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Abstract : We consider the problem of learning strategy selection in games. The
theoretical solution to this problem is a distribution overstrategies that responds
to a Nash equilibrium of the game. When the payoff function ofthe game is
not known to the participants, such a distribution must be approximated directly
through repeated play. Full knowledge of the payoff function, on the other hand,
restricts agents to be strictly rational. In this classicalapproach, agents are bound
to a Nash equilibrium, even when a globally better solution is obtainable.
In this paper, we present an algorithm that allows agents to capitalize on their
very lack of information about the payoff structure. The principle we propose is
that agents resort to the manipulation of their own payoffs,during the course of
learning, to find a “game” that gives them a higher payoff thanwhen no manipu-
lation occurs. In essence, the payoffs are considered an extension of the strategy
set. At all times, agents remain rational vis-à-vis the information available. In
self-play, the algorithm affords a globally efficient payoff (if it exists).

Mots-clés: Reinforcement Learning, Multi-agent System, Game Theory

1 Introduction

A game is a multi-agent decision-making problem where the participating agents may
have conflicting interests. The agents’ fates are tied together in that the payoff obtained
by any agent is decided by the combination of decisions that the agents take. No agent
can act independently towards his own interest.
Briefly, a gameG is described by the parameters< N, (Ai)i∈N , (U i)i∈N > (Osborne
& Rubinstein, 1994), whereN is a set of agents,Ai is agenti’s strategy set, andU i

is agenti’s payoff function. The set of the combinations in which agents can choose
strategies is denoted byA. U i(a) is the payoff agenti obtains when some combination
of strategiesa ∈ A is chosen.
A multi-agent learning problem arises when the agents do notknow the payoff func-
tions. Each agent begins learning his own strategy selection probability distribution
(referred to hereafter and interchangeably, as a mixed strategy or anaction policy) that
maximizes his average limiting payoff. The learning process is considered perpetual.
An oft made assumption about agents in game theory is that they areall rational. This
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C D

C 4, 4 0, 5
D 5, 0 1, 1

Table 1: Game 1 : The Prisoners’ Dilemma where both player will rationnaly playD
whereas both playingC would be more profitable.

is given to mean that if agents are fully exposed to each other’s payoff functions, their
choice of strategies is circumscribed by the set of Nash (or correlated) equilibria. A
Nash equilibrium is a profile of mixed-strategies,π =< π1, . . . , πN >, such that the
following holds∀ i, ∀ σi 6= πi:

ui(πi, π−i) ≥ ui(σi, π−i)

π−i denotes the mixed-strategy profile that excludes agenti’s mixed-strategyπi. In
words, no agenti has an incentive to change his manner of selecting strategies, πi,
given that the other agents choose according toπ−i. A game may have more than
one (mixed)-strategy profiles constituting an equilibrium. An undesirable feature of
the Nash equilibrium solution concept (besides the non-uniqueness), is that the payoffs
obtained by the agents playing according to a Nash equilibrium could be improved upon
(for every agent) by some non-equilibrium policy profile. A policy profile is said to be
Pareto-efficient if no other policy profile gives every agentas much payoff while giving
atleast one agent a higher payoff. Thus, if∀ π, ∀ i and for atleast onej, the following
holds, thenσ is Pareto-efficient:

ui(σ) ≥ ui(π)

uj(σ) > uj(π)

1.1 Examples

Consider the two games, Game1 (described in Table 1) and Game2 (in Table 2). Both
are examples where the Nash equilibrium is Pareto-dominated by a non-equilibrium
strategy profile. In Game1 (Prisoners’ Dilemma), a pure-strategy Pareto-efficient so-
lution (C, C) is available, giving both agents higher payoff than(D, D). In Game2, a
mixed-strategy in which each agent plays strategiesA andB with probability 0.5 each
is Pareto-efficient beating the payoffs of the Nash equilibrium (D, D).

