
HAL Id: inria-00102208
https://hal.inria.fr/inria-00102208

Submitted on 29 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Formal Development Method of Control Systems
using Event B Approach

Olfa Mosbahi, Jacques Jaray, Leila Jemni Ben Ayed

To cite this version:
Olfa Mosbahi, Jacques Jaray, Leila Jemni Ben Ayed. A Formal Development Method of Control
Systems using Event B Approach. 4th ACS/IEEE International Conference on Computer Systems
and Applications, Mar 2006, DUBAI. �inria-00102208�

https://hal.inria.fr/inria-00102208
https://hal.archives-ouvertes.fr

Formal development method of control systems using the event-based B
approach

Case study : A parcel sorting device

Olfa MOSBAHI Jacques JARAY Leila JEMNI BEN AYED

Faculty of Sciences of Tunis INRIA Lorraine Faculty of Sciences of Tunis

University Tunis El Manar II LORIA-INPL University Tunis El Manar II

Tunis, Tunisie Nancy, France Tunis, Tunisie

olfa.mosbahi@loria.fr jacques.jaray@loria.fr leila.jemni@fsegt.rnu.tn

Abstract

This paper presents a formal method for the development of
control systems. We aim at developing a program controlling the
operative part of a control system. We first build an abstract model
of the operative part and complete this model to get a model of the
control system. The elements introduced to change the abstract
model of the operative part to the automated system forms the con-
troller of the automated system. The next steps consists in refining
the abstract model to get a model of the operative part capturing
every important feature. The method is developped through a case
study : a parcel sorting system.

1. Introduction

This paper is part of a work concerning the formal development
of control systems. We aim at developing a program controlling
a plant in which some components with a dynamic behavior must
meet some requirements. In the sequel, we will call operative part,
the object to be controlled.

We are concerned with the correctness of the controller. The
usual way to deal with the correctness of a program is to prove
that the interaction with its environment satisfies some required
properties. Such requirements are rather difficult to state.

We take a different point of view and notice that the user is sat-
isfied by the behaviour of the controller as soon as the automated
system behaves in the expected way. Our development method
consists in building an abstract discrete model of the operative
part. Future refinements dealing with continuity are out the scope
of the paper.

The model of the operative part is completed to obtain a con-
trolled or automated system. Correctness concerns the controlled
system, provided the model of the operative part is accurate.

We use the B abstract events technology to build our models.
The expected behaviour of the controlled system is expressed by

means of invariants. The model is then refined such that its opera-
tive part gets closer to the real operative one.

Our main contribution in this paper consists in dealing with
control theory results, namely controllability, in formal develop-
ment. The method is illustrated by a case study and the Atelier B
environment [6] is used to prove the correctness of the develop-
ment.

The paper is organized as follows : section 1 presents an
overview of the B event based approach, section 2 a description
of the method and section 3 deals with the case study.

2. Overview of the B event-based approach

B refers to a state-based method developed by Abrial [1] for
specifying, designing and coding software systems. It is based
on mathematical concepts and on Zermelo-Fraenkel set theory,
the concept of generalized substitution and on structuring mech-
anisms (machine, refinement, implementation). Sets are used for
data modeling, ”Generalised Substitutions” [7, 8, 9] are used to de-
scribe state modification, the refinement calculus is used to relate
models at varying abstraction levels.

2.1. Reactive systems modelling

To deal with reactive systems, Abrial has proposed a variant of
the B method : the B event-based method [2, 10, 3] similar to the
action systems by Back [5].

An event consists in a guard and an action. The guard is a
predicate built on state variables and the action is a generalized
substitution which defines a state transition. An event may be ac-
tivated once its guard evaluates to true and a single event may be
evaluated at once.

We adopt a closed system modeling approach which means that
every possible change over state variables is defined by transitions
corresponding to events defined in the model.

SYSTEM < name >
SETS < sets >
VARIABLES < variables >
INVARIANT < invariants >
INITIALISATION < initialization of variables >
EVENTS < events >
END

An event can take one of the forms shown in the table below.

