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THE FIRST CONFORMAL DIRAC EIGENVALUE ON 2-DIMENSIONAL TORI

BERND AMMANN AND EMMANUEL HUMBERT

ABSTRACT. Let M be a compact manifold with a spin structure x and a Riemannian metric g. Let )\g be the
smallest eigenvalue of the square of the Dirac operator with respect to g and x. The 7-invariant is defined as

7(M, x) := supinf \/A_?]VOI(M, Q/n

where the supremum runs over the set of all conformal classes on M, and where the infimum runs over all
metrics in the given class.

We show that 7(T2,x) = 2+/7 if x is “the” non-trivial spin structure on 72. In order to calculate this
invariant, we study the infimum as a function on the spin-conformal moduli space and we show that the
infimum converges to 21/7 at one end of the spin-conformal moduli space.

1 MSC 2000: 53 A 30, 53C27 (Primary) 58 J 50 (Secondary)
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1. INTRODUCTION

Let (M, g, x) be a compact spin manifold of dimension n > 2. For any metric § in the conformal class [g] of g,
let A\; (Dg) be the smallest eigenvalue of the square of the Dirac operator. We define

Amin(M, g, x) = inf /A (D2) Vol(M, §)"/™.
(M, g,x) ;Q[g]\/ 1(D3) Vol(M, g)

Several works have been devoted to the study of this conformal invariant and some variants of it , ,
Bir9d, [Am03, Am03H, [Am034d]. J. Lott | ,- Am0]] proved that Amin(M, g, x) = 0if and only if ker D, # {0}.

From - - we deduce Apin(S™) = 2 wn , where S™ is the sphere with constant sectional curvature 1
and where w,, is its volume. Furthermore, 1n - we have seen that

n 1
Amin(Mvgv)() < )\min(Sn) = 50}7? (1)

for all Riemannian spin manifolds.
Furthermore we define
T(Ma X) ‘= sup )\min (Ma g, X)
where the supremum runs over all conformal classes on M. Obviously, 7(M, x) is an invariant of a differentiable
manifold with spin structure.

Date: March 2005.

lammann@iecn. u-nancy.fr, humbert@iecn.u-nancy.fr



2 BERND AMMANN AND EMMANUEL HUMBERT

We consider it as interesting to determine 7 or at least some bounds for 7 in as many cases as possible. There
are several motivations for studying these invariants A\min(M, g, x) and 7(M, x).

Our first motivation is the analogy and the relation to Schoen’s o-constant, which is defined as

J Scaly dvgy
n—2

o(M) := supinf
(M) Vol(M, g) =

where the infimum runs over all metrics in a conformal class g € [go], and where the supremum runs over all
conformal classes.

In the case o(M) > 0 and n > 3, there is also an alternative definition of the 7-invariant that is analogous to
our definition of the 7-invariant. More exactly, in this case

o(M) := supinf \; (L,)Vol(M, g)*/™,

where A1 (Ly) is the first eigenvalue of the conformal Laplacian L, := 4 Z—:é Ag+8Scaly. Once again, the infimum
runs over all metrics in a conformal class g € [go], and where the supremum runs over all conformal classes. Many
conjectures about the value of the o-constant exist, but unfortunately it can be calculated only in very few special

cases, e.g. o(S™) = n(n — 1)w72/n, o(S"t x S = n(n — 1)w72/", o(T") = 0 and o(RP?) = n(n — 1) (%)Q/H.
The reader might consult for a very elegant and amazing calculation of o(RP3) and for a good overview

over further literature.
For other quotients of the sphere I'\S™, I' C O(n + 1) it is conjectured that
Wn 2/n
o(T\S") =n(n-1) (ﬁ) . (2)
It is not difficult to show that for any metric conformal to the round metric on I'\S™ one has the inequality

2/n 2/n
A1 (L,)Vol(T\S™, g)?/™ > n(n — 1) (%) . This immediately implies o(T'\S™) > n(n — 1) (%) , 1.e. the
lower bound on ¢ in (E) However, it is very difficult to obtain the upper bound on o.

The 7-invariant is not only a formal analogue to Schoen’s o-constant, but it is also tightly related to it via

Hijazi’s inequality [Hij86|, Hij91|, |HijOl]. Hijazi’s inequality implies that if M carries a spin structure 7, then

(M, x)* > —-

> mU(M>- (3)

Equality is attained in this inequality if M = S™. Hence, upper bounds for 7(M, x) may help to determine the
o-constant.

This is one reason for studying the 7-invariant.

