
HAL Id: inria-00102229
https://hal.inria.fr/inria-00102229

Submitted on 29 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Development Method of Automated Systems
using the Temporal Logic of Actions TLA

Olfa Mosbahi, Leila Jemni Ben Ayed, Jacques Jaray

To cite this version:
Olfa Mosbahi, Leila Jemni Ben Ayed, Jacques Jaray. Formal Development Method of Automated
Systems using the Temporal Logic of Actions TLA. MOSIM’06 6ième Conférence Francophone de
Modélisation et Simulation des Systèmes, Apr 2006, Rabat, Morocco. �inria-00102229�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50425176?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00102229
https://hal.archives-ouvertes.fr

6
�

Conférence Francophone de MOdélisation et SIMulation - MOSIM’06 - du 3 au 5 avril 2006 - Rabat - Maroc

«Modélisation, Optimisation et Simulation des Systèmes : Défis et Opportunités»

Formal development method of automated systems using the temporal logic of

Actions TLA+

O. MOSBAHI L. JEMNI BEN AYED J. JARAY

Faculté des Sciences de Tunis, INRIA Lorraine Faculté des Sciences de Tunis INRIA Lorraine

Université Tunis El Manar II, LORIA-INPL Université Tunis El Manar II LORIA-INPL

Tunis, Tunisie, Nancy, France Tunis, Tunisie Nancy, France

olfa.mosbahi@loria.fr leila.jemni@fsegt.rnu.tn jacques.jaray@loria.fr

Abstract : The paper presents a method for control systems formal development. We focus on the refinement
process used for the development of a control part controlling an operative part of an automated (controlled)
system satisfying requirements. We first build an abstract model of both operative and control parts and complete
this model to get a model of the automated system. The next steps consists in refining the control part and the
operative one to get a model of the automated system capturing every important feature. The method is developed
through a case study : a parcel sorting system. We use the temporal logic of actions TLA+ which deals with
refinement and proved usufull for the specification and the verification of safety and liveness properties.
Key-Words : Modelling, Model checking, Refinement, Automated systems, TLA+, Validation.

1 INTRODUCTION

Reactive systems are systems that react continuously
to their environment and require description of al-
lowed patterns of behaviour for their specification,
rather than a simple input/output relation. Reac-
tive systems often involve concurrent execution of
processes (in order to achieve responsiveness require-
ments, or because of inherent distribution in the ap-
plication) and requirements on system states that
must not arise (safety constraints), the reachability
of some states (liveness constraints) and timing con-
straints between system responses to events. Among
reactive systems are most of the industrial real-time
and embedded systems, such as control and super-
vision systems. They are critical systems and re-
quire a high level of safety and reliability. To reach
a necessary degree of reliability and safety, it would
be quite interesting to lay out a specification ap-
proach which simplifies the requirement description,
deals with mathematical notations inducing verifica-
tion and validation.

In this paper, we propose a development method of
automated (controlled) systems. In such systems, we
distinguishe a software part : the ”controller” and
an operative part formed by a physical device and
its environment which the behavior can be observed
through variables and on which it is possible to re-

act with effectors. The controller and the operative
part form what is called the controlled (or automated)
system. The goal is that the controller acts on the
operative part such as the controlled system satisfies
required properties. So, we are concerned with the
correctness of the controller. The usual way to deal
with the correctness of a program is to prove that
the interaction with its operative part satisfies some
required properties.

We take a different point of view and notice that
the user is satisfied by the behaviour of the con-
troller as soon as the automated system behaves in
the expected way. Our development method consists
in building an abstract discrete model of both op-
erative and control parts. The model of the opera-
tive part is completed to obtain a controlled or au-
tomated system. Correctness concerns the controlled
system, provided the model of the operative part is
accurate. Successive refinements are used to produce
final model for each of the control and the operative
parts. At each refinement level new required proper-
ties are added to the model and have to be verified
by the automated system. The last refinement step
shall verify all requirements. These insures that the
final model will be correct since all required proper-
ties have been verify (Figure 2). The quality of the
last refinement suposed to model the controlled sys-
tem depends on the first abstract models of both of

MOSIM’06 – du 3 au 5 avril 2006 - Rabat - Maroc

the control and operative parts.

Several formal methods have been proposed for the
development of control systems, most of them relay
on set theory such as B, VDM and Z other ones re-
lay on temporal logic such as PLTL and TLA. To
build our models we use the temporal logic of actions
TLA+ which has been proved usefull for the specifica-
tion and the verification of safety,liveness and fairenss
properties (Lamport 2002, Lamport 1998, Lamport
1993), deals with refinement process, wich we need in
our approach, and is provided with a powerfull model
checker TLC (Lamport 2002) which can be used to
simulate the automated system and to prove the cor-
rectness of the development. The expected behaviour
of the controlled system is expressed by means of in-
variants and temporal properties. The model is then
refined such that its operative part gets closer to the
real operative one.

The paper is organized as follows : section 1 presents
an overview of the temporal logic of actions, section
2 a description of the development method that we
propose. In section 3 the method is illustrated by a
parcel sorting case study and the model checker TLC
is used.

2 TLA+ : THE TEMPORAL

LOGIC OF ACTIONS

TLA+ is a language intended for the high level
specification of reactive, distributed, and in partic-
ular asynchronous systems. It combines the linear-
time temporal logic of actions TLA (Lamport 1991,
Lamport 1994), and mathematical set theory. The
language has a mechanism for structuring in the form
of modules, either by extension, or by instance.

The semantics of TLA is based on state behaviors
of variables. It can be viewed as a logic built in an
incremental manner in three stages :

1. predicates having as free variables rigid and flex-
ible variables and whose semantics is based on
states. A state � satisfies the predicate

�
if and

only if � [| � |] is true. � [| � |] is the value obtained
by substituting in

�
variables by its values in the

state � (for instance � [| � = 0|] ≡ � [| � |]1 = 0),

2. actions which are logical formulas having primed
flexible variables as well as free variables and
whose semantics is based on pairs of states. A
pair of state <

�
, � > satisfies the action � if

and only if � [| � |] � is true. � [| � |] � is the value ob-
tained by substituing in � imprimed variables

by its value in the state � and primed vari-
ables by its values in the state � . (for instance� [| � ′ = � + 1|] � ≡ � [| � |] = � [| � |] + 1). As pred-
icates are actions we thus have � [| � |] � ≡ � [| � |]
and � [| � ′|] � ≡ � [| � |],

3. temporal formulas of actions (addition of the op-
erator 2) whose semantics is based on state be-
haviors of variables. <

�
0,
�
1, ... > [|2 � |] (a

behavior <
�
0,
�
1, ... > satisfies 2 �) is true if

and only if ∀ � ∈ �	�
� :< ���
,
���

+1, ... > [| � |].
As an action is a temporal formula we have
<

�
0,
�
1, ... > [| � |] ≡ �

0[| � |] � 1.

A TLA specification looks like : ������ ∧ 2[�	�����] � ∧ �
Where :

1. ������ is the predicate which specifies initial states
(� 0[| ������ |]),

2. 2[�������] � means that either two consecutive
states are equal on � , � ′ = � (stuttering), or �������
is an action (a relation) which binds two consec-
utive states by using the variable (not primed)
for the first state and the primed variable for the
second state (∀ � ∈ ���
� : ��� [| ������� |] ��� +1),

3. � is a fairness assumption (strong or weak) on ac-
tions � : � ⇒ �	����� . �����! #"!$&%')(+*-,�.�$+%/.�0+12(+3 [| 4 |](�)
defines the condition of weak fairness over the
system S and 56���7 �"!$+%2)(+*8,9.�$&%:.�0&1'(&3 [| 4 |](�) defines
the condition of strong fairness over the system
S.