Event Before-after Predicate
BA(x, x’)

evt = Begin x : P (x, x′) END P (x, x′)
evt = SELECT G(x)

THEN x : Q(x, x′) G(x) ∧ Q(x, x′)
evt = ANY t WHERE G(t, x)

THEN x : R(x, x′, t) END ∃t.(G(t, x) ∧ R(x, x′, t))

Proof obligations are produced from events in order to state
that the invariant condition I(x) is preserved. We next give the
general rule to be proved. It follows immediately from the very
definition of the before-after predicate, BA(x, x′) of each event :

I(x) ∧ BA(x, x′) ⇒ I(x′)

2.2. Refinement

Refinement [5, 4] is a technique to deal with the development
of complex systems. It consists in building, starting from an ab-
stract model, a sequence of models of increasing complexity (con-
taining more and more details [16]). A model in the sequence
follows the one it refines.

The invariant of the refined model is not weaker than the
model it refines and it may contain new variables (some variables
of the previous model may be suppressed). New events are
introduced and they refined skip. It is also used to transform an
abstract model into a more concrete version by modifying the state
description. The abstract state variables, x, and the concrete ones,
y, are linked together by means of a gluing invariant J(x, y). A
number of proof obligations ensures that (1) each abstract event is
correctly refined by its corresponding concrete version, (2) each
new event refines skip, (3) no new event take control forever, and
(4) relative deadlock fairness is preserved.

Suppose that an abstract model AM with variables x and
invariant I(x) is refined by a concrete model CM with variables
y and gluing invariant J(x, y). If BAA(x,x′) and BAC(y, y′)
are respectively the abstract and concrete before-after predicates
of the same event, we have to prove the following statement :

I(x) ∧ J(x, y) ∧ BAC(y, y′) ⇒ ∃x′.(BAA(x, x′)
∧J(x′, y′))

This says that under the abstract invariant I(x) and the con-
crete one J(x, y), a concrete step BAC(y, y′) can be simulated
(∃x′) by an abstract one BAA(x, x′) in such a way that the gluing
invariant J(x′, y′) is preserved. A new event with before-after
predicate BA(y, y′) must refine skip (x′ = x). This leads to the

following statement to prove :

I(x) ∧ J(x, y) ∧ BA(y, y′) ⇒ J(x, y′))

Moreover, we must prove that a variant V (y) is decreased by
each new event (this is to guarantee that an abstract step may
occur). We have thus to prove the following for each new event
with before-after predicate BA(y, y′) :

I(x) ∧ J(x, y) ∧ BA(y, y′) ⇒ V (y′) < V (y)

At last, we must prove that a concrete model does not introduce
more deadlocks than the abstract one. This is formalized by
means of the following proof obligations :

I(x) ∧ J(x, y) ∧ grds(AM) ⇒ grds(CM)

Where grds(AM) stands for the disjunction of the guards of
the events of the abstract model, and grds (CM) stands for the
disjunction of the guards of the events of the concrete one.

The essence of the refinement relationship is that it preserves
already proved system properties including safety properties. The
invariant of an abstract model plays a central role for deriving
safety properties and our method focuses on the incremental dis-
covery of the invariant; the goal is to obtain a formal statement
of properties through the final invariant of the last refined abstract
model. During the development, proof obligations are generated
by a computer aided software engineering Atelier B [6]. They
are discharged by automatic and interactive proof procedures sup-
ported by a proof engine.

3. The method

In this section we present a development method of automated
system. The problem can be stated as follows: being given an op-
erative part (physical device and environment) which behavior is
observed through a number of variables and on which it is possi-
ble to act by means of effectors. Some of the variables are con-
trollable, they correspond to the results of some actuators, other
are not controllable and their changes correspond to the effect of
some physical process we do not control. We have to develop
a control program which observes the operative part and change
controllable variables such that the automated system meets some
requirements. The behaviour of the automated system can be rep-
resented by a closed loop expressing relation between operative
and control parts (Fig1). As the B event systems are closed sys-
tems and the controller composed with the operative part form a
closed system which is a controlled one, the B event method can
be used to describe these two components. The modeling method
that we propose uses the event based method and consists on the
following steps:

1. First of all, we build an abstract model of the operative part
in defining its events with guards as weak as possible, just
considering safety requirements. A minimal controller is
considered such that the resulting system is a “permissive”

controlled system, it is likely not the case that all behaviours
meet the automated system requirements but some should.