Another motivation for studying 7(M, x) and Amin (M, g, X) comes from the connection to constant mean cur-
vature surfaces. Let n = 2. If § is a minimizer that attains the infimum in the definition of Anin(M, g, X),
and if Vol(M,g) = 1, then any simply connected open subset U of M can be isometrically embedded into
R3, (U,g) — R3, such that the resulting surface has constant mean curvature Amin (M, g,x). Vice versa, any
constant mean curvature surface gives rise to a stationary point of an associated variational principle. It is

shown in [] that minimizers of Apin(M, g, x) exist if Amin(M, g, %) < 24/7.

For the third motivation, let again n > 2 be arbitrary. As indicated above, Anin(M, g, x) > 0 if and only if
ker D, = {0}. Hence, 7(M,x) > 0 if and only if M carries a metric with ker D = {0}. It follows from the
Atiyah-Singer index theorem that any spin manifold M of dimension 4k, k € N with A(M ) # 0 has 7 = 0,
and the same holds for spin manifolds of dimension 8k + 1 and 8%k + 2 with non-vanishing a-genus. C. Béar
conjectures [, ] that in all remaining cases one has 7 > 0. Using perturbation methods Maier [Mai97]
has verified the conjecture in the case n < 4. The conjecture also holds if n > 5 and 7 (M) = {e}. Namely,
if M is a compact simply connected spin manifold with vanishing a-genus, then building on Gromov-Lawson’s
surgery results [ Stolz showed that M carries a metric g4 of positive scalar curvature. Applying the
Schrédinger-Lichnerowicz formula we obtain ker Dy, = {0}, and hence 7(M,x) > Awin(M, g4+, x) > 0 for the
unique spin structure x on M. A good reference for this argument is also [, where the interested reader
can also find an analogous statement for the case a(M, x) # 0. The method of Stolz and Béar-Dahl also applies
to some other fundamental groups, but the general case still remains open.
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In the present article we want to have a closer look at the 7-invariant on surfaces, in particular 2-dimensional
tori. The higher dimensional case will be the subject of another publication.

On surfaces the Yamabe operator cannot be defined as above. The Gauss-Bonnet theorem says that the o-
constant of a surface does not depend on the metric:

o(M) = supinf/QKg dvg = dmx(M).

It was conjectured by Lott [Lott86] and proved by C. Bir [Bar93 that equation (f]) also holds in dimension 2.
This amounts in showing 7(S52%) = 2y/7. If M is a compact orientable surface of higher genus, then inequality
(B) is trivial.

We will calulate the 7-invariant for the 2-dimensional torus 72. The 2-dimensional torus 72 has 4 different
spin structures. The diffeomorphism group Diff(T?) acts on the space of spin structures by pullback, and the
action has two orbits: one orbit consisting of only one spin structure, the so-called trivial spin structure xi;
and another orbit consisting of three spin structures. The torus T2 equipped with the trivial spin structure has
non-vanishing a-genus, thus 7 = 0. The main result of this article is the following theorem.

Theorem 1.1. Let x be a non-trivial spin structure on the 2-dimensional torus T?. Then
T(T%,X) = 2V (= Amin(S?)) -

More exactly, for a fixed non-trivial spin structure x we will study Amin(M, g, %) as a function on the spin-
conformal moduli space M. We show that it is continuous (Proposition B.l|), and we show that it can be
continuously extended to the natural 2-point compactification of M, i.e. the compactification where both ends
are compactified by one point each. It will be easy to show that Amin(M, g, x) — 0 at one of the ends. However,
it is much more involved to prove Theorem B.d which states that Amin(M, g, X) — Amin(S?) = 21/7 at the other
end.

It is evident that Theorem B.9 implies Theorem [L.1].

For the proof of Theorem , we have to establish a qualitative lower bound for the eigenvalues. One important
ingredient in the proof of Theorem @ is to study a suitable covering of the 2-torus by a cylinder, and to lift
a test spinor to this covering. Using a cut-off argument in a way similar to [AB02] we obtain a compactly
supported test spinor on the cylinder. After compactifying the cylinder conformally to the sphere S2, we can
use Béar’s 2-dimensional version of (E), to prove Amin(M, g, X) — Amin(S?) = 24/7 at the other end.

Theorem @ and Theorem D should be seen as a spinorial analogue of [ In that article, Schoen studies
the Yamabe invariant on the moduli space of O(n)-invariant conformal structures on S* x S"~1 n > 3. He
shows that at one end of this moduli space, the Yamabe invariant converges to the Yamabe invariant of S”, and
hence o(S* x S"~!) = ¢(S™). Combining this result with the Hijazi inequality and Theorem [L1, one obtains

Corollary 1.2. Letn > 2. Then

0 if n =2 and if x s trivial,
T(S"t x St x) = {ﬂwl/n / /X

5 otherwise.