We use TLA to prove invariance properties (5<;��9= ⇒
2), eventuality properties (5�;6�9= ⇒ ♦ �) or 5<;��9= ⇒
(
�

; >)) and refinement properties (5<;��9= ?��A@ ⇒
5�;6�9= ��B �). Unlike most other temporal logics, TLA
is intended to support stepwise system development
by refinement of specifications. The basic idea of re-
finement consists in successively adding implementa-
tion detail while preserving the properties required at
an abstract level. In a refinement-based approach to
system development, one proceeds by writing succes-
sive models, each of which introduces some additional
datail while preserving the properties of the preceding
model. Fundamental properties of a system can thus
be established at high levels of abstraction, errors can
be detected in early phases, and the complexity of for-
mal assurance is spread over the entire development
process. A system 5 1 is refined by a system 5 2, when :
Specification(5 2) ⇒ Specification(5 1). A refinement
5 2 preserves all TLA properties of an abstract specifi-
cation 5 1 if and only if for every formula � , if 5 1 ⇒ �
is valid, then so is 5 2 ⇒ � . This condition is in
turn equivalent to requiring the validity of 5 2 ⇒ 5 1.

MOSIM’06 – du 3 au 5 avril 2006 - Rabat - Maroc

Because 5 2 will contain extra variables to represent
the lower-level detail, and because these variables will
change in transitions that have no counter-part at the
abstract level, stuttering invariance of TLA formulas
is essentiel to make validity of implication a reason-
able definition of refinement.

Proofs in TLA (can be found in (Lamport 1991)) are
carried out using proof rules and rules of the classi-
cal logic. It is clear that the main advantage is that
every thing is stated as a logical object and relations
as probability or refinement are stated using the log-
ical implication. The refinement states a property
between logical formulae interpreted over external be-
haviour.

TLA+ (Lamport 2002, Lamport 1998) is an exten-
sion of TLA including predicate calculus and ZF set
theory and mechanisms for structuring a specifica-
tion in a module. A module is a text containing
a name, a list of definitions (constants, variables,
operators, functions, predicates, assumptions, theo-
rems, proofs). A specification is made up of several
modules that are combined using clauses EXTENDS
and INSTANCE. The clause EXTENDS imports the
definitions of specified modules by a macro expan-
sion mechanism; the clause INSTANCE provides the
mechanism of parametrization and a bloc-like struc-
ture. A module TLA+ is represented as follows :

MODULE <Name>
CONSTANTS <List of contants>
VARIABLES <List of variables>
ASSUME <properties of constants>
TYPE INVARIANT

INIT <initialization of variables>
SPEC < ����������	�
�� ∧ 2[������] � ∧ � >
INVARIANT <Safety properties>
LIVENESS <Liveness properties>
THEOREM

END

3 THE DEVELOPMENT

METHOD OF AUTO-

MATED SYSTEMS

In this section we present a development method of
automated systems. The problem can be stated as
follows: being given an operative part (physical de-
vice and an environment) which behavior is observed
through a number of variables and on which it is pos-
sible to act by means of effectors. Some of the vari-
ables are controllable, they correspond to the results
of some actuators, other are not controllable and their

changes correspond to the effect of some physical pro-
cess we do not control. The behavior of the auto-
mated system can be represented by a closed loop ex-
pressing relation between operative and control parts
(Figure 1). We have to develop a control program
which ob-serves the operative part and change con-
trollable variables such that the automated system
meets some requirements . The modeling method
that we propose uses the temporal logic of actions
(TLA+) and consists on the following steps:

1. First of all, we build an abstract model of the op-
erative part, an abstract model of minimal con-
troller in defining its actions with guards as weak
as possible, just taking into account safety re-
quirements. The resulting system is a “permis-
sive” controlled system, it is likely not the case
that all behaviors meet the automated system
requirements but some should.

2. We have to prove the last part of this assertion,
if not we can deduce that it is not possible to
achieve the expected system. This point is simi-
lar to the notion of controllability in control the-
ory (Ramadge & Wonham 1989). Then, we con-
strain the permissive controlled system as a mod-
ule TLA+ and we use the model checker TLC to
verify some safety requirements.

3. Successive refinements can be used to produce
the concrete model of the automated system
formed by physical device and its environment
and the concrete control system through the ad-
dition of expected behaviour with the addition
of new actions, variables and new properties for
each of the operative and the control parts (Fig-
ure 2). Related verifications are discharged. At
each refinement step, new module modeling op-
erative and control parts is shown to satisfy new
automated system requirements. The refinement
process stops when the automated system model
meets the desired properties. The quality of the
last refinement supposed to model the controlled

MOSIM’06 – du 3 au 5 avril 2006 - Rabat - Maroc

system depends on the first operative part model.

4. The last step consists in separating what con-
cerns the operative component from what con-
cerns the controller in order to build a program
of the controller,

4 CASE STUDY : A PARCEL

SORTING DEVICE

Our method is illustrated by a case study : the
development of a parcel sorting system (JARAY &
A.Mahjoub 1994). We start with an informal descrip-
tion of the problem and then apply our method.

4.1 Informal description of the prob-

lem

The problem is to sort parcels into sorting baskets
according to an address written on the parcel. In or-
der to achieve such a sorting function we are provided
with a device made of a feeder connected to the root
of a binary tree made of switches and pipes as shown
Figure 3. The switches are the nodes of the tree, pipes

are the edges and leaves are the baskets. A parcel,
thanks to gravity, can slide down through switches
and pipes to reach a basket. A switch is connected
to an entry pipe and two exit pipes, a parcel crossing
the switch is directed to an exit pipe depending on the
switch position. The feeder releases a parcel at once
in the router, the feeder contains a device to read the
address of the parcel to be released. When released,
a parcel enters a first switch (the root of the binary
tree) and slides down the router to reach a basket.
The controller can activate the feeder and change the
switches position. For security reasons, it is required
that switch change should not occur when a parcel is
crossing it. In order to check this condition, sensors
are placed at the entry and the exits of each switch.

4.2 Abstract model of the system

The controller extends the operative part in order to
produce the controlled system. The first step of the
method is to build an abstract model of the operative
part and an abstract model of the control part using
inputs from the informal presentation. The operative
part is formed by the sorting device and the parcel
behaviour.

The sorting device. The sorting device consists of
a feeder and a sorting layout. The feeder has two
functions : selection of the next parcel to introduce
into the sorting layout and opening the gate (releas-
ing a parcel in the sorting layout). We introduce the
actions select and release to capture the two func-
tions. In order to produce the abstract model of the
sorting layout, we have to notice that a given state
of the switches forms a channel linking the entrance
to only one sorting basket. A basket is an element of
a set named Basket. In future refinements, the tree
structure of the sorting device will be introduced and
the sorting baskets will be classed as nodes of the tree
(leaves). Therefore, we introduce the set Nodes hav-
ing Basket as a proper subset. Channels and sorting
baskets are in a one to one correspondence. There-
fore, the abstract model of the sorting device can be

MOSIM’06 – du 3 au 5 avril 2006 - Rabat - Maroc

reduced to a single variable channel taking the value
of the sorting basket it leads to, namely a value in
the set Basket. The channel value is changed by
the action set channel, defined in the control part.
The full description of the actions will be given in
the controller section. It is worth noticing that the
abstraction forces a ”sequential functionning” of the
sorting device, i.e. the value of the channel remains
unchanged as long as the parcel released in the sort-
ing device has not reached a sorting basket. Up to
a point, it is indeed possible to sort more than one
parcel simultaneously. The chosen abstraction does
not allow such a concurrency.