1.2 Learning Algorithms

Some of the earliest algorithms proposed for multi-agent learning in games were of
the “equilibrium” learners type. The Minimax-Q (Littman, 1994), Nash-Q (Hu & Well-
man, 2003), Correlated-Q (Greenwald & Hall, 2003), Adaptive Procedure (Hart & Mas-
Colell, 2000) are instances of this kind. The learning agentlearns a mixed-strategy that
corresponds to an equilibrium of the game. Hence, an implicit cooperativeness (or a
common knowledge of rationality) is assumed amongst the agents. The learner is blind



Table 2: Game 2 : In this game, the mixed strategy(0.5[A] + 0.5[B]) beats the utility
of the Nash equilibrium(D, D).

A B D

A 4, 3 3, 4 0, 5
B 3, 4 4, 3 0, 5
D 5, 0 5, 0 1, 1

to the actual policy used by the opponents. Evidently, an equilibrium learner can per-
form very poorly against opponents who deliberately play policies that produce a loss
for themselves or who have learnt to play some other equilibrium of the game. Thus,
the learning agent can be said to be irrational.
An alternative to equilibrium learners is “best-response”learners. Example algorithms
of this type are Joint-Action Learners (Claus & Boutilier, 1998), “Bully” (Littman &
Stone, 2001), WoLF-PHC (Bowling & Veloso, 2001b) among others. These algorithms
ensure that the learner is rational. In self-play, they are also convergent to (obviously)
Nash equilibria. In non-self play, a best-response learnercan be exploited or fooled by
an opponent who explicitly models the learning dynamic of the learner, as shown by
the PHC-Exploiter algorithm (Chang & Kaelbling, 2001). To remedy this, algorithms
that attempt to achieve “zero-regret” have been proposed such as IGA (Singhet al.,
2000) and GIGA-WoLF (Bowling & Veloso, 2001a). The latter iscurrently the only
best-response algorithm which is convergent and with zero-regret in self-play.

1.3 Efficient Learning

A common feature of all the algorithms is self-play. This is an understandable choice
for experimental and theoretical analysis given that an algorithm cannot be expected
to be rational and convergent for any kind of opponent; in other words, prediction (of
others’ play) and optimization (in response to it) cannot besimultaneously achieved
(Nachbar & Zame, 1996). For example, opponents could chooseto play non-stationary
policies, which are optimal in some repeated games, in whichcase no best-response can
be theoretically formulated. There have been few attempts made to categorize agents in
terms of their learning algorithmic capacities with (Chang& Kaelbling, 2001) being a
notable exception.
We restrict attention to self-play. We argue that given self-play and the agents’ non-
exposure to the payoff functions, it is reasonable to make agents learn Pareto-efficient
policies. If agents are identical they could be implanted with an idea of global efficiency
if they are guaranteed that deviations (from the agreed learning process) merely result in
the (unsatisfactory) Nash equilibrium, and not something even more sub-optimal. The
proposal is sound if at any time each agent plays his best-response strategy to the per-
ceived strategies of the other agents. When agentsknowthe payoff functions, playing
non-equilibrium strategies does not make sense. However, when they do not know these
same payoff functions, merely pursuing the learning of equilibrium strategies does not
make sense either. There is no prescriptive force behind it.
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To summarize, we present an algorithm that in self-play is convergent to policies that
are Pareto-efficient. If any agent does not adhere the learning procedure (within certain
limits) the learner still learns a policy that forms a best-response. We also assume that
each agent is privy only to the strategy he chooses and the payoff he receives. Choices
made by others and payoffs received by them are not visible tothe agent. We next
present the principle that the algorithm uses. As a reminder, we state that the learning
process is perpetual, i.e., the game is an infinitely repeated one. Moreover, using the
taxonomy of (Chang & Kaelbling, 2001), the agents are in the leagueH∞ × B0, i.e.,
they are memory-less. Here,Hl represents an agent who can recall strategies he played
in the previousl rounds, whileBl represents the agent’s belief that his opponents can
recall strategies they played in the lastl rounds.