The structure of the article is as follows.

In section E, we define the spin-conformal moduli M space of 2-tori and recall some well known facts. In
section , we state and explain our results. In sections E, we recall some preliminaries which will be useful for
the proof of Theorem B.3. In Section f] the proof is carried out.

Acknowledgement. The authors want to thank the referee for many useful comments.

2. THE SPIN-CONFORMAL MODULI SPACE OF T2

At the beginning of this section we will recall the definition of a spin structure. We will only give it in the case
n = 2. For more information and for the case of general dimension we refer to standard text books [Fr0d, [LMRd,

Ro8g, BGVII]. More details about the 2-dimensional case can be obtained in [AB0J and [Am9g, BS9J.

Let (M,g) be an oriented surface with a Riemannian metric g. Let Pso(M,g) denote the set of oriented
orthonormal frames over M. The base point map Pso(M,g) — M is an S! principal bundle. Let o : St — St
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be the non-trivial double covering, i.e. a(z) = 2z2. A spin structure on (M, g) is by definition a pair (P, x) where
P is an S! principal bundle over M and where x : P — Pso(M, g) is a double covering, such that the diagram

P xSt — P
N
L xxa Ix M (4)
/
Pso(M) x S —  Pso(M)

commutes (in this diagram the horizontal flashes denote the action of S* on P and Pso(M)). By slightly
abusing the notation we will sometimes write x for the spin structure, assuming that the domain P of y is
implicitly given. Two spin structures (P, x) and (P, X) are isomorphic if there is an S'-equivariant bijection
b: P — P such that Y = y o b.

If § = f?g is a metric conformal to g. Then Pso(M, ) — Pso(M,g), (e1,e2) — (fea, fea) defines an isomor-
phism of S! principal bundles. The pullback of a spin structure on (M, g) is a spin structure on (M, §).

In a similar way, if (M, g1) — (Ma,g2) is an orientation preserving conformal map, but not necessarily a
diffeomorphism, then any spin structure on (Maz, g2) pulls back to a spin structure on (M, g1).

Ezxamples 2.1.

(1) If go is the standard metric on S?. Then Pso(S?, go) = SO(3), and the base point map SO(3) — S? is the
map that associates to a matrix in SO(3) the first column. The double cover SU(2) — SO(3) defines a spin
structure on (S, go).

(2) Let g be an arbitrary metric on S2. After a possible pullback by a diffeomorphism S? — S? we can write
G = f?go. The pullback of the spin structure given in (1) under the isomorphism Pso(S?,3) — Pso(S?, go)
defines a spin structure on (52, g).

(3) Let g1 be a flat metric on the torus 7. Then a parallel frame gives rise to a (global) section of Pso (T2, g1) —
T2. Hence, this is a trivial S principal bundle. The trivial fiberwise double covering T2 x S — T2 x S*,
(p,2) = (p, 2?) defines a spin structure on (72, g1), the so-called trivial spin structure xi on (T2, g1)

(4) If g is an arbitrary metric on T2?. Then we can write § = f2g; where g; is a flat metric. As above, the
trivial spin stucture on (T2, g;) defines a spin structure on (72, 7). This spin structure is also called the
trivial spin structure Xir.

(5) For (z0,y0) € R?\ {0} we define
Zﬂﬂo,yo = R2/<($0a y0)>

where ((0,%0)) is the subgroup of R? spanned by (z0, y0). We will assume that it carries the metric induced
by the euclidean metric geycr on R2. Then Pso(Zy,.y,) is a trivial bundle, and a natural trivialization is
obtained by a parallel frame. The map Z, 4, X ST — Zuzg.4o X S, (p,2) — (p, 2%) defines a spin structure
on Zg, v, the trivial spin structure on Z,

0,Y0

0,Y0"

Assume that y : P — Pso(M,g) is a spin structure on a surface, and assume that 8 : 7 (M) — {-1,+1}
is a group homomorphism. Then there is a {—1,+1} principal bundle B — M with holonomy 3. Let Pg
be the quotient of P x Bg by the diagonal action of {—1,+1}. Then Ps together with the induced map
X3 : Ps — Pso(M, g) is also a spin structure on (M, g). Conversely, if (P, X) is another spin structure, then one
can show that there is a unique (3 : 7 (M) — {—1,+1} such that (P, %) and (Ps, x3) are isomorphic. Thus, we
see that the space of spin structures is an affine space over the {—1, +1}-vector space Hom(m (M), {-1,+1}) =
HY(M, {~1,+1}).