Parcels. Parcels, as part of the environment, are
components of the operative part and are represented
as elements of a set we name PARCELS. We use a
total function (adr) from PARCELS to the interval
Baskets to refer to the parcels address. The action
concerning a selected parcel to sort is the crossing of
the sorting device up to the basket the channel leads
to. We give the status ”arrived” to the parcel which
has reached a sorting basket. The variable (arrived)
is a total function from PARCELS to Baskets. The
goal of the sorting system is to decrease the set of
the parcels to sort. The variable sorted represents
the set of sorted parcels. The remaining parcels are
defined by the expression PARCELS - sorted named
UNSORTED. pe describes an entry parcel. As pe is
undefined when the sorting device is empty, we have
introduced a set PPARCELS of which PARCELS is
a proper subset; pe is an element of PPARCELS and
assignment of any value in PPARCELS - PARCELS
stands for ”undefined”. The expression PPARCELS -
PARCELS will be referred as NOPARCELS. The ac-
tion select parcel is introduced and is activated once
the device is free and the variable pe is undefined,
which means it does not exist a parcel being sorted.

� � � ��� � ����� ��� � ∆
= ∧ ��� ���
�		� =
������

∧ ��� ∈ ����������� � �
∧ ∃ � ∈ � ����������� : ∧ ��� ′ = �
∧ unchanged 〈 ����� 	 	 � � , ������
! ��#" ,��� ��� �#" , �$� � �
�	%� , ���#�&"�' � � ��� � � 〉

Moving parcels. In our abstraction, a parcel takes
no time to travel from the feeder to a basket. A parcel
arrives in the basket to which the channel leads up.
When the action cross parcel occurs, the current par-
cel sorting is finished and then, of course, the current
parcel becomes undefined.

�$� ���(� ����� � � � ∆
= ∧ ��� � �
 		� =)$* � '

∧ ������
! ��#" ′ = [�����
! ��#" except ![���] = ������	 	 � �]
∧ ��� ��� �#" ′ = ��� � � �#" ∪ { ��� }
∧ ��� ′ ∈ ����������� � � ∧ ��� ���
�		� ′ =
������
∧ unchanged 〈 ����� 	 	 � � , ���#�&"�' � � ��� ��� 〉

The safe operating physical layout. From the
existing (physical) layout, it is possible to build dif-
ferent controlled systems having different behaviors.
It is natural to dismiss systems having unsafe behav-
iors. The controlled system which respects only these
safety constraints, is called the permissive controlled
system. In this automated system, permissive con-
troller system actions are the set and release.

� � � ������	�	 � � ∆
= ∧ ��� � �
 		� =
������ ∧ ��� /∈ ����������� � �

∧ ���#�&"�' � � �$� � � = false ∧ ������	 	 � � ′ ∈ +�� �-, � � �
∧ ���#�&"�' � � �$� � � ′ = true

∧ unchanged 〈 �����
! ��#" , ��� ��� �#" , ��� , ��� � �
 		� 〉

Here, the value assigned to the variable channel is
randomly determined. This justifies the ”permissive”
qualification. The guard fulfills a safety constraint
in preventing a change of the channel when a parcel
crosses the sorting device, preventing the parcel to be
damaged.

��� � �#� � � ∆
= ∧ ���#�&"�' � � �$� � � = true

∧ �$� � �
�	%� =
������ ∧ ��� ∈ �������� � �
∧ �$� � �
�	%� ′ =)$* � ' ∧ ���#�&"�' � � ��� ��� ′ = false

∧ unchanged 〈 ������	�	 � � , �����
! ��#" , ��� ��� �#" , ��� 〉

The first part of the guard ensures that a single parcel,
at once, is being sorted, the second that a parcel may
be selected before being released.

4.3 The permissive controlled system

The actions section of the TLA system modelling the
permissive controlled system is obtained by merging
the controller actions. The action select parcel as-
signs the (next) current parcel to the variable pe.
Once selected this parcel remains the current one as
long as it has not reached a sorting basket. This cap-
tures a non explicit property of the feeder in which
the parcels are stored in a first out order.

4.3.1 Controllability

The permissive controller behavior will likely not sat-
isfy user’s needs, in the sense that we can not certify
that every parcel arrives in the right basket. Con-
versely, if we can verify that it is never the case that
a parcel arrives in the expected basket, we assert that
the system is not controllable with respect of the fol-
lowing requirement P and the development process
stops here.

∀ � ∈ .������� � � : � ∈ domain ������
! ��#" ; ������
! ��#" [�] = �&"�� [�]

MOSIM’06 – du 3 au 5 avril 2006 - Rabat - Maroc

4.3.2 The first abstract controlled system

As far as we did not take into account the destina-
tion address of the parcel we can not expect a parcel
to reach the right basket. The expected behavior of
the automated system is defined in the requirement
P. We add it to the invariant part of the TLA model.
When attempting to verify the model, we expect a
failure and use the report to find out what should
be changed to satisfy the requirements. We deduce
that it is necessary to change =��6�<��� ��� ′ ∈ � � ��� �7� � into
=����
��� ��� ′ = �
	<? [;��] in the action � ��� =����
��� ��� in or-
der to transform the permissive controlled system into
an abstract model of the expected controlled system.
The technique may seem less convincing as the case
study at the level of abstraction is rather simple, but
we claim its interest when we are faced to combi-
natorial situations. The parcel routing is a particu-
lar routing, obtained while making the control action
more deterministic. At this abstract level, we have to
prove the property asserting that any parcel which is
presented in entry will arrive at the destination bin
expressed by the following property:

∀ � .(� ∈ �������� � � ∧ � ∈ " ��� (�����
! ��#" (�)) ⇒
������
! ��#" (�) = �&"�� (�))

The abstract model of the automated system will be
presented in the annexe A.

4.4 First refinement

In the proposed method, we refine in parallel each of
the operative and the control parts adding new vari-
ables, properties, actions or redefining some of them.

Refinement of the operative part. In the ab-
stract model, the physical device of the system is re-
duced to a single variable channel. A channel value
corresponds to a setting of node switches. In order
to represent a more concrete sorting device, we in-
troduce the nodes Node as elements in an interval of
integers, the level of the nodes in the sorting device
tree structure (the root node corresponding to the
level 0) Level, a function adr level which gives at a
given level the node to be visited to reach a given bas-
ket, a variable function path level which associates to
each level the node visited. The left successor of the
node � is labelled 2∗ � +1 and the right one is 2∗ � +2.
The root node is labelled 0. A pipe has the label of
the node it ”feeds”. The leaves (terminal nodes) of
the tree correspond to the baskets introduced in the
abstract model.