2. We have to prove the last part of this assertion, if not we can
deduce that it is not possible to achieve the expected system.
This point is similar to the notion of controllability in control
theory [15, 14]. An assertion is added to the typing invari-
ant of the system. Then, we constrain the permissive system
such that it obeys some safety requirements, if any,

3. If the proof succeeds, we add the expected behaviour to the
invariant, strengthen some guards and proof the improved
system. It is worth noticing that the prover in failing to prove
some properties gives hints to modify the guards,

4. Successive refinements can be used to produce the concrete
model of the physical part and its environment and the con-
crete control system through the addition of expected be-
haviour to the invariant, events and guards for operative and
control part, and also for their composition. Related proof
obligations are discharged. At each refinement step, new
model is shown to satisfy new requirements. The refinement
process stops when the automated system model meets the
desired properties. The quality of the last refinement sup-
posed to model the controlled system depends on the first
operative part model.

5. The last step consists in separating what concerns the oper-
ative component from what concerns the controller in order
to build a program of the controller,

Figure 1. Automated system in closd loop.

In classical formal development methods, only a model of the
controller is developed and once implemented it has to be com-
posed with physical device and the required properties are veri-
fied. If the verification do not succeed, developer has to produce
an other model for the controller. In the proposed method we ver-
ify that the composition of the controller and the physical device
satisfies requirements at the abstract model and at each refinement
step by adding successively invariants, events and guards. Con-
troller is then produced by successive refinement and at each step
we show that controlled system maintains environment in states
satisfying some properties defined on the variables. The concrete
controller is produced such that the controlled system meets all
systems requirements. It is more easy to correct an error in one

Figure 2. sorting plant.

step of the development then correct it in the end. In the following,
we illustrate the proposed method throught an exqmple of control
system of a parcel sorting device.

4. Case study : a parcel sorting device

Our method is illustrated by the development of a case study :
a sorting parcel system [11]. We start with an informal description
of the problem and then apply our method.

4.1. Informal description of the problem

The problem is to sort parcels into sorting baskets according to
an address written on the parcel. In order to achieve such a sorting
function we are provided with a device made of a feeder connected
to the root of a binary tree made of switches and pipes as shown
Fig2. The switches are the nodes of the tree, pipes are the edges
and leaves are the baskets. A parcel, thanks to gravity, can slide
down through switches and pipes to reach a basket.

A switch is connected to an entry pipe and two exit pipes, a
parcel crossing the switch is directed to an exit pipe depending
on the switch position. The feeder releases a parcel at once in
the router, the feeder contains a device to read the address of the
parcel to be released. When released, a parcel enters a first switch
(the root of the binary tree) and slides down the router to reach a
basket.

The controller can activate the feeder and change the switches
position. For safety reasons, it is required that switch change
should not occur when a parcel is crossing it. In order to check
this condition, sensors are placed at the entry and the exits of each
switch. This problem statement is a simplified version of the one
given in [11]. We will deal with the complete version in a future
work and allow, for instance, the simultaneous sorting of many
parcels at the same time.

4.2. Abstract model of the system

The sorting device
The sorting device consists of a feeder and a sorting layout.

The feeder has two functions: selection of the next parcel to in-
troduce into the sorting layout and opening the gate (releasing a

parcel in the sorting layout). We introduce the events select and re-
lease to capture the two functions. In order to produce the abstract
model of the sorting layout, we have to notice that a given state
of the switches forms a channel linking the entrance to a unique
sorting basket. A basket is an element of a set named Basket. In
future refinements, the tree structure of the sorting device will be
introduced and the sorting baskets will be classed as nodes of the
tree (leaves). Therefore, we introduce the set Nodes having Basket
as a proper subset. Channels and sorting baskets are in a one to one
correspondence. Therefore, the abstract model of the sorting de-
vice can be reduced to a single variable channel taking the value of
the sorting basket it leads to, namely a value in the set Basket. The
channel value is changed by the event set channel, defined in the
control part. The full description of the events will be given in the
controller section. It is worth noticing that the abstraction forces
a ”sequential functionning” of the sorting device, i.e. the value of
the channel remains unchanged as long as the parcel released in
the sorting device has not reached a sorting basket. Up to a point,
it is indeed possible to sort more than one parcel simultaneously.
The chosen abstraction does not allow such a concurrency. We
intend to deal with simultaneous sorting in a future work.
Parcels