2 Payoff Manipulation

The principle we propose for agents to learn Pareto-efficient strategies, is that of payoff
manipulation. Any learning is guided by the payoffs agents receive. Instead of assim-
ilating the payoff directly into an update rule, an agent canmake several hypothesis
about the numerical value of the payoff. In particular, he can choose to assimilate only
a percent of the payoff or to inject a higher payoff in the update rule. In game theory,
it is often inquired as to what side-payment an agent can maketo another to incite the
latter to play a strategy favorable to the former. We consider agents to be isolated from
each other, so side-payments cannot be materially made. Butthe essence of the trans-
action can be retained if an agent makes the negative of the side-payment to himself
that he would have made to the other agent given that payoffs re normalized to a certain
standard.
Briefly, we consider that an agent must also learn apaymentpolicy. A payment pol-
icy for agenti, denoted bypi, is a function,pi : Ai → ℜ. Thus, the agent adds
pi(x) to every payoff he receives when he plays the strategyx ∈ Ai. We consider,
for this paper, only discrete valued self payments. Hence,pi : Ai → Ri, where
Ri = {−Rmax, . . . ,−1, 0, 1, 2 . . . , Rmax}. A payment policy has an entry for every
strategy. Thus it is a|Ai| sized vector. Learning a payment policy entails learning an
|Ai|-sized combination. The payment policy where∀ x ∈ Ai, pi(x) = 0 is thedefault
payment policy. We only considerpure payment policies (A probability distribution
over payment policies is a mixed payment policy).

2.1 Transformed Games

Given a profile of payment policiesP =< p1, . . . , pN >, a gameG is transformed to
the gameGP as far as the learning process is concerned. An appropriate profile P can
result in a gameGP in which the solution that was Pareto-efficient, but irrational inG,
becomes rational. That is, it develops into an equilibrium that is Pareto-efficient. In
conjunction with this, for a given payment policy, we use an algorithm that solves the
learning problem, such as WoLF-PHC, for the modified game.



A B D

A 4, 3 3, 4 0, 3
B 3, 4 4, 3 0, 3
D 3, 0 3, 0 -1, -1

Table 3: Game2P : both player have applied a payment policy of(0, 0,−2), then the
Nash equilibrium(0.5[A] + 0.5[B]; 0.5[A] + 0.5[B]) is Pareto efficient if the orginal
Game (of Table 2).

Our goal is to build an algorithm such that converges to the choice of a payment
policy that corresponds to a Pareto-efficient solution of the original game.

Fact 1
For every gameG, there exists a profile of pure payment policiesP , such that the
Pareto-efficient solution ofG, denoted byσG is a (mixed) Nash equilibrium of the
gameGP .

Fact 1 indicates that while the Pareto-efficient solution itself might be a mixed-strategy
profile, the agents’ payment policies can be pure. This encouragesQ-learning in the
space of “pure” payment strategies as against mixed ones as shown in the next section.

2.2 Example

Consider Game2. If agents learn in isolation (not seeing each others’ strategy choices/payoffs),
they cannot collude through the learning process to arrive at the Pareto-efficient solu-
tion, which is, for eachi, πi = (0.5, 0.5, 0) (probabilities for playingA, B andD

respectively). This gives each agent a payoff of 3.5, higherthan 1 obtained by playing
(0, 0, 1), the Nash equilibrium. The payment policies,pr = (0, 0,−2) (for the row
agent) andpc = (0, 0,−2) (for the column agent) transform the game to Game2P . The
numbers in the parenthesis are the side-payments for strategiesA, B andD respec-
tively. In this game, the mixed-strategy given earlier,(π1, π2) is a Nash equilibrium.
In general, discrete-valued payments will not be adequate.

