
redundancy, several trees are associated to word lemmas.

Elementary trees contains several node types: standard
nodes (no leaf nodes), anchor nodes (a leaf node contain-
ing the word associated to the tree), foot nodes (a leaf node
indicating a possible adjunction) and substitution nodes (a
leaf node indicating a substitution). Trees containing ad-
junction nodes will be adjuncted to the nodes of the same
category as the foot node.

S

np ↓ v np ↓

The substitutions are represented by↓ while the adjunc-
tion are represented as *. The operations are identified by
their adress in the tree. The nodes are counted from left to
right from 1 to n. ‘

Example. Adress 2.1 means that the operation is done
at the first son of the V node.

The results of the parsing process are a set of derived
trees (the syntactic structure) and a set of derivation trees
(the history of substitutions and adjunctions used to build
the derived trees).

The substitutions are represented in trees as continuous
lines, while adjunctions are represented as dotted line.

3.1.1. Input/Output Standard
XML (W3 Consortium (?)) is used by many NLP ap-

plications, for its adequacy for representing annotated text
and for structuring data, to its extensibility and to its trans-
parency. As a natural choice, we use for our component
XML for input/output.



GATE SiSSA Soapical (us)
goal

1. provides I/O, display,
client-server support

2. reusability of compo-
nents

1. infrastructure for pro-
totyping, editing, val-
idating NLP applica-
tion architectures

foo

features

1. plug-in modularity of
text processing com-
ponents

2. handles the data stor-
age and module load-
ing

3. CREOLE - readily
available modules

4. niceities: JAPE (reg-
ular expressions over
annotations), GUK
(enhanced Unicode
support)

1. FIST: grammar
metaformalism

2. Grammar Repository
implementation

3. SiSSA Manager for
registering new mod-
ules; gui for selecting
how modules connect
together

1.

tech

1. JDBC for accessing
language resources;

2. JavaBeans stan-
dards to integrate
LR -specific view-
ers/editors and to
integrate modules
into CREOLE

1. all processors have
to implement an
CORBA interface for
SiSSA objects

2. XML for data

3. the Manager and a
number of modules
(processors)

4. use RDF to store info
about modules

1.

Figure 1: Comparison between GATE, SiSSA and MATE

The input of the parser is a phrase in natural language
and a set of resources (lexicon, grammar). The format of
the lexicon and grammar will be explained in the next sub-
section.

The output of the LTAG parser is a set of derived trees
(syntactic structures) and a set of derivation trees (a de-
pendency structure). This reflects all the possible syntactic
and dependency structures associated to the existing input
phrase.

The derived trees are represented as XML elements as:

s

np vp

n v

Jean aime np

d n

la soupe

<n address="0" cat="s" lex="" type="0">
<n address="1" cat="np" lex="" type="1">
<n address="1" cat="n" lex="Jean" type="2" /n>
</n>



<n address="2" cat="vp" lex="" type="1">
<n address="2.1" cat="v" lex="" type="1">
<n address="2.1.1" cat="v" lex="aime" type="2"/>
</n>
<n address="2.2" cat="np" lex="" type="1">
<n address="1" cat="n" lex="soupe" type="1">
<n address="1" cat="d" lex="la" type="2">
</n>
</n>
</n>
</n>

The n element contains several attributes: the lexical
categorycat, the address were the operation has been done
address, the node typetype (standard, anchor, foot, substi-
tution), the wordlex.

Example. The derivation tree for the input phraseJean
aime la soupeis

aime

Jean soupe

la
and it is represented in XML as:

<subs string="aime">
<subs string="Jean"/>
<subs string="soupe">
<adj string="la"/>
</subs>
</subs>

Two types of elements are used:subsfor tracing substi-
tution operations, andadj for adjunction operations.