Parcels, as part of the environment, are components of the op-
erative part and are represented as elements of a set we name
PARCELS. We use a total function (adr) from PARCELS to the
interval Baskets to refer to the parcels address. The event concern-
ing a selected parcel to sort is the crossing of the sorting device
up to the basket the channel leads to. We give the status ”arrived”
to the parcel which has reached a sorting basket. The variable
(arrived) is a total function from PARCELS to Baskets. The goal
of the sorting system is to decrease the set of the parcels to sort.
The variable sorted represents the set of sorted parcels. The re-
maining parcels are defined by the expression PARCELS - sorted
named UNSORTED. As pe is undefined when the sorting device is
empty, we have introduced a set PPARCELS of which PARCELS
is a proper subset; pe is an element of PPARCELS and assign-
ment of any value in PPARCELS - PARCELS stands for ”unde-
fined”. The expression PPARCELS - PARCELS will be referred as
NOPARCELS. The selection of a parcel is an event which may be
activated once the device is free and the variable pe is undefined,
which means it does not exist a parcel being sorted.

SYSTEM Parcel Sorting
SETS PPARCELS ;

SortingState = {free , busy }

CONSTANTS PARCELS, adr, Baskets

PROPERTIES PARCELS ⊂ PPARCELS ∧
PARCELS 6= ∅ ∧ Baskets 6= ∅ ∧
adr ∈ PARCELS → Baskets

select parcel = ANY
p Where p ∈ UNSORTED ∧
pe ∈ NOPARCELS ∧
sorting = free

THEN
pe := p
END;

Moving parcels
In our abstraction a parcel takes no time to travel from the

feeder to a basket. A parcel arrives in the basket to which the chan-
nel leads up. When the event occurs, the current parcel sorting is
finished and then, of course, the current parcel becomes undefined.

cross parcel = SELECT
sorting = busy

THEN
arrived(pe) := channel ||
sorted := sorted ∪ { pe} ||
pe :: NOPARCELS ||
sorting := free
END;

The safe operating physical layout
From the existing (physical) layout, it is possible to build

different controlled systems having different behaviours. It
is natural to dismiss systems having unsafe behaviours. The
controlled system which respects only these safety constraints,
is called the permissive controlled system. Here follows the
definition of the permissive controller system events :

set channel = SELECT
sorting = free ∧
pe /∈ NOPARCELS ∧
ready to sort = FALSE
THEN
channel :: Baskets || ready to sort := TRUE
END;

release = SELECT
sorting = free ∧
pe ∈ PARCELS ∧
ready to sort = TRUE
THEN
sorting := busy || ready to sort := FALSE
END;

Here, the value assigned to the variable channel is randomly de-
termined. This justifies the ”permissive” qualification. The guard
fulfills a safety constraint in preventing a change of the channel
when a parcel crosses the sorting device, preventing the parcel to
be damaged. The first part of the guard ensures that a single parcel,
at once, is being sorted, the second that a parcel may be selected
before being released.

4.3. The permissive controlled system

The EVENTS section of the B-event system modelling the per-
missive controlled system is obtained by merging the controller
events.

The event select parcel assigns the (next) current parcel to the
variable pe. Once selected this parcel remains the current one as
long as it has not reached a sorting basket. This captures a non

explicit property of the feeder in which the parcels are stored in a
first in first out order.

Controllability

The permissive controller behaviour will likely not satisfy
user’s needs, in the sense that we can not certify that every par-
cel arrives in the right basket. Conversely, if we can prove that
it is never the case that a parcel arrives in the expected bas-
ket, we assess that the system is not controllable with respect
of the following requirement : ∀p.(p ∈ PARCELS ∧ p ∈
dom(arrived(p)) ⇒ arrived(p) = adr(p)), and the develop-
ment process stops here.

We have added the following property to the invariants ∀p.(p ∈
PARCELS∧p ∈ dom(arrived(p)) ⇒ arrived(p) 6= adr(p))
and the prover failed in proving btrue = bfalse, which is a contra-
diction.