Ezxamples 2.2.

(1) Any compact oriented surface M carries a spin structure. If k denotes the genus of M, then there are
4% homomorphisms 7y (M) — {—1,+1}, hence there are 4% isomorphism classes of spin structures. In
particular, the spin structure on S2 is unique.

(2) Because of m1(Zy, 4, ) = Z, there are exactly two spin structures on Zg, ,,, the trivial one and another one
called the non-trivial spin structure.

From now on, let M = T? = R?/T" where T is a lattice in R%. The trivial spin structure defined above can
be used to identify Hom(my (M), {—1,41}) with the set of isomorphism classes of spin structures. By slightly
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FIGURE 1. The spin conformal moduli space is M = M;/ ~, where ~ means identifying
(xz,y) € OM; with (—z,y).

abusing the language we will always write x for the spin structure (P,y) and also for the homomorphism
m (M) — {=1,+1}.

The following lemma summarizes some well-known equivalent characterizations of triviality of x (see e.g. [ILM8Y],

[Mil6d], [Am9q, [Er84]).

Lemma 2.3. With the above notations, the following statements are equivalent

1) The spin structure is trivial (in the above sense);

2) x(v) =1 for all v €T;

3) The spin structure is invariant under the natural action of the diffeomorphism group Diff(T?);
4) (T?,x) is the non-trivial element in the 2-dimensional spin-cobordism group;

5) The a-genus of (T?,x) is the non-trivial element in 7. /27;

6) The Dirac operator has a non-trivial kernel;

7) The kernel of the Dirac operator has complex dimension 2.

In particular, we easily see
T(T27 Xtr) = 0

From now on, in the rest of this article, we assume that y is not the trivial spin structure, i.e. x(y) = —1 for
some v € I'.

Definition 2.4. Two 2-dimensional tori with Riemannian metrics, orientations and spin structures are said to
be spin-conformal if there is a conformal map between them preserving the orientation and the spin structure.
“Being spin-conformal” is obviously an equivalence relation. The spin-conformal moduli space M of T? with
the non-trivial spin structure is defined to be the set of these equivalence classes. Furthermore we define

(= [ IEARNE
Ml.—{(y)}lxISQ, y+(|:c| 2) > 7 y>0}

Lemma 2.5. Let g be a Riemannian metric on T? = R?/Z?, and let x : Z?> — {—1,+1} be a non-trivial spin
structure. Then there is a lattice T C R?, a spin structure ' : T — {—1,+1}, such that

(1) T is generated by <(1)) and <z> with <z> €M,

(2) (T2, 9,x) is spin-conformal to (R?/T, geucl, X')
@ ¥ ((g)) = +1 ()= 1.

(see also Fig. [I).
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Proof. Because of the uniformization theorem we can assume without loss of generality that g is a flat metric.
The lemma then follows from elementary algebraic arguments. 0

Note that 2 and y are uniquely determined if <Z> is in the interior of My, i.e. if || < 1/2 and y?+(|z|—1/2)? >
1/4. If :'; is on the boundary of My, then y and |z| are determined, but not the sign of x. Hence, after

gluing (z) € OM; with (—yx) we obtain the spin-conformal moduli space M.

Notation. Let (xo,y0) € Mi. The lattice generated by by (é) and (;) is noted as I'y, 4. Furthermore, we

write Ty, 4, for the 2-dimensional torus R?/T,, ,, equipped with the euclidean metric.

The quantity Amin(72,g,0) is a spin-conformal invariant, hence Api, can be viewed as a function on M or on

M.

3. MAIN RESULTS

In this article, we study Apin as a function on the spin-conformal moduli space with the non-trivial spin structure.
This function takes values in [0, Amin(S?)] because of ([l). As the spin structure is non-trivial, Lott’s results
states that 0 is not attained. As a preliminary result we will prove that this function is continuous.

Proposition 3.1. The function
A\ Ml - ]07 )\min(S2)]
T (@o,we) Amin

s continuous on Mj.

The spin-conformal moduli space M (resp. M) has two ends. We will compactify each end by adding one
point. The point added at the end y — oo will be denoted by oo and the point added at the end y — 0 is
denoted by (0,0).

Theorem 3.2. The function
Ml - ]07 )\min(S2)]

Amin | gy g0) AT
extends continuously to My U {(0,0), 00} by setting A0 = Amin(S?) and X, = 0.