3.1.2. The Resources
Resource format is an important issue when reusing

data and algorithms. We propose a simple, standard format.
We chose to represent our linguistic resources in a standard
format: TAGML (Tree Adjoining Grammar Markup Lan-
guage). TAGML is also a XML-based format: it is easy to
use by linguists and it structures the linguistic resources (a
set of lexical entries, related to the associated elementary
trees). The availability of TAGML resources is provided by
tools (?) translating existing grammars (XTAG grammar,
FTAG) or generating them from a meta-grammar.

TAGML proposes a representation of all the elements
of the TAG lexicon: lexical entries, lemmas and elemen-
tary trees. TAGML structures the TAG resources on three
levels: lexical entries, lemmas and tree families. Lexical
entries are associated to lemmas and have some specific
morpological features as number, tense, mode.

Exampleof a lexical entry in a TAGML lexicon

<morph lex="aimera">
<lemmaref cat="v" name="*AIMER*">

<fs>
<f name="num"><val>sing</val></f>
<f name="mode"><val>ind</val></f>

<f name="tense"><val>fut</val></f>
</fs>

</lemmaref>
</morph>

lemmaref contains the pointer to the lemma, and thefs
element contains the morphological feature structure.

Lemmas contain pointers to tree families and some con-
straints imposed on the feature structures associated to el-
ementary trees.anchor keeps the pointer to the family
tree and the equations impose some constraints on various
nodes of the tree (the attributerestr is plus for the node
labeled np at the 0 address).

<lemma cat="v" name="*AIMER*">
<anchor tree_id="family[@name=tn1]">

<equation node_id="np_0" type="top">
<fs>

<f name="restr"><val>+</val></f>
</fs>

</equation>
</anchor>

</lemma>

Tree families contain several elementary trees grouped
by their syntactic properties. For example, the following
family describes the properties of complex noun phrases,
containing relative clauses. Atree is a set ofnodes. Each
node has a category, a type (standard, anchor, foot, subst,
lex), a propertyadj, allowing or not adjunctions and a set
of constraints on each node (narg elements).

<family name="tn1">
<tree name="r0tn1">

<node cat="np" type="std">
<node cat="np" type="foot">

<narg type="top">
<fs>

<f id="X0" name="num" />
<f id="X1" name="pers" />
<f id="X7" name="restr" />

</fs>
</narg>

</node>
<node cat="s" adj="no" type="std">

<node cat="np" type="std">
<node lex="qui" type="lex" />

</node>
<node cat="s" type="std">

<narg type="bot">
<fs>

<f name="inv"><minus /></f>
<f id="X2" name="mode" />

</fs>
</narg>
<node cat="np" id="np_0" adj="no" type="std">

<narg type="top">
<fs>

<f id="X7" name="restr" />

</fs>
</narg>
<node type="lex" />

</node>
<node cat="vp" type="std">

<narg type="bot">
<fs>

<f id="X3" name="mode" />
<f id="X5" name="num" />
<f id="X6" name="pers" />

</fs>
</narg>
<narg type="top">

<fs>
<f id="X2" name="mode" />
<f id="X0" name="num" />
<f id="X1" name="pers" />

</fs>
</narg>
<node cat="v" type="anchor">

<narg type="bot">
<fs>

<f id="X3" name="mode" />
<f id="X5" name="num" />
<f id="X6" name="pers" />

</fs>
</narg>

</node>
<node cat="np" id="np_1" type="subst" />

</node>
</node>

</node>



</node>
</tree>
<tree name="r1tn1">

</tree>
</family>

is represented as:
np

np∗ s

np s

qui np vp

v np ↓

3.2. SOAP protocol

As our system uses the parser and the resource access-
ing module installed as services on various sites, we need
a communication protocol between various components.
SOAP is a XML-based standard (?) for exchanging mes-
sages between components of a distributed application, and
we chose it because of its simplicity and flexibility. SOAP
provides a homegenoeous way of handling all data: mes-
sages, input/output, resources.