The action cross parcel1 was extended by strengthen-

ing its guard with the condition (� = �), meaning that
the variable � has reached the baskets level and the
action has been modified. arrived(pe) is assigned the
value adr level[adr[pe], n]], the (basket) node where
the current parcel ends its run. The actions cross
parcel and select parcel are redefined as follows :

�$� ���(� ��������� � 1 ∆
= ∧ �$� � �
�	%� =)$* � ' ∧ �

= 	
∧ ������
! ��#" ′ = [������
! ��#" except ![���] = �&"�� � �� �� � [�&"�� [���],]]
∧ �$� � � �#" ′ = ��� ��� �#" ∪ { ��� } ∧ ��� ′ ∈ ������� ��� � �
∧ �$� � �
�	%� ′ =
������
∧ unchanged 〈 ������	�	 � � , ���#�&"�' � � ��� � � ,

����� � � �� �� � ,
 , � , � � � � �$� ���(� 〉� � � ��� � ��������� � 1 ∆
= ∧ � � � ��� � ����� � � � ∧
 ′ = 0

∧
�
′ = 0 ∧ ����� � � �� �� � ′ = [����� � � �� �� � except ![0] = 0]

∧ unchanged 〈 � � � � �$� ���(� 〉

In the abstract model, the crossing of the current par-
cel concerned a single action cross parcel, here we are
concerned by the passing of the parcel through dif-
ferent nodes. Two nex actions cross right and cross
left are introduced to determine the next node to be
visited which mean updating the variable � represent-
ing the current node. The variable � representing the
current level is updated as well. Updating the current
node variable depends on the value of path level(l+1).
If the value is odd the next node to reach is the left
son otherwise it is the right son. The coding of the
nodes makes the computation of the left or right son
easy.

�$� ���(� � �!
�� ∆
= ∧

� �
< = 	 ∧
 ∈ ��	�� ��� 	 � �

∧ �$� � �
�	%� =)$* � ' ∧ � � � � �$� ���(� = true

∧ ����� � � �� �� � [� + 1] = 2 ∗
 + 1 ∧
�
′ =

�
+ 1

∧
 ′ = 2 ∗
 + 1 ∧ � � � � �$� ����� ′ = false

∧ unchanged 〈 ������	�	 � � , ��� � �
 		� , ��� , ������
! ��#" ,��� � � �#" , ���(� "�' � � ��� ��� , ����� � � �� �� � 〉
�$� ���(� ��
 � � � ∆

= ∧
�!�

< = 	 − 1 ∧
 ∈ ��	�� ��� 	 � �
∧ �$� � �
�	%� =)$* � ' ∧ � � � � �$� ���(� = true

∧ ����� � � �� �� � [� + 1] = 2 ∗
 + 2 ∧
�
′ =

�
+ 1

∧
 ′ = 2 ∗
 + 2 ∧ � � � � �$� ����� ′ = false

∧ unchanged 〈 ������	�	 � � , ��� � �
 		� , ���(� "�' � � ��� ��� ,
��� , ������
! ��#" , �$� � � �#" , ����� � � �� �� � 〉

The actions select parcel1, cross left, cross right and
cross parcel1 form the operative part of the auto-
mated system.

Refinement of the control part. In this refine-
ment, we have added two new actions path right and
path left. The actions path right, path left, set chan-
nel1 and release1 form the control part of the au-
tomated system. The function path level concerning
the current parcel is updated “on the fly” by two ac-
tions : path right, path left. The select parcel gives
the opportunity to initialize path level(0) with 0.

MOSIM’06 – du 3 au 5 avril 2006 - Rabat - Maroc

����� � � �!
 � ∆
= ∧
�
 ∈ ��	�� ��� 	 � � ∧

� �
< = 	

∧ ��� ∈ �������� � � ∧ ��� � �
 		� =)$* � ' ∧ � � � � �$� ���(� = false

∧ �&"�� � �� �� � [�&"�� [���], � + 1] = 2 ∗
 + 1
∧ ����� � � �� �� � ′ = [��� � � � �� �� � except ![

�
+ 1] = 2 ∗
 + 1]

∧ � � � � �$� ���(� ′ = true

∧ unchanged 〈 ����� 	 	 � � , ���#�&"�' � � ��� ��� ,��� ���
�		� , ��� , ������
! ��#" , ��� ��� �(" ,
 , � 〉
����� � ��
 � � � ∆

= ∧
�
 ∈ ��	 � ����	 � � ∧
�!�

< = 	
∧ ��� ∈ �������� � � ∧ ��� � �
 		� =)$* � '
∧ � � � � �$� ���(� = false

∧ �&"�� � �� �� � [�&"�� [���], � + 1] = 2 ∗
 + 2
∧ ����� � � �� �� � ′ = [��� � � � �� �� � except ![

�
+ 1] = 2 ∗
 + 2]

∧ � � � � �$� ���(� ′ = true

∧ unchanged 〈 ����� 	 	 � � , ready to sort ,��� ���
�		� , ��� , ������
! ��#" , ��� ��� �(" ,
 , � 〉

The automated system has to verify the following
property :

∀ ; ∈
� ������� �#5 : ; ∈ domain �<?�?���� ��	

; �<?�?���� ��	 [;] = � 	
? � ���
��� [� 	
? [;], �]

The automated system has been processed by the
model checker TLC and all properties were verified
by the model. The first refinement model of the au-
tomated system will be presented in the annexe B.

4.5 Second refinement

This refinement consists in adding details to the
nodes. A node is provided with the following sen-
sors : an input sensor, two outputs sensors and a
gate which can be set to open the exit to the left pipe
or to the right pipe.

Refinement of the operative part : an even

more concrete model of the operative part.
The position of the gates is represented by a func-
tion gate returning for each node a value in : {L,
R}. The input sensor of a node is represented by a
boolean variable in which is initially set to false. The
output sensors are represented by the Boolean vari-
ables out l and out r. These variables become true
when a parcel is detected and as we cannot have two
outputs at the same time, the output sensors must
verify the property ¬ (out l ∧ out r).

Two new actions were added to the operative part
: crossing right and crossing left modelling the node
crossing to go towards the left pipe, respectively right
pipe, resulting from this node. The action cross
parcel1, concerning the operative part is refined by
adding to the level of each node the sensor which de-
tects the entry of parcels.