The continuous extension at oo is is easy to see. The first eigenvalue of the Dirac operator on (T 0 Geucls Xzo,y0)s
is m/yo, the area is yo, hence

AZ0Y0 </ Syo — 0 for yo — o0.

However, the limit (zq,y0) — (0,0) is much more difficult to obtain.
Clearly, Theorem @ implies Theorem D

4. SOME PRELIMINARIES

Variational characterization of \,,. Let (M, g, x) be a compact spin manifold of dimension n > 2 with
ker Dy = {0}. For ¢ € T'(XM), we define

n+1

(fM |D¢|"2_$1 dvg) ’

JQW) - |fM<D¢7¢> d’Ug|

Lott [Cott8q] proved that
)\min(Mv [g]v X) = Hdl}f Jg(7/’) (5)
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where the infimum is taken over the set of smooth spinor fields for which

( | w0 dvg) 40,

The functional Jg for the torus Ty, 4, is noted as J*o-%.

Remark 4.1. The exponents in J, are chosen such that J,; is conformally invariant. More exactly, if g and § are
conformal, then the spinor bundles of (M, g, x) and (M, g, x) can be identified in such a way that J, () = J3(¢).

Cylinders and doubly pointed spheres.
Let Z,4, be defined as in Examples P.1 ().

Lemma 4.2 (Mercator, around 1569). Let N, S € S? be respectively the North pole and the South pole of S?.
Then there is a conformal diffeomorphism Fy, yo from (Zug 4o, Geuet) to (S*\ {N,S}).

Proof. In the case (zg,y0) = (0,27) we see that the application

siny

z by
F0127T : Yy = cosh x
tanh x

is conformal and defines a conformal bijection Zp 2. — S?\ {IV, S}. The general case follows by composing with
a linear conformal map Z, — 20,27 ]

The map F induces a map between the frame bundles.
Froyo * Pso(Zaq,ys) — Pso(S?)

" dFyy yo(X)  dFyy 4o (Y)
F X.Y = Fz Zo,Yo 0,Y0
zOva((p5 ’ )) ( myo(p)) |szo,y0(X)|, |deg,y0(Y>

X, Y €T, Zy, 4, are orthonormal and oriented

0,Y0

The unique spin structure on S? pulls back to a spin structure on Z, that we will denote as Xz, .4, -
q p 0,50

0,Y07

Lemma 4.3. The spin structure Xu,.y, 5 the non-trivial spin structure on Zy, y,-

Proof. We will show the lemma for the case (x0,y0) = (0,27). As before, the general case then follows by
composing with a linear map Z;, 4, — Zo,2x-
We define the loop 7 : [0, 27] — Zp 2x, ¥(t) := (0,t) and the parallel section
0 0
@it (Grhe gohw)

of Pso(Zy2x) along 7. The spin structure (P, xo,2x) on Zp 2x is trivial if and only if there is a section & of P
along 7 such that xo2r 0 @ = a and &(0) = &(2).

The composition 13‘0,277 o a is a section of Pso(S?) = SO(3) along Fp 2x 0 y. One checks that
OFy 2 OFy 2 0 cosy siny

F0,2770a(t):( pe |(01t), By |(07t),F(0,t)): 0 —siny cosy
1 0 0

We lift this loop to a path & in SU(2), then one easily sees that &(0) = —&(27). As xo,2- is defined as the
pullback of the spin structure on S?, we see that any lift & of « also satisfies &(0) # &(27). Hence, we have
proved non-triviality of xo,2x. O

Corollary 4.4. Let Z, carry its non-trivial spin structure. Then,

0,Y0

0,90

3
(f,.,, \Dvl¥dz)’
>
ey, (0 D]
for any compactly supported spinor ¢ € T'($Zy, 4,) such that [(y, D) # 0.

)\min (SQ)
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Let f: Zyy.y, —]0, +00[ be such that Fy; g0 = ?9euct- Tt is well known (see for example , ) that
Fy 4o induces a pointwise isometry
‘ E(szyoa Geuel) — E(SQ \ {Nv S}a go)
(0 = v,
such that
Df~:¢ = f:Dd.
where D denotes the Dirac operator on S2. Moreover, 1) is smooth on S? since 1) = 0 in a neighborhood of N

and S. It is well known that the functional J defined at the beginning of section E is conformally invariant.
This implies that

(. putw)’ (felDt 00 vy, )

| Jz

0,90

T0,Y0
5. PROOF OF THE MAIN RESULTS

For the proof we will need the following well known elliptic estimates. These estimates are a consequence of
techniques explained for example in [], see also . However, in our special situation a proof is much
easier. Hence, for the convenience of the reader we will include an elementary proof here.