There are two ways to look at SOAP. The first is on a
higher level, as a format for messages between agents in
any distributed system. A SOAP message consists of an
envelop, which wraps a header and a body. This header is
where standard SOAP metadata, such as the actors required
to understand a message, go, and the body, the actual data
we are interested in. While SOAP does also offer some
of its own metadata, exceptions (faults), and some default
primitives (ints and strings, for example), it is actually a
more useful understanding of the protocol to pretend that
in its entirety, SOAP is only composed of those three tags:
envelop, header, and body. Because it specificies exactly so
little, we are free to design the contents of the body and add
things to the header at will. For instance, our SOAP bodies
would merely be in TAGML (see figure??). This is what
we mean by flexibility.

On a second, lower level, we can think of what peo-
ple actually do with SOAP, or rather, how it is used as a
communication protocol. One path of very little resistance
is to bind these SOAP enveloppes to HTTP headers and
send the resulting message along its way. In fact, this is
what most default implementations of SOAP do; they are
little programs (CGI scripts, servlets) that can be attached
to webservers. Any software that uses such a SOAP imple-
mentation thus only worries about producing and consum-
ing data, leaving it to the SOAP implementation to wrap
such data into SOAP envelops, or unwrap such SOAP en-
velops and turn it back into useful data. Some sophisticated
implementations, like Apache SOAP even go a step further,
and provide a Remote Procedural Call mechanism on top of
this, such that function calls are translated into SOAP mes-
sages, unwrapped by the server, then called accordingly,

with the resulting data then being itself wrapped and sent
back to the client. Once attached to a such a SOAP imple-
mentation, a client then concerns itself with function calls,
and the server to the provision of these functions. This is
what we mean by simplicity.

We feel that SOAP will bring us to our goal of hav-
ing a widely adopted methodology towards reusability, and
we feel this way not because SOAP is any more techno-
logically interesting than other object-sharing mechanisms,
but because it is easy. Rather than dictate plausibily cor-
rect specifications for inserting an NLP module into spe-
cific architecture, we instead propose a protocol that spec-
ifies just enough: data and metadata. It is lightweight,
built upon pre-existing standards, tied to familiar transport
mechanisms, and has thus been widely implemented. Even
the Mozilla web browser has a SOAP implementation. In
short, we find SOAP to be useful because its standardness
and familiarity provides a path towards reusability, but at
a mental cost low enough to compete with the ad hoc ap-
proach favoured by the computational linguist of today.

4. System architecture
To experiment this methodology, we split the parser into

various modules: the module implementing the connected-
routes-based algorithm (?), the visual workbench and the
resources. We integrate all these modules into a distributed,
flexible architecture. Each module contains a XML-based
communication level for data exchanges, via the SOAP pro-
tocol. We used for tests small resources for French (338
lexical words, 50 trees) and English (279 words, 421 trees).
Some extra modules, for resource aquisition (lexicon, an-
notated corpora) might be added into the architecture.

Users enter its texts via a graphical interface. The input
texts are sent to the parser, sentence by sentence. The parser
creates an instance for each sentence and it sends a request
to the resource server to access LTAG resources. The parser
will be a client of the Lexicon server. The lexical entries to-
gether with the elementary trees are sent back to the parser
which continues the process. It sends the resulting forest of
derivation and derived trees back to the user interface. The
user interface lets the user browse the forest tree by tree.
The resource server contains a maintenance module updat-
ing the existing resources with the parser output (validated
by the user via the interface).

4.1. The services

The initial parser has been splitted into several services:
the core of the parser acting as a central service installed on
a server, the resource access module (loading the grammar
and the lexicon) and the graphical user interface.

4.1.1. The parser
The parser implements a connected-routes-based algo-

rithm (?) for TAG grammars. It builds syntactic structures
from elementary trees, combining them by substitution and
adjunction. The output of this parser is a forest of deriva-
tion and derived trees. Optimisations (unification of feature
structures during parsing, other algorithms) are still under
development. Its input is a phrase in natural language. It
asks the lexicon server for the trees associated with each



Figure 2: a simplified example of a SOAP message

<?xml version=’1.0’ encoding=’UTF-8’?>

<SOAP-ENV:Envelope ...>
<SOAP-ENV:Header/>
<SOAP-ENV:Body>

<tag><family name="tmpfam_Jean"><tree name="np">
<node cat="np" id="np_" type="anchor"/>

</tree></family></tag>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

input word of the phrase. When the trees are returned to
the parser core, the parsing process tries to build derivation
and derived trees associated to the phrase and even if the
process fails to produce a syntactic structure for all the in-
put phrase, it returns a set of partial derived and derivation
trees.