2.3 Q-values with Payments

A strategy’sQ-value is the stochastic approximation of its average payoff. Learning
algorithms are based on the online stochastic approximation of theseQ-values using
the following update rule:

Q(ai)← (1− α)Q(ai) + α U i(ai, a−i) (1)

When an agent can manipulate the payoffs he receives by adding payments to payoffs,
he needs to make an approximation of the average payoff for each strategy-payment
pair, usingU i = ui + pi. ConsideringQ-values of each pair(ai, ri) globally, where
ai ∈ Ai andri ∈ Ri is not feasible since, as other agents can change their payment
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policies, payoffs for agenti will be non-stationary.
Hence, we consider the following approach: each payment policy is itself treated as a
strategy. Learning is thus a two-shell procedure. The stochastic approximation of the
average payoff of a (fixed) payment policy occurs in the outershell. This loop runs for
a very high number of iterations. In each such iteration (inner shell), a best-response
algorithm such as WoLF-PHC is run for a very small number of iterations, resulting in a
mixed-strategy equilibrium of the agents’ strategies fromthe setA. The inner shell thus
corresponds to a particular game, where the payoff functions are given by the original
payoff functions compounded by the fixed payment policies.

3 Algorithms

We present our algorithm, Pareto-efficient Learning, alongwith the underlying algo-
rithms (PHC, WoLF-PHC) in this section. The policy-hill climbing (PHC) algorithm is
a Q-learning type algorithm that generates a best-responsemixed-strategy rather than
a pure strategy, if the oppenents all usesstationarystrategies. The strategies’s weights
are in direct proportion of their respectiveQ-values. α and δ are learning rates (≤

Algorithm 1 PHC

Input: ∀ a ∈ Ai, Qi(a)← 0, πi(a)← 1
|Ai|

1: Choose strategya, observe payoffui

2: Qi(a)← (1 - α)Qi(a) + α ui

3: if a = arg max
b∈Ai

Qi(b) then

4: πi(a)← πi(a) + δ

5: else
6: πi(a)← πi(a) + δ

|Ai|−1

7: end if

1). This algorithm, while being rational, is not convergentin self-play when the game
has only mixed-strategy equilibria. The improvement of this algorithm, “Win or Learn
Fast” (WoLF)-PHC (Bowling & Veloso, 2001b), replacesδ by two learning rates,δw

andδl, with δl > δw. Usingδl or δw depends on the fact that the player is actually on
a losing or winning trend (as computed by using a windowed mean µ in algorithm 2).
The WoLF-PHC algorithm is capable to learning mixed-strategy equilibria in self-play.
Moreover, it is convergent to these, unlike PHC.
This is an algorithm from the memory-less (H∞ ×B0) league of (Chang & Kaelbling,
2001). Agents of this league can be “exploited” by agents from theH∞ × Bt league,
i.e., those endowed with memory, to play sub-optimal (non-best response) policies. In
fact, (Chang & Kaelbling, 2001) also presented an algorithmbased on this principle.
An important concession they make is that agents are able to monitor the activities of
one another (strategy chosen).



Algorithm 2 WoLF-PHC
1: Steps 1, 2 of PHC

2: µi(a)← µi(a) + |µi(a)−πi(a)|
t

3: if
∑

b∈Ai

Qi(b)[πi(b)− µi(b)] ≥ 0 then

4: δ ← δw

5: else
6: δ ← δl

7: end if
8: Steps 3-7 of PHC

3.1 Pareto-Efficient Learning (PEL)

In the PEL algorithm, there are, under consideration,|Ai||R
i| “strategies” (payment

policies) for each agent. Recall that a payment policy is considered as a strategy. AQ
value for each such strategy is stocked. Agents switch payment policies in cohesion,
i.e., after a commonly agreed number of iterations,L. This number is the duration of
an inner “loop”. The WoLF-PHC algorithm is run for this duration. Γi denotes the set
of all payment policies of agenti.
For every payment policy, the PEL algorithm maintains twoQ-values, which are up-
dated by the standardQ-value update (equation 1). The firstQ-value,Qp uses payoff
received compounded with the payment from the fixed policy. The second,Qp+ is up-
dated using just the payoff received. The payment policy’s average payoff is calculated
using the (mixed-)strategy learned using WoLF-PHC and the “true” Q-values given by
Qp+, and is stored in its ownQ-value, denoted bŷQ (see algorithm 3).