Lemma 5.1 (Elliptic estimates). Let (zo,y0) € M1, and note T? for Ty, ,,. There exists C > 0 depending
only on xo and yo such that

/ Dylidv, > C / V|t du, (6)
T2 TZ

</ |w|4dvg>3sc [ wulian, )

Proof. Let q = %. Assume that ([j) is false. Then, for all £ > 0, we can find a smooth spinor ¢, € T'(X(T?))
such that

and

for any smooth spinor .

/ |Dipe|?dvg < ¢ and / [Vipe|? dvg = 1. (8)
T2 T2
Now, assume that
([ o)
Then, we set
/ Ye

—
(fT2 |¢€|qd”9) !
The sequence (1) is bounded in W14(T?) and since W4(T?) is reflexive, we can find 1§ € Wh4(T?) such

that there is sequence g; — 0, with lim;_ ¥, = 1§ weakly in W4(T?). Then, we would have

/ |Viol9dvg < hminf/ [VyL|9dvug, =0
T2 € T2

We would get that 1, is parallel which cannot occur since the structure on 72 is not trivial. This proves that
(1) is bounded in L9(T?) and hence, by (§) in W4(T2). Again by reflexivity of W4(T2), we get the existence
of a spinor vy, weak limit of a subsequence v, in W14(T?). By weak convergence of D)., to D1y in L4(T?),
we have

/ | Dapo|?dvg < lim,inf/ | Dy, |9dv, = 0.
T2 3 T2

This is impossible since the Dirac operator on 72 has a trivial kernel. This proves (E) As one can check,
relation (E) can be proved with the same type of arguments. (|
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Proof of Proposition . The proposition states that Ay, is continuous on Mj. Let (x,yr)r € M be
a sequence tending to (zo,%0) € M. We identify T2 with R?/Z2. The conformal structures corresponding
to (zg,yx) and (zo,yo) are represented by flat metrics gu, , and guyy, on R?/Z? that are invariant under
translations, and such that gu, v, — 9,4, i the C°°-topology .

Let € > 0 be small and let ¥y and (1), be smooth spinors such that
Juoyo(Y0) < A +e and Joy (V) < A5 +e.
At first, since (g, ,y, )k tends to gqq,y0, it is easy to see that
hin L (1/}0) = Jzo,y0 ("/)0)

and hence limsup, A\LEY% < AT%Y0 + ¢ for the given £ > 0 that we can choose as small as we want. Thus
: Tk Yk Zo,Yo0
hmksup AiE < A

Now, let us prove that

limksup Jzo.m0 (k) < limkinf s (9)

We let (v, w) be a orthormal basis for gz, 4, and (vk,wy )k, orthonormal basis for g, ,, which tends to (v, w).
One can write for all k, v, = arv+brw and wy = cpv+drw with limg, ax = limy, d, = 1 and limg, by, = limg ¢, = 0.

We have s
a 4 a
<A2|Dwkaykwk|3dvgmk,yk> = (/TZ |’U]€'vvkwk—"_wk'kawk|3dvgmk,yk)

4 1
= (/1—‘2 |D101y0wk + 9k|3dvgmk,yk) :
with

0k] = (a2 + & — 1)v- Votby + (07 + d2 — D)w - Vthy + (arbi + cxdp)(w - Votoy, + v - Vipthi)| < an| V|

where () is a sequence of positive numbers which tends to 0. Note that because of the translation invariance
of the metrics, the Levi-Civita connection does not depenpend on k. Since limy gz, y, = Gzo,yo, ON€ gets that

(/7‘2 |le7ykwk|§dvgmk,yk) Z (/1"2 |D$U7y0wk|§dvgmo,yo) - a;(! (/1"2 |vwk|§dvgmo,y0)

where limy, o, = 0. Together with Lemma @, we get that

3
4

NS

4 4 4 4
(- ca)( [ 1Damintidon,,, ) < ([ 1Daninltan,, ) (10)

where C' is a positive constant independent of k. Now, in the same way, we can write

/ (ks Dag o i) dvg,, o Z/ (Vks Day g 1) dvg, ., —ﬁk/ [kl | Vi|dog,, o
T2 T2 T2

where limy, B = 0. Using Holder inequality, we have

/ |wk||wk|dvg%,y(,s( / |wk|4dugwo,yo) ( / |vwk|%dvg%,yo)-
T2 T2 T2

Using () and ([}), this gives

3/2
4
/ wknwdv%o,yosc( / |Dwk|sdvgxo,yo> .
T2 T2
We obtain

3/2
4
/ <wk’ D$U7y0wk> dvgmo,yo Z / <wk’ D$k7ykwk> dvgmk,yk - ﬁk (/ |Dwk| 3 dvgmo,yo )
T2 T2 T2
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Together with ([L0), we get (). This immediatly implies that
1imkinf Appk > \FOv0
and ends the proof of the proposition. O

Proof of Theorem @ Any calculation in this proof will be carried out in Riemannian normal coordinates
with respect to a flat metric. In the following, (e;, e2) will denote the canonical basis of R2.