The first abstract controlled system

As far as we did not take into account the destination address
of the parcel we can not expect a parcel to reach the right basket.
The expected behaviour of the automated system can be stated as
follows : ∀p.(p ∈ PARCELS ∧ p ∈ dom(arrived(p)) ⇒
arrived(p) = adr(p)). We add it to the invariant part of the B
event model.

When attempting to prove the model, we expect a failure and
use the report to find out what should be changed to satisfy the
requirements.

[fh] [ds] [eh] [he] sorting = busy
[fh] [ds] pe$0: PPARCELS
[fh] [ds] not(pe$0: PARCELS)
[fh] [ds] p: PARCELS
[fh] [ds] [rm] p: dom(arrived <+pe |− > channel)
[fh] [ds] [ph] [zm] !p .([..] => arrived(p) = adr(p))
[SL] [cl] ————————————–
[ae] [aq] [ct] [ss] [ov] (arrived <+pe|− >channel)(p) =
adr(p)

When inspecting the interactive prover report, we deduce that
it is necessary to change channel :∈ Baskets into channel :=
adr(pe) in the event set channel in order to transform the per-
missive controlled system into an abstract model of the expected
controlled system. The technique may seem less convincing as the
case study at the level of abstraction is rather simple, but we claim
its interest when we are faced to combinatorial situations.

The parcel routing is a particular routing, obtained while
making the control event more deterministic. At this abstract
level, we have to prove the property asserting that any parcel
which is presented in entry will arrive at the destination bin
expressed by the following property:

∀p.(p ∈ PARCELS ∧ p ∈ dom(arrived(p)) ⇒
arrived(p) = adr(p))

For verification purpose,we have added the following invariant
properties :

(sorting 6= free ⇒ pe ∈ PARCELS) ∧
(sorting = busy ⇒ channel = adr(pe)) ∧
(ready to sort = TRUE ⇒ channel= adr(pe))∧
(ready to sort = TRUE ⇒ pe /∈ NOPARCELS) ∧
(sorting = busy ⇒ ready to sort = FALSE)

4.4. First refinement

In the abstract model, the operative part of the system is re-
duced to a single variable channel. A channel value corresponds
to a setting of node switches. In order to represent a more concrete
sorting device, we introduce the nodes Node as elements in an in-
terval of integers, the level of the nodes in the sorting device tree
structure (the root node corresponding to the level 0) Level, a func-
tion adr level which gives at a given level the node to be visited
to reach a given basket, a variable function path level which asso-
ciates to each level the node visited. The left successor of the node
i is labelled 2 ∗ i + 1 and the right one 2 ∗ i + 2. The root node is
labelled 0. A pipe has the label of the node it ”feeds”. The leaves
(terminal nodes) of the tree correspond to the baskets introduced
in the abstract model, in order to bind the leaves to the basket we
introduce a constant function basket node. The following piece of
B contains the formal definitions of the items introduced so far.

REFINEMENT Parcel routing1
REFINES Parcel routing

CONSTANTS
adr level, n, basket node, Node, Level, INTERNAL N

PROPERTIES
n ∈ NATURAL1 ∧
Node = (0..(2(n+1) − 2))∧
Level = (0..n) ∧
adr level ∈ (Baskets * Level) → Node ∧
basket node ∈ Baskets → Node ∧
INTERNAL N = 0..(2(n) − 2)∧
∀p.(p ∈ PARCELS ⇒ basket node(adr level(adr(p), n−
1)) = adr(p)
VARIABLES
arrived, channel, sorting, pe, sorted, ready to sort, path level,
i, l

INVARIANT
path level ∈ Level → Node ∧
i ∈ NATURAL ∧
i ∈ Node ∧
l ∈ NATURAL ∧
l ∈ Level ∧
∀p.(p ∈ PARCELS ∧ p ∈ dom(arrived(p)) ⇒
arrived(p) = adr(p))
DEFINITIONS
UNSORTED == PARCELS - sorted ;
NOPARCELS == PPARCELS - PARCELS

The event cross parcel was extended by strengthening its guard
with the condition (l = n − 1), meaning that the variable l has

reached the baskets level and the action has been modified ar-
rived(pe) is assigned the value basket node(adr level(adr(pe), n-
1)), the (basket) node where the current parcel ends its run.