Algorithm 3 Pareto-Efficient Learning

Input: Q̂i(p)← 0, ∀ p ∈ Γi

1: Selectp (using someǫ-greedy policy onQ̂i)
2: for t = 1 to L do
3: Choose strategya, observe payoffui

4: Qp(a)← (1 − α)Qp(a) + α(ui + p(a))
5: Qp+(a)← (1− α)Qp+(a) + α(ui)
6: Runs steps 2-8 of WoLF-PHC
7: end for
8: U i

p ←
∑

b∈Ai

π(b)Qp+(b)

9: Q̂i(p)← (1 − α)Q̂i(p) + αU i
p

3.2 Analysis

The two important aspects of any game-learning algorithm are convergence and ratio-
nality, as stated earlier. The PEL algorithm is guaranteed the two properties on account
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of two features:

• Since agents move out of the inner loop (lines 2-7) simultaneously, the PEL ef-
fectively runs the WoLF-PHC. Empirically, the WoLF-PHC hasbeen shown to
converge to a sample Nash equilibrium (possibly composed ofmixed-strategies)
of the concerned game (Bowling & Veloso, 2001b).

• Agents use the unadulteratedQ-values to evaluate a payment policy (line 8). This
ensures that the agents remain rational. If an agent does notadhere to the PEL
algorithm, the non-deviating agent will eventually learn the default payment pol-
icy (zero payment with every strategy). The mixed-strategylearnt in association
with this payment policy will be necessarily a Nash equilibrium of game.

3.3 Experiments

We ran the PEL algorithm on Game 2. This game has the relevant properties. This game
has a pure Nash equilibrium(D, D). The Pareto-efficient solution isπi = (0.5, 0.5, 0)
for both i. One of the payment policies that transforms Game 2 to a game where
(π1, π2) is a Nash equilibrium is(2, 2, 0), which reads as every time strategiesA andB

are chosen,2 is added to the payoff received and0 is added to the payoff from choosing
D. Other payment policies resulting in a similar transform also exist. They represent
the situation in single agentQ-learning where more than one optimal strategies exists.
In identical-interest multi-agentQ-learning (Claus & Boutilier, 1998), the dynamic of
learning makes the agents pick one particular optimal joint-strategy.
We varied the number of iterations of the inner and the outer loop. For example, the
number of iterations ofPEL was 100,000, and that of the inner loop was 1000 iter-
ations. This represents a total of 100 million iterations. However, convergence to an
optimal payment policy was not achieved using the PEL. By convergence, we mean that
the change in theQ-value of the payment policies continued to be appreciable after the
iterations of the outer loop. The inner loop presents a majorbottleneck. Clearly, 1000
iterations is insufficient for the WoLF-PHC to converge. A compromise has to be made
in the ratio of the lengths of the outer loop to the inner. Nevertheless, two encouraging
signs were seen: in any run, the average payoff for (one of the) optimal payment poli-
cies was indeed higher than the rest of the policies, for boththe agents. Secondly, the
mixed-strategies associated with the optimal payment policy was converging towards
the Nash equilibrium of the transformed game.
Clearly, it is desirable to have a tighter interleaving of the payment policy evaluation
and mixed-strategy evaluation. We are currently working onways of doing so.

4 Conclusion and Future work

We have presented an algorithm for learning mixed-strategies in general-sum games
that are Pareto-efficient. In essence, it is a straightforward extension of the WoLF-PHC
algorithm. However, the technique of searching in the spaceof games via the principle
of payoff manipulation is novel. Current research in game learning focuses on Nash
equilibria, even in self-play. We argue that if agents are identical, they can learn in a



way that permits them to remain “rational” while playing strategies that give them a
highest possible payoff.
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