�$� ���(�
�		� � �!
 � ∆
= ∧
 ∈ ��	�� ��� 	 � �

∧
�	 [
] = true ∧ �&��� � [
] = �
∧ � * � �

′ = [� * � �
except ![
] = true]

∧ � * � � ′ = [� * � � except ![
] = false]
∧
�	 ′ = [
�	 except ![
] = false]
∧ unchanged 〈 ������	�	 � � , ��� , ������
! ��#" , ��� � � �#" , ��� ���
�		� ,
���#�&"�' � � �$� � � ,
 , � , ����� � � �� �� � , � � � � �$� ����� , �&��� � , �&��� � � � � 〉
�$� ���(� � �!
�� 2 ∆

= ∧ �$� ���(� � �!
��
∧ (�&��� � � � � = true ∨

�
≥ 	 − 2) ∧ � * � �

[
] = true

∧
�	 ′ = [
�	 except ![2 ∗
 + 1] = true]
∧ �&��� � � � � ′ = false ∧ unchanged 〈 � * � �

, � * � � , �&��� � 〉
�$� ���(�
�		� ��
 � � � ∆

= ∧
 ∈ ��	 � ����	 � �
∧
�	 [
] = true ∧ �&��� � [
] = �
∧ � * � �

′ = [� * � �
except ![
] = false]

∧ � * � � ′ = [� * � � except ![
�
] = true]
∧
�	 ′ = [
�	 except ![
] = false]
∧ unchanged 〈 ������	�	 � � , ��� , ������
! ��#" , ��� � � �#" , ��� ���
�		� ,
���(� "�' � � ��� ��� ,
 , � , �&��� � , ����� � � �� �� � , � � � � �$� ���(� , �&��� � � � � 〉
�$� ���(� ��
 � � � 2 ∆

= ∧ �$� ���(� ��
 � � �
∧ (�&��� � � � � = true ∨

�!�
≥ 	 − 2) ∧ � * � � [
] = true

∧
�	 ′ = [
�	 except ![2 ∗
 + 2] = true]
∧ �&��� � � � � ′ = false ∧ unchanged 〈 � * � �

, � * � � , �&��� � 〉

The actions cross right2, respectively cross left2
model the pipe crossing, indicating that the parcel
passed towards the next left node, respectively to-
wards the right following node. The variable gate set,
is used to guarantee that the parcel crossing is possi-
ble only if the node gate is positioned in advance. It
is assigned the value TRUE by the actions cross left2
and FALSE by the action cross right2.

Refinement of the control part. Two new ac-
tions were added to refine control part,set gate right
and set gate left. The action set gate left model gate
opening on the left, by putting gate(adr level(adr(pe),
ll+2)):=L, where adr level(adr(pe), ll+2) indicates
the current node. The same behavior but towards
right side is modelled by the action set gate right.

� �7� 	 �
� � � �A@9� ∆
= ∧ � � < = � − 1 ∧ ;�� ∈

� �
����� �#5
∧ �
	<? � ��� ��� [�
	
? [;6�], � + 1] = 2 ∗ �
	<? � ���
��� [�
	<? [;��], �] + 1
∧ 	��<�&� � ��� ′ = true

∧ 	��<�&� ′ = [��<�&� except ![�
	<? � ���
��� [�
	<? [;��], �]] = �]
∧ unchanged 〈 =��6�
��� ��� , ;�� , �
?�?����
��	 , �� ?�� ��	 , �� ?��+����	 ,
?���� 	�� � �� ?�� , � , � , ;��
� � � ���
��� , =7�+? � =7? �9� , ��� ,
�� � � , �� � ? 〉
� � � �&��� � �
 � � � ∆

= ∧
� �

< = 	 − 1 ∧ ��� ∈ �������� � �
∧ �&"�� � �� �� � [�&"�� [���], � + 1] = 2 ∗ �&"�� � �� �� � [� "�� [���], �] + 2
∧ �&��� � � � � ′ = true

∧ �&��� � ′ = [�&� � � except ![� "�� � �� �� � [�&"�� [���], �]] = �]
∧ unchanged 〈 ������	�	 � � , ��� , ������
! ��#" , ��� � � �#" , ��� ���
�		� ,
���#�&"�' � � �$� � � ,
 , � , ����� � � �� �� � , � � � � �$� ����� ,
�	 ,� * � �

, � * � � 〉

The actions path left2, respectively path right2 hav-
ing for effect to calculate, the next node to be visited
by checking that the gate is opened in the good ori-
entation (gate(i) = L (left), gate(i)= R (right)). The

MOSIM’06 – du 3 au 5 avril 2006 - Rabat - Maroc

action select parcel1, is also refined en select parcel2
by taking into account the sensor which models the
parcel presence on the level of the first entry basket.

����� � � �!
 � 2 ∆
= ∧ ����� � � �!
 �

∧
�	 [
] = true ∧ �&��� � [
] = �
∧ unchanged 〈
�	 , � * � �

, � * � � , �&��� � , �&��� � � � � 〉
����� � ��
 � � � 2 ∆

= ∧ ����� � ��
 � � �
∧
�	 [
] = true ∧ �&��� � [
] = �
∧ unchanged 〈
�	 , � * � �

, � * � � , �&��� � , �&��� � � � � 〉

Once the parcel is in a node, three actions can be
started consecutively, the first is set gate left, which
models gate opening on the left. The same behavior
but towards right side is modelled by the action set
gate right. The second executed action is crossing
left, respectively crossing right, modelling the node
crossing to go towards the left pipe, respectively right
pipe, resulting from this node. The third action con-
cerns the pipe crossing and it is modelled by cross
right2, respectively cross left2.

The automated system has been processed by the
model checker TLC and all properties were verified
by the model. These properties are fairness assert-
ing that each action able to be executed is activated
at least one time and safety represented as invariant
and asserting that we cannot have two outputs at the
same time (¬ (out l ∧ out r)). The second refinement
model of the automated system will be presented in
the annexe C. As our goal in the proposed method is
to develop a control system, we separate what con-
cerns the operative component from what concerns
the controller in order to build a program of the con-
troller,

5 Conclusion

In this paper, we have proposed the first steps of a
formal method for the development of automated sys-
tems using the temporal logic of actions TLA+. The
main contribution of the paper consists in building
a model of the expected automated system starting
from an abstract model of the operative part. In the
stepwise approach, the first model consists of an ab-
stract model of the operative part with the guards of
the action kept as week as possible to prevent unsafe
behaviors. The only property one can expect from
a system, we have called permissive, is that it does
not prevent the expected behaviour of the final auto-
mated system to occur. If it is the case, we deduce
that the system is controllable and that is is possible
to strengthen the guards in order to obtain an ab-
stract model of the required controlled system. The
controlled system is then refined in the usual way.

The refinement, indeed, concerns the operative part
and the control part. At the end of the process, we
have a detailed model of the automated system. The
validation of the operative part, using the animator
has been experienced in another work. The proposed
method has been illustrated by the example of a par-
cel sorting system and our approach has simplified the
specification of an automated system which meets de-
sired properties.

We have specified also this example with the event
based B approach (Abrial 1996b, Abrial 1996a, Abrial
& Mussat 1998) and we have verified all proof obli-
gations with the powerful tool AtelierB. In the event
based B approach, only invariance and safety proper-
ties are considered but fairness and eventuality prop-
erties are not considered. The temporal Logic of Ac-
tions TLA+, in the other hand, expresses well even-
tuality and fairness and supports refinement and this
is why we have used it in our method. In future works
we will develop a method using in the same approach
the B method and TLA+ to take benefits of the pow-
erful tool of B and to formulate in TLA+ more natu-
ral properties that are not straightforward to express
with B and to verify them with the model checker
TLC.

References

Abrial, J.-R. (1996a). The B-Book: Assigning Pro-
grams to Meanings, Cambridge University Press.

Abrial, J.-R. (1996b). Extending B without chang-
ing it (for developing distributed systems), in
H. Habrias (ed.), Proceedings of the 1st Confer-
ence on the B method, pp. 169–191.

Abrial, J.-R. & Mussat, L. (1998). Introducing dy-
namic constraints in B., in D. Bert (ed.), B’98 :
The 2nd International B Conference, Vol. 1393
of Lecture Notes in Computer Science (Springer-
Verlag), Springer Verlag, Montpellier, pp. 83–
128.