4.1.2. The grammar
The lexicon server is structured into three levels: mor-

phological level (containing flexed words and pointers to
lemmas), the lemma level (containing the lemmas, the fea-
tures associated with lemmas and pointers to trees) and the
tree level (containing families of trees). If a word is not
found in the lexicon, it returns an null answer.

It returns a set of trees associated to the input phrase.
For some applications (Vulcain, MIAMM), we need to se-
lect only domain-specific lexicons. We intend to use several
lexical services, using existing lexical services.

4.2. The metaservices
We also deploy in this architecture a set of reusable di-

agnostic modules. The first of these is the SOAPMeter,
which is to be inserted between two SOAP nodes, such as
a parser and its lexicon service. Once in place, the SOAP-
Meter analyses the communication between the two nodes,
and displays them as a series of individually timestamped
SOAP messages. This way, the implementor knows in-
stantly if instead of an actual problem with the modules
themselves, there is a lower level problem, say, that the rea-
son the parser is not doing anything useful is that it is not
receiving any requests from the client. Once freed from
these concerns, the implementor then proceeds to a higher
level, seeing a series of requests and responses, rather than
losing his place in the flow of HTTP headers and XML text.

To further illuminate these requests and responses, the
SOAPMeter acts as a SOAP client for our PRISM4 service,
which receives XML text and returns a graphical represen-
tation of that text. XML messages can be challenging to
read because so much of the message is dedicated to de-
scribe a document’s structure, after wading through which,
one does not attain a solid grasp on its contents or their re-
lationship to each other. With a graphical representation,
we no longer describe the structure, butshow it,and fur-
thermore, show it in a way that is relevant to the specific
data at hand. Syntatic trees, for example, can be actual
trees instead of block upon block of open/close XML tags.
Likewise, if we were dealing instead with a logical descrip-
tion (such as Discourse Representation Structures DRSs) it

4Parameretisably Readable Interpretation of SOAP Messages

would be possible to visualise it as something more appro-
priate (for DRSs, using the classical ”box” representation).

In PRISM, we acheive this parameterisability through
the use of XML stylesheets (XSL) that describe the trans-
formation of XML to graphics, which is to say that, chang-
ing the nature of a SOAP diagnosis is adding or changing a
stylesheet rather than modifying any of the diagnostic soft-
ware. As for the SOAPMeter, this leaves the implementor
with a single button-click to visualise any SOAP messages
which might be particularly interesting or difficult.

5. Applications
The system was developped in order to integrate the

parser into complex applications: the MIAMM project
(Multimedia Information Access using Multiple Modali-
ties), developping a multi-modal interface (combining hap-
tic, text, speech, graphics) to search songs in a database and
the Vulcain project, dedicated to message filtering about
computer security. The applications have various degrees
of complexity and the resources are very different: Vulcain
is an information-extraction system using local grammars
and domain-specific lexicons, but MIAMM uses resources
handling dialogue and reference resolution.

6. Conclusion
The paper illustrates a methodology for transforming a

NLP module into a reusable, parametrizable component for
a particular case: a LTAG parser. The methodology requires
input/output and resource format standardization (XML-
compatible) and the definition of a communication protocol
(SOAP). The methodology will be validated by transform-
ing other NLP modules into reusable components, access-
ing resources available on-line. The SOAP protocol will be
extended with more complex functions (handling XML ref-
erences, implementing XML query for updating resources,
extending the mechanisms for handling errors). The parser
component will be integrated into an open architecture han-
dling human-machine dialogues.



Figure 3: System architecture