In order to prove im(z, y0)—(0,0) Ami® = Amin(S?) we will show that there is no sequence (zx,yx) — (0,0)

such that lim,, ,)—(0,0) Apin® < Amin(S?). We may assume that A\J%Y* < Apin(S?) for all k. Note that the
spectrum of D is symmetric in dimension 2. By [, we then can find a sequence of spinors )y of class C*
such that on Ty, ,,

Dy = N oo (11)
and such that
/ [r|*dr = 1. (12)
kavyk
Moreover, we have
o (T/Jk) = /\ﬁﬁ;}yk (13)

Sometimes we will identify 1/, with its pullback to R2. In this picture 1y is a doubly periodic spinor on R2.
Step 1. There exists C' > 0 such that for all k, we have \.%¥* > Cy,i/Q.

Here and in the sequel, C' will always denote a positive constant which does not depend on k.

For the proof of the first step, we let Q = {(z,y) € M1 |1/2 <y < 3/2}. Since © is compact and since Amin is
continuous and positive, there exists C' > 0 such that for all

Amin > C on Q. (14)

Now, assume that

The,Yk

- = 0.

Yk

We can find a sequence (Ny)j;, which tends to +o00 such that (3Nk Xy, 3k yx) € Q. Note that the locally isometric
covering Tpz, pyr — Tuy,uis P € N, preserves the spin structures if and only if p is odd. Let z/;k be the pullback
of ¢y, with respect to covering Tsn; , iy, — Ty .y, - We now have

J,

lim

4 N 4
Dl dz = 3 / \Din| da

Nizy,3Vky, Tapup

and

J,

3k ok 3Nk Tk —1/2
C < Nin” P < Ty gy (V1) = BN < Oy AL

min min

(¢, Dy ) dw = 3"* / (¢, D,y d.

T.

Nizy,3Nky, T Yk

We then get by ([4) that

Step 2. There exists C' > 0 such that for all k, we have XY > C.

Let n : R — [0,1] be a cut-off function defined on R which is equal to 0 on R\ [—1,2] and which is equal to
1 on [0,1]. We may assume that 7 is smooth. Let vy = (zx,y). Since (e1,vx) is a basis of R?, we can define
e+ R? = [0,1] by

Mk (tor + ser) = n(s)
Since vy, is asymptotically orthogonal to e1, we can find C' > 0 independent of k£ such that

[Vie| < C (15)
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Moreover, by corollary Q, we have

(IZIk’yk |anwk|§dx) > )\ (SQ)
[Tny . (s, Dt yda] = =

o

Now, we write that

(I

wlwo

TkoYk

3
4

IA

%

4 4
|D77k1/)k|3d$> = </ [V -y + TIkDZ/Jk|3d$>
Zyy g

k:Yk s
4
z z

4
|k|? d
Tp YL ﬂSuPP(V”]k)
1
1

/ | d Vol(zzk,yk N Supp(VUk))
Zay, y, NSupp(Vnk)

|V -¢k|§d$> |77kD1Pk|§d$>

T Yk T Yk

By ) and Holder inequality, we have

</ |V77k-¢k|%d$> < C(
Ly v

Bl

A

S—

W=

C

IN

We then have
Vol(Zz,, .y, N Supp(Vnr)) < 3ys.

By (1) and step [[, this gives that

(.

With the same argument and using relations (L)) and ([[2), it follows that

(1

3
1

|V, - 1/)k|§d35> < Cyk% < ONTRY%

min

3
1

3\ Tk,Yk 4 Tk Yk
S 34>\min (/ |1/}k| dl‘) S C>\min :
T Yk

3
1

4
e Dy | ® dz)

(1

(M, Dby dae = / Mk, Vi - Y + ni D) de.
Z-’Ek,yk ZIk’yk

Moreover, the left hand side of this equality is real since D is an autoadjoint operator. Since

/ (M, Vi - i) do € iR,
Z.