cross parcel = SELECT
sorting = busy ∧ l = n-1

THEN
arrived(pe) :=
basket node (adr level(adr(pe), n-1)) ||
sorted := sorted ∪ { pe} ||
pe :: NOPARCELS || sorting := free
END;

In the abstract model, the crossing of the current parcel con-
cerned a single event cross parcel, here we are concerned by
the passing of the parcel through different nodes. The events
cross right and cross left are introduced to determine the next
node to visit which mean updating the variable i representing the
current node. The variable l representing the current level is up-
dated as well. Updating the current node variable depends on the
value of path level(l+1). If the value is odd the next node to reach
is the left son otherwise it is the right son. The coding of the nodes
makes the computation of the left or right son easy.

cross right = SELECT
i ∈ INTERNAL N ∧
l < n ∧
path level(l+1) = 2*i+2

THEN
i := 2*i+2 || l := l+1
END;

cross left = SELECT
i ∈ INTERNAL N ∧
l < n ∧
path level(l+1) = 2*i+1

THEN
i := 2*i+1 || l := l+1
END;

The function path level concerning the current parcel is up-
dated “on the fly” by two events : path right, path left. The se-
lect parcel gives the opportunity to initialize path level(0) with 0.
All three events are part of the system control.

path right = SELECT
i∈ INTERNAL N ∧
l < n ∧
adr level(adr(pe),l+1) = 2*i+2

THEN
path level(l+1) := 2*i+2
END;

path left = SELECT
i ∈ INTERNAL N ∧
l < n ∧
adr level(adr(pe),l+1) = 2*i+1

THEN
path level(l+1) := 2*i+1
END;

select parcel = ANY
p Where p ∈ UNSORTED ∧
pe ∈ NOPARCELS
THEN
pe := p || i := 0 || l := 0 ||
path level(0):= 0
END;

The system has been verified by the B toolkit and some proofs
obligations have been verified automatically and others interac-
tively. The last onces were difficult to prove and arithmetic onces
were not easily to prove and this is way, we have added some func-
tions in the clause properties. For example, we have added the
function power and for some interactive proofs, we have added
hypothesis in the verification process.

PROPERTIES
power2 ∈ NATURAL → NATURAL ∧
power2(0) = 1 ∧
∀ n .(n ∈ NATURAL ⇒ power2(n+1)= 2 * power2(n))

For verification purpose, we have added the following prop-
erties in the clause assertions. These properties are verified only
once by the proof system.

ASSERTIONS
∀ n .(n ∈ NATURAL1 ⇒ power2(n)= 2 * power2(n-1)) ∧
(i ∈ INTERNAL N ⇒ 2*i+1 ∈ (0..(power2(n+1)-2))) ∧
∀ PP .(PP ⊆ NATURAL ∧

0 ∈ PP ∧
succ[PP] ⊆ PP
⇒
NATURAL ⊆ PP)

;
∀ n .(n ∈ NATURAL ⇒ (n>= 1 ⇒ power2(n)>= 2) ∧ (n
= 0 ⇒ power2(n) = 1))

4.5. Second refinement : an even more concrete
model of the operative part

This refinement consists in adding details to the nodes. A node
is provided with the following sensors : an input sensor, two out-
puts sensors and a gate which can be set to open the exit to the left
pipe or to the right pipe. The position of the gates is represented by
a variable function gate returning for each node a value in : R,L.

The input sensor of a node is represented by a Boolean variable
in which is initially set to false. The outputs sensors are repre-
sented by the Boolean variables out R and out L. These variables
become true when a parcel is detected and as we cannot have two
outputs at the same time, the outputs sensors must verify the prop-
erty ¬ (out R ∧ out L).

Once the parcel is in a node, three events can be started con-
secutively, the first is set gate left, which was added to refine con-
trol part, this event models gate opening on the left, by putting
gate(adr level(adr(pe), l+2)):=L, where adr level(adr(pe), l+2)
indicates the current node. The same behaviour but towards right
side is modelled by the event set gate right. The second executed

event is crossing left, respectively crossing right, modelling the
node crossing to go towards the left pipe, respectively right pipe,
resulting from this node. The third event concerns the pipe cross-
ing and it is modelled by cross right, indicating that the parcel
passed towards the next left node, respectively towards the right
following node. The variable gate set, is used to guarantee that
the parcel crossing is possible only if the node gate is positioned
in advance. It is changed at truth, by the event cross left which
makes it to false.

REFINEMENT Parcel routing2
REFINES Parcel routing1
SETS
Result = { R , L , ind }

PROPERTIES
∀ (p, l) .(p ∈ PARCELS ∧ l ∈ NATURAL ∧ l < n ⇒
adr level(adr(p), l)∈ INTERNAL N

VARIABLES
arrived, channel, pe, sorted, sorting, ready to sort ,
path level, i, l, in, out L , out R , gate, gate set
INVARIANT
in ∈ Node → BOOL ∧ dom(in)= Node ∧
out R ∈ INTERNAL N → BOOL ∧ out L ∈ INTERNAL N
→ BOOL ∧ gate ∈ Node → sortie ∧ gate set ∈ BOOL ∧
∀ i .(i ∈ INTERNAL N ⇒ l ¬ (out R(i)=TRUE ∧
out L(i)=TRUE))

DEFINITIONS
UNSORTED == PARCELS - sorted ;
NOPARCELS == PPARCELS - PARCELS ;
NBasket == Node - Baskets ;

set gate right = SELECT
l <= n-2 ∧
pe ∈ PARCELS ∧
adr level(adr(pe),l+2) = 2*adr level(adr(pe),l+1)+2
THEN
gate set := TRUE ||
gate(adr level(adr(pe),l+1)) := R
END;

set gate left = SELECT
l <= n-2 ∧
pe ∈ PARCELS ∧
adr level(adr(pe),l+2) = 2*adr level(adr(pe),l+1)+1
THEN
gate set := TRUE ||
gate(adr level(adr(pe),l+1)) := L
END;

The events path left, respectively path right having for effect
to calculate, the next node to be visited by checking that the gate
is opened in the good orientation (gate(ii) = L (left), gate(ii)=R
(right)).

path right = SELECT
i∈ INTERNAL N ∧
l < n ∧
adr level(adr(pe),l+1) = 2*i+2 ∧
in(i) = TRUE ∧
gate(i) = R

THEN
path level(l+1) := 2*i+2
END;

path left = SELECT
i ∈ INTERNAL N ∧
l < n ∧
adr level(adr(pe),l+1) = 2*i+1 ∧
in(i) = TRUE ∧
gate(i) = L

THEN
path level(l+1) := 2*i+1
END;

crossing right = SELECT
i = INTERNAL N ∧
in(i) = TRUE ∧
gate(i) = R
THEN
out L(i) := TRUE ||
out R(i) := FALSE ||
in(i) := FALSE
END;

crossing left = SELECT
i = INTERNAL N ∧
in(i) = TRUE ∧
gate(i) = L
THEN
out L(i) := TRUE ||
out R(i) := FALSE ||
in(i) := FALSE
END;

passage right = SELECT
i = INTERNAL N ∧

out L(i) = TRUE ∧
l < n ∧
gate set = TRUE ∧
path level(l+1) = 2*i+2
THEN
i := 2*i+2 ||
l := l+1 ||
gate set := FALSE ||
in(2*i+1) := TRUE
END;

passage left = SELECT
i = INTERNAL N ∧
out L(i) = TRUE ∧
l < n ∧
gate set = TRUE ∧
path level(l+1) = 2*i+1
THEN
i := 2*i+1 ||
l := l+1 ||
gate set := FALSE ||

in(2*i+1) := TRUE
END;

The event select parcel, is also refined by taking into account
the sensor which models the parcel presence on the level of
the first entry basket. The event cross parcel, concerning the
operative part is refined by adding to the level of each node the
sensor which detects the entry of parcels.

select parcel = ANY p Where
p ∈ UNSORTED ∧
pe ∈ NOPARCELS
THEN
pe := p ||
i := 0 ||
l := 0 ||
path level(0):= 0 ||
in(0) := TRUE
END;

cross parcel = SELECT
sorting = busy ∧
l = n-1
THEN
arrived(pe) := basket node (adr level(adr(pe,n-1)) ||
sorted := sorted ∪ { pe} ||
pe :: NOPARCELS ||
sorting := free ||
in(basket node(channel)) := TRUE
END;

The fact that almost every clause of the invariant has a universal
quantification increased considerably the complexity of the proof
obligations. The total number of proofs amounts to 90 and 74
where automatically proved by the Atelier-B prover. The others
proof obligations are interactive and where difficult to prove. Nev-
ertheless, all were proved.

5. Conclusion

In this paper, we have proposed the first steps of a formal
method for the development of hybrid systems using the B event-
based approach. We have discarded time features and will deal
with in future work. The main contribution of the paper consists in
building a model of the expected automated system starting from a
model of the physical operative part. In the stepwise approach, the
first model consists of an abstract model of the operative part with
the guards of the event kept as week as possible to prevent unsafe

behaviours. The only property one can expect from a system, we
have called permissive, is that it does not prevent the expected be-
haviour of the final automated system to occur. If it is the case,
we deduce that the system is controllable and that is is possible to
strengthen the guards in order to obtain an abstract model of the
required controlled system. The controlled system is then refined
in the usual way. The refinement, indeed, concerns the operative
part. At the end of the process, we have a detailed model of the
operative part. The validation of the operative part, using the ani-
mator has been experienced in another work.

In the future, we will deal with temporal properties using, the
temporal logic of actions TLA+ [12, 13] as B is limited to invariant
properties and does not allow to deal easily with fairness proper-
ties.

References

[1] J.-R. Abrial. The B-Book: Assigning Programs to Meanings.
Cambridge University Press, 1996.

[2] J.-R. Abrial. Extending B without changing it (for develop-
ing distributed systems). In H. Habrias, editor, Proceedings
of the 1st Conference on the B method, pages 169–191, Nov.
1996.

[3] J.-R. Abrial. Event driven circuit construction. MATISSE
project, Aug. 2000.

[4] R.-J. Back and K-Sere. Stepwise refinement of action sys-
tems. In Mathematics of Program Construction., pages 115–
138, Berlin - Heidelberg - New York, June 1989. Springer.

[5] R.-J. Back and J. v. Wright. Refinement Calculus: A Sys-
tematic Introduction. Graduate Texts in Computer Science.
Springer-Verlag, 1998.

[6] ClearSy. Atelier b. Technical Note Version 3.6, Aix-en-
Provence(F), 2002.

[7] E. Dijkstra. A Discipline of Programming, chapter 14.
Prentice-Hall, Englewood Cliffs, N. J., 1976.

[8] E. Dijkstra and C. Schweten. Predicate Calculus and Pro-
gramm Semantics. Springer Verlag, New York, 1990.

[9] R.-M. Dijkstra. An experiment with the use of predicate
transformers in UNITY. Information Processing Letters,
53(6):329–332, Mar. 1995.

[10] D. C. J-R. Abrial and G. Laffitte. Higher-order mathematics
in b. In H. Habrias, editor, Formal Specification and Devel-
opment in Z and B, pages 237–270, Nov. 1996.

[11] J. JARAY and A.Mahjoub. Une mthode itrative de construc-
tion d’un modle de systme ractif . TSI, 15, 1996. .

[12] L. Lamport. The Temporal Logic of Actions. Technical Re-
port 79, Digital Equipment Corporation, Systems Research
Centre, Dec. 1991.

[13] L. Lamport. Hybrid systems in TLA+. In R. L. Gross-
man, A. Nerode, A. P. Ravn, and H. Rischel, editors, Hybrid
Systems, volume 736 of Lecture Notes in Computer Science,
pages 77–102. Springer-Verlag, 1993.

[14] P. J. Ramadge and W. M. Wonham. Supervisory control of a
class of discrete event processes. SIAM Journal on Control
and Optimization, 25(1):206–230, 1987.

[15] P. J. G. Ramadge and W. M. Wonham. The control of discrete
event systems. Proceedings of the IEEE; Special issue on
Dynamics of Discrete Event Systems, 77, 1:81–98, 1989.

[16] J.-M. Spivey. Understanding Z, A Specification Language
and its Formal Semantics. Tracts in Theoretical Computer
Science, 3, 1988. Cambridge University Press.