JARAY, J. & A.Mahjoub (1994). Développement
formel et incrémental de systèmes de commande
de procédés industriels inspiré de l’approche
unity, Informatique répartie : Etat de l’art et
Perspectives. JISI’94, pp. 41–58.

Lamport, L. (1991). The Temporal Logic of Actions,
Technical Report 79, Digital Equipment Corpo-
ration, Systems Research Centre.

Lamport, L. (1993). Hybrid systems in TLA+, in
R. L. Grossman, A. Nerode, A. P. Ravn &
H. Rischel (eds), Hybrid Systems, Vol. 736 of

MOSIM’06 – du 3 au 5 avril 2006 - Rabat - Maroc

Lecture Notes in Computer Science, Springer-
Verlag, pp. 77–102.

Lamport, L. (1994). The temporal logic of actions,
ACM Transactions on Programming Languages
and Systems 16(3): 872–923.

Lamport, L. (1998). The module structure of TLA+,
Technical Report SRC-TN-1996-002A, Hewlett
Packard Laboratories.

Lamport, L. (2002). Specifying Systems, The TLA+
Language and Tools for Hardware and Software
Engineers, Addison-Wesley.

Ramadge, P. J. G. & Wonham, W. M. (1989). The
control of discrete event systems, Proceedings of
the IEEE; Special issue on Dynamics of Discrete
Event Systems 77, 1: 81–98.

Annexe A

module ����������	
����� � ���

extends ���� ������	 �

constants �����������! �
 , ���������! �
 , "�����#��� � , �$�%"�����#&�� � , �%'�� , ()����� , *+�,�+-

variables ��.,���/���0	 , �1���� � ��� , 2�� , �0����)��' , ������� 3&��' , ���+�%'�- 4� �1����

assume �%'�� ∈ [���������! �
 → "�����#��� �] ∧ ���������! �
 6= {} ∧ "�����#&�� � 6= {}

∧ ���5�6���! �
 ⊆ �����������! �
 ∧ ���������! �
 6= �7���5�6���! �

∧ ���%"�����#&�� � /∈ "�����#��� �

����� � ���1
,4��)� ∆
= {()����� , *�����- }

8 -�2%�19:�,3%�����:���/ ∆
= ∧ ��.,���/����	 ∈ "�����#&�� � ∪ { �$�%"�����#&�� � }

∧ �1���� � ��� ∈
����� � �/�1
,)��4� ∧ 2%� ∈ �7���5������ $
 ∧ �����%'�-)� �1���� ∈ boolean

∧ ������� 3&��' ∈ [���5������ $
 → "�����#&�� �] ∧ sorted ⊆ PARCELS

; ��
=<!� 8 �7> ∆
= ���������! �
 \ �1����)��'

��<!���5������ $
 ∆
= �7���������! �
 \ ���5������ $

9 �,� ∆
= ∧ �0.,���,�$��	 = ���%"�����#��� � ∧ �1���� � ��� = ()����� ∧ 2%� ∈ ��<!���5�����! �

∧ ������� 3&��' = [2 ∈ ���������! �
 7→ ���%"�����#&�� �] ∧ �0����)��' = {} ∧ ���+�%'�- 4� �1���� = false

�0�0	 ���� 2%�������0	 ∆
= ∧ �1���� � ��� = (4�����

∧ 2%� ∈ ��<!���5�����! �
 ∧ ∃ 2 ∈
; �!
$<!� 8 �7> : ∧ 2�� ′ = 2

∧ unchanged 〈 �0.,���,���0	 , ������� 3&��' , �1����)��' , �1���� � �/� , �����%'�-)� �1���� 〉

�0�� ��.,���,�$��	
∆
= ∧ �0���� � �/� = ()�����

∧ 2%� /∈ ��<!���5�����! �
 ∧ �����%'�-)� �1���� = false ∧ �0.,���,���0	 ′ = �%'�� [2%�]

∧ �����%'�-)� �1���� ′ = true ∧ unchanged 〈 ������� 3%�+' , �0����)��' , 2�� , �1���� � �/� 〉

����	 �����1� ∆
= ∧ �����%'�- 4� �1���� = true

∧ �1���� � ��� = (4����� ∧ 2%� ∈ ���5�6���! �
 ∧ �1���� � ��� ′ = *+����-

∧ �����%'�-)� �1���� ′ = false ∧ unchanged 〈 �0.,���,�$��	 , ������� 3%�+' , �0����)��' , 2%� 〉

��������� 2���������	 ∆
= ∧ �1���� � �/� = *�����-

∧ ������� 3&��' ′ = [������� 3&��' except ![2%�] = ��.,���,�$��]

∧ �1����)�+' ′ = �0����)��' ∪ { 2%� } ∧ 2�� ′ ∈ ��<!���5�6���! �
 ∧ �1���� � ��� ′ = ()�����

∧ unchanged 〈 ��.,���/����	 , �����%'�-)� �1���� 〉

�5��?1
∆
= ∨ �0�0	 ���� 2%�������0	 ∨ �1�� �0.,���,���0	 ∨ ����	 �����1� ∨ �������+� 2���������	

 ��3&����� ∆
= 〈 ��.,���/���0	 , �1���� � ��� , 2�� , ������� 3%�+' , �0����)��' , �����%'�- 4� �1���� 〉

8 ��@/��� �������+� ∆
= WF ��3&����� (����?�)

�2%��� ∆
= 9 �,� ∧ 2[����?1] ��3%����� ∧

8 ��@���� ���$�����

9:�,3&�����4���, ∆
= ∧ �1���� � �/� = *�����- ⇒ �0.,���,���0	 = �%'�� [2%�]

∧ �1���� � �/� 6= ()����� ⇒ 2%� ∈ ���������! �
 ∧ �1���� � �/� = *�����- ⇒ �����%'�-)� �1���� = false

∧ �����%'�- 4� �1���� = true ⇒ ��.,���/����	 = �%'�� [2%�]

∧ �����%'�- 4� �1���� = true ⇒ 2%� ∈ ���������! �

 �� 3&�������+� ∆
= ∧ ∀ 2 ∈ ���������! �
 : 2 ∈ domain ������� 3&��' ; ������� 3%�+' [2] = �%'�� [2]

∧ ∀ 2 ∈ ���5�����! �
 : 2 ∈ domain ������� 3%��' ; 3 ������� 3%��' [2] ∈ "�����#��� �

theorem
%2%��� ⇒ 2 9:�,� theorem
�2%��� ⇒ 2
8 -�2%��9 �/3&�����4���,

theorem
%2%��� ⇒ 2 9:�,3%�����:���/ theorem
%2%��� ⇒ �� 3&���������

Annexe B

module

8 ���:�����1� 1

extends

8 ���4�����1� , 8 ��

constants �%'�� 	 ��3%��	 , � , ���3&�0	 , �5�1'%� , ���%����'%� , 9:�,)�����$��	 �

variables 2%��:. 	 ��3&�0	 , � , 	 , �� �0	 ���������

assume ���3&�0	 ⊆ �5�� ∧ /��3&��	 6= �5�� ∧ �%'�� 	 ��3&�0	 ∈ [("�����#��� � ∗ ���3%��) → �5�1'%�]

∧ "�����#&�� � ⊆ ����'%� ∧ "�����#&�� � 6= �5�1'%� ∧ �5�1'%� 6= {} ∧ 9 �,)��������	 � ⊆ �5�1'%�

∧ 9:�,)�����$��	 � 6= ���1'%� ∧ �$�%����'%� /∈ �5�1'%�

∧ ∀ 2 ∈ ���������! �
 : �%'�� 	 ��3%��	 [�%'�� [2], �] = �%'�� [2]

8 -12��19 �/3&�����4���, 1 ∆
= ∧

8 -12��19 �/3&�����4���, ∧ 2%��:. 	 ��3%��	 ∈ [���3%��	 → ���1'%� ∪ { �$�%����'%� }]

∧ � � ∈ �5�� ∧ � � ∈ ���1'%� ∧ 	 	 ∈ ���� ∧ 	 	 ∈ ���3%��	 ∧ �� �0	 ��������� ∈ boolean

9:�,� 1 ∆
= 9:�,� ∧ � = 0 ∧ 	 	 = 0

∧ 2%��:. 	 ��3%��	 = [� ∈ ���3&�0	 7→ ���%����'%�] ∧ �� �0	 ��������� = false

�1��	 ���� 2���������	 1 ∆
= ∧ �1��	 ���� 2%��������	 ∧ � ′ = 0 ∧ 	 ′ = 0

∧ 2��� . 	 ��3%��	 ′ = [2��� . 	 ��3%��	 except ![0] = 0] ∧ unchanged 〈 �� �0	 ��������� 〉

�1�� ��.,���/���0	 1 ∆
= ∧ �1�� ��.,���,�$��	 ∧ unchanged 〈 2%��:. 	 ��3%��	 , � , 	 , �� �0	 ��������� 〉

����	 �����1� 1 ∆
= ∧ ���0	 �+���1� ∧ unchanged 〈 � , 	 , 2%��:. 	 ��3%��	 , �� �0	 ��������� 〉

2��� . 	 �4()
∆
= ∧ 2%� ∈ ���������! �
 ∧ �1���� � ��� = *+�,�+- ∧ �� �0	 �������+� = false

∧ �%'�� 	 ��3%��	 [�%'�� [2%�], 	 + 1] = 2 ∗ � + 1 ∧ � � ∈ 9 �/)��������	 �

∧ 2���:. 	 ��3&�0	 ′ = [2���:. 	 ��3&�0	 except ![+ 1] = 2 ∗ � + 1] ∧ �� �0	 ��������� ′ = true ∧ 	 	 < = �

∧ unchanged 〈 ��.,���/����	 , �����%'�-)� �1���� , �0���� � �/� , 2%� , ������� 3&��' , �1����)�+' , � , 	 〉

��������� 	 �4() ∆
= ∧ 	 	 < = � ∧ � ∈ 9 �/)��������	 �

∧ �1���� � �/� = *�����- ∧ �� �0	 ��������� = true ∧ 2%��:. 	 ��3&�0	 [+ 1] = 2 ∗ � + 1

∧ 	 ′ = 	 + 1 ∧ � ′ = 2 ∗ � + 1 ∧ �� �0	 ��������� ′ = false

∧ unchanged 〈 ��.,���/����	 , �1���� � ��� , 2�� , ������� 3&��' , �1����)��' , ���+�%'�-)� �0���� , 2%��:. 	 ��3%��	 〉

2��� . ��� �1.& ∆
= ∧ � � ∈ 9 �,)��������	 � ∧ 	 	 < = �

MOSIM’06 – du 3 au 5 avril 2006 - Rabat - Maroc

∧ 2%� ∈ ���������! �
 ∧ �0���� � �/� = *�����- ∧ �� �0	 ��������� = false

∧ �%'�� 	 ��3&�0	 [�%'�� [2��], 	 + 1] = 2 ∗ � + 2

∧ 2%��:. 	 ��3%��	 ′ = [2%��:. 	 ��3%��	 except ![+ 1] = 2 ∗ � + 2] ∧ �� �0	 �������+� ′ = true

∧ unchanged 〈 �0.,���,���0	 , �����%'�-)� �1���� , �1���� � ��� , 2%� , ������� 3%�+' , �0����)��' , � , 	 〉

��������� ��� �1.& ∆
= ∧ 	 	 < = � − 1 ∧ � ∈ 9:�,)�����$��	 � ∧ �0���� � �/� = *�����-

∧ �� �0	 ��������� = true ∧ 2%��:. 	 ��3&�0	 [+ 1] = 2 ∗ � + 2 ∧ 	 ′ = 	 + 1

∧ � ′ = 2 ∗ � + 2 ∧ �� �0	 ��������� ′ = false

∧ unchanged 〈 �0.,���,���0	 , �1���� � �/� , �����%'�-)� �1���� , 2%� , ������� 3%�+' , �0����)��' , 2���:. 	 ��3&�0	 〉

��������� 2���������	 1 ∆
= ∧ �0���� � �/� = *�����- ∧ 	 = �

∧ ������� 3&��' ′ = [������� 3&��' except ![2%�] = �%'�� 	 ��3&�0	 [�%'�� [2%�], �]]

∧ �1����)�+' ′ = �0����)��' ∪ { 2%� } ∧ 2�� ′ ∈ ��<!���5�6���! �
 ∧ �1���� � ��� ′ = ()�����

∧ unchanged 〈 �0.,���,���0	 , �����%'�-)� �1���� , 2��� . 	 ��3&��	 , � , 	 , �� �0	 �������+� 〉

����?� 1 ∆
= ∨ �1��	 ���� 2%�����+�0	 1 ∨ �1�� ��.,���/����	 1 ∨ ���0	 �����0� 1 ∨ 2%��:. 	 �4()

∨ ��������� 	 �)(4 ∨ 2��� . ��� �1.& ∨ �������+� ��� ��.& ∨ ��������� 2%��������	 1

 � 1 3&�����
∆
= 〈 �0.,���,���0	 , �1���� � �/� , 2%� , ������� 3%�+' , �0����)��' , �����%'�-)� �1���� , 2��� . 	 ��3&��	

, � , 	 , �� �0	 ��������� 〉

8 � 1 @���� ��������� ∆
= WF � 1 3%����� (�5��?1 1)

%2%��� 1 ∆
= 9 �/� 1 ∧ 2[����?1 1] � 1 3&����� ∧

8 � 1 @���� ���������

 �� 3%���$����� 1 ∆
= ∧ ∀ 2 ∈ ���5������ $
 : 2 ∈ domain ������� 3%�+'

; ������� 3%��' [2] = �%'�� 	 ��3%��	 [�%'�� [2], �]

theorem
%2���� 1 ⇒
%2���� theorem
%2��+� 1 ⇒ 2 9:�,� 1

theorem
%2���� 1 ⇒ 2
8 -�2%�19:�,3%�����:���/ 1 theorem
�2%��� 1 ⇒ 2 �� 3%��������� 1

Annexe C

module
8 ���4�����1� 2

extends
8 ���4���,�0� 1,

8 ��

constants , � , � ��'%�)(

variables � � , ���� 	 , ���� � , �&��4� , ����)� �1�� �!���+�/	 ∆
= { , � , � ��'%�)(}

8 -�2%�19:�,3%�����:���/ 2 ∆
= ∧

8 -�2%�19:�,3%�����:���/ 1 ∧ ����)� �1�� ∈ boolean

∧ � � ∈ [���1'%� → boolean] ∧ ���� 	 ∈ [9 �,)��������	 � → boolean]

∧ ���� � ∈ [9:�,)�����$��	 � → boolean] ∧ �&��4� ∈ [����'%� → �!���+�/]

9 �,� 2 ∆
= 9 �/� 1 ∧ � � = [� ∈ �5�1'%� 7→ false] ∧ ���� 	 = [� ∈ 9 �/)��������	 � 7→ false]

∧ ���� � = [� ∈ 9 �/4��������	 � 7→ false] ∧ ����)� = [� ∈ �5�1'%� 7→ � �$'%�4(] ∧ �&��4� �1�� = false

�0�0	 ���� 2%�������0	 2 ∆
= ∧ �0�0	 ���� 2%�������0	 1

∧ � � ′ = [� � except ![0] = true] ∧ unchanged 〈 ���� 	 , ���, � , ����)� , ����)� �1�� 〉

�0�� ��.,���,�$��	 2 ∆
= ∧ �1�� �0.,���,�$��	 1

∧ unchanged 〈 ���� 	 , ���� � , ����)� , �&��)� �0�� , � � 〉

����	 �����1� 2 ∆
= ∧ ���0	 �����0� 1 ∧ unchanged 〈 ���, 	 , ���� � , �&��)� , � � , �&��4� �1�� 〉

�0�� ����)� 	 �4() ∆
= ∧ 	 	 < = � − 1 ∧ 2%� ∈ ���������! �

∧ �%'�� 	 ��3&�0	 [�%'�� [2��], 	 + 1] = 2 ∗ �%'�� 	 ��3%��	 [�%'�� [2��],] + 1

∧ �&��)� �0�� ′ = true ∧ ����)� ′ = [�&��4� except ![�%'�� 	 ��3&��	 [�%'�� [2%�],]] =]

∧ unchanged 〈 ��.,���/����	 , 2%� , ������� 3&��' , �1����)�+' , �1���� � �/� , � , 	 ,

���+�%'�-)� �1���� , 2%��:. 	 ��3%��	 , �� �0	 ��������� , � � , ���� 	 , ���, � 〉

2��� . 	 �4() 2 ∆
= ∧ 2���:. 	 �)(4 ∧ � � [�] = true ∧ �&��4� [�] =

∧ unchanged 〈 � � , ���� 	 , ���� � , ����)� , ����)� �0�� 〉

����������� ��� 	 �)(4 ∆
= ∧ � ∈ 9 �/4��������	 � ∧ � � [�] = true ∧ ����)� [�] =

∧ ���, 	 ′ = [���, 	 except ![�] = true] ∧ ���� � ′ = [���� � except ![�] = false]

∧ � � ′ = [� � except ![�] = false] ∧ unchanged 〈 ��.,���/���0	 , 2�� , ������� 3&��' , �1����)��' , �1���� � ��� , � , 	 ,

���+�%'�-)� �1���� , 2%��:. 	 ��3%��	 , �� �0	 ��������� , ����)� , ����)� �1�� 〉

��������� 	 �4() 2 ∆
= ∧ ��������� 	 �4() ∧ (�&��4� �1�� = true ∨ 	 ≥ � − 2)

∧ ���, 	 [�] = true ∧ � � ′ = [� � except ![2 ∗ � + 1] = true]

∧ �&��)� �0�� ′ = false ∧ unchanged 〈 ���� 	 , ���� � , �&��)� 〉

�1�� ����)� ��� �1.& ∆
= ∧ 	 	 < = � − 1 ∧ 2%� ∈ ���5�����! �

∧ �%'�� 	 ��3%��	 [�%'�� [2%�], 	 + 1] = 2 ∗ �%'�� 	 ��3&�0	 [�%'�� [2%�],] + 2 ∧ ����)� �1�� ′ = true

∧ �&��)� ′ = [����)� except ![�%'�� 	 ��3&�0	 [�%'�� [2��],]] = �]

∧ unchanged 〈 ��.,���/����	 , 2%� , ������� 3&��' , �1����)�+' , �1���� � �/� , ���+�%'�-)� �0���� , � , 	 , 2%��:. 	 ��3%��	 ,

�� �0	 ��������� , � � , ���� 	 , ���� � 〉

2��� . ��� �1.& 2 ∆
= ∧ 2��� . ��� �1.& ∧ � � [�] = true ∧ ����)� [�] = �

∧ unchanged 〈 � � , ���� 	 , ���� � , ����)� , ����)� �0�� 〉

����������� ��� ��� �1.& ∆
= ∧ � ∈ 9:�,)�����$��	 � ∧ � � [�] = true ∧ �&��)� [�] = �

∧ ���, 	 ′ = [���, 	 except ![�] = false] ∧ ���� � ′ = [���� � except ![� �] = true]

∧ � � ′ = [� � except ![�] = false] ∧ unchanged 〈 ��.,���/���0	 , 2�� , ������� 3&��' , �1����)��' , �1���� � ���

, �����%'�-)� �0���� , � , 	 , ����)�=2%��:. 	 ��3&�0	 , �� �0	 ��������� , ����)� �1�� 〉

��������� ��� ��.& 2 ∆
= ∧ ��������� ��� ��.& ∧ (����)� �1�� = true ∨ 	 	 ≥ � − 2)

∧ ���, � [�] = true ∧ � � ′ = [� � except ![2 ∗ � + 2] = true]

∧ �&��)� �0�� ′ = false ∧ unchanged 〈 ���� 	 , ���� � , �&��)� 〉

��������� 2%�����+�0	 2 ∆
= ∧ ��������� 2%�����+�0	 1

∧ � � ′ = [� � except ![��.,���/����] = true] ∧ unchanged 〈 ���� 	 , ���� � , �&��4� , ����)� �1�� 〉

�5��?1 2 ∆
= ∨ �1��	 ���� 2���������	 2 ∨ �1�� �0.,���,�$��	 2 ∨ ����	 �����1� 2 ∨ ��������� 2���������	 2

∨ 2���:. 	 �)(4 2 ∨ 2%��:. ��� �1.& 2 ∨ ��������� 	 �4() 2 ∨ ��������� ��� �1.& 2 ∨ ����������� �/� 	 �4()

∨ ����������� ��� ��� ��.& ∨ �1�� �&��4� 	 �)(4 ∨ �1�� �&��4� ��� �1.&

 � 2 3%����� ∆
= 〈 ��.,���,�$��	 , �1���� � �/� , 2%� , ������� 3&��' , �1����)��' , �����%'�-)� �0���� ,

2��� . 	 ��3%��	 , � , 	 , �� �0	 �������+� , � � , ���� 	 , ���� � , �&��)� , �&��4� �1�� 〉

8 � 2 @���� ���$����� ∆
= WF � 2 3&����� (����?1 2)

�2%��� 2 ∆
= 9:�,� 2 ∧ 2[�5��?1 2] � 2 3%����� ∧

8 � 2 @���� ���$�����

9:�,3&�����4���, 2 ∆
= ∀

� �
∈ 9:�,)�����$��	 � : ¬(���� � [� �

] ∧ ���, 	 [� �
])

theorem
%2%��� 2 ⇒
%2%��� 1 theorem
%2��+� 2 ⇒ 2
8 -12��19 �/3&�����4���, 2

theorem
%2%��� 2 ⇒ 2 9:�,� 2 theorem
�2%��� 2 ⇒ 9