T, Yk

ToYk
Finally, we get that

|D77k¢k|§d$> < OO
T Yk

We now write that

Together with equation (EI), this implies that

/ (b, Dty = / PEAZEVE |4y A,
Z

TroYk ZIk’yk

Using ([LZ), we obtain that

/ (ki Diptpre ) dae > Agk:¥* / i |*da = Apit™.
4 T.

Tl Yp Tl Yk

Finally, plugging ([[7) and ([§) in ([(q), we obtain that Amin(S?) < CAZ%:¥*. This proves the step.

Step 3. The function Amin can be extended continuously to My U {(0,0)} by setting )‘?ﬂ?n = Amin(S?).

11

(16)
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In other words, we show that limy A\r%¥* = \in (S?). The method is quite similar than the one of previous step.
Let ¢ : R — [0,1] be a smooth cut-off function defined on R which is equal to 0 on R\ [—yx, 1 + yx], which is
equal to 1 on [0, 1] and which satisfies |V (| < y% As in the last step, we can define v : R? — [0, 1] by

Vi (tvg + se1) = Ck(s).
Since vy, is asymptotically orthogonal to e;, we can find C' > 0 independent of k such that

C
Ikl < — (19)
Yk

As in step E, we have

Njw

(fzmk,yk | Dyt |3 dx)

> Amin (S?). (20)
| fZIk’yk <’Yk1/1k; D’vak> d$|
We first prove that we can assume that
/ nf'de < Cy. (21)
Zay, vy, NSUPP(V k)

We let ni = [(2yx) '] be the integer part of 2y, ~'. For all [ € [0,n) — 1], we define

-3 1+1
Akﬁl:{tel+svk|s€[O,I[anth _, —= }
ng ng

The family of sets (Ag,1)ig[o,n,—1] IS @ partition of T! which is the image of T}, by the translation of vector

ksYk ksYk
f%kel. By periodicity, (Ag,1)ico,n,—1] can be seen as a partition of Ty, ,,. Consequently, we can write that

2
-/
T,

TpsYk

ni—1

wl'de =Y [ junf'da.
1=0 Ak

Hence, there exists Iy € [0,n; — 1] such that

nkfl

1
Vi ‘dr = min / Vg e < —.
/kl | | le[0,n—1] IZ Akl | | Nk

»lo =0

Obviously, without loss of generality, we can replace ¥y by 1y o tg where t( is the translation of vector —lpe;.
In this way, we can assume that lp = 0. By periodicity, Supp(V~yx) C Ak,o. Hence,

1
Zay, ., NSupp(Vys) Tk
Since ny ~ %, equation () follows.

Now, we proceed as in step E We write that

</z |D'Yk1/1k|%dx> = (/szyk
(L.

It follows from ([[9) and the Holder inequality that

(/

3
1

wlw

IV - r + %Dwk|§d$>

ay

3
4

Tho Uk

3
1 1

IN

4 4
IV '1/)k|3d35> |7kD1/1k|3d$>

Tk Yk

3

4
a C a
|V'Yk'1/1k|3dl'> < —(/ |¢k|3d$>
Yk ka,yk ﬂSuPD(V%)

C
o / |7/}k|4d1' (VOl(Zxk,yk N SuPp(V'Yk)))
Yk Z-’Ek,yk ﬁsupp(V’yk)

TkYk

W=

IN
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Clearly, we have
VOI(ZﬂCk,yk N Supp(Vx)) < Cyl%

By (B1)), we obtain
3
1
3 —1+i+1 1
/ IV - vel?de | <Cy, ' < Oyt =o(1).
z

TkYk

For the other term, we write, using ([L1])

[ wpnltar) ([
Z T.

Tl Yk Tk Yk

S
e

wnldo + [ i d
Z oy, MO0<y <1}

Clearly, we can construct v, such that {0 < v, < 1} C Supp(V%). It then follows from (R1) that

3

4

/ Dyl e | < XY o(1).
Ly,

Finally, we obtain

Wl

/ Dyl | < (XY + o(1). (22)
Z

TkoYk

Now, as in step E, we write that

/
Using ([[d), we obtain that

/Z Ot Dt do 2 Xt [ Junftde = N5 (23)

TroYk Txk’yk

(ytbes D) de = / YEXTE V|4

Tp, Yk ZIk’yk

Plugging (RF) and (23) in (R0), we obtain that
(Ania™)* + o(1)

min
)\lk 'Yk

min

)\min (Sz) S

which implies that either A% — 0 or ATEY% — A i, (S?). Hence, step B yields the statement of the theorem.
O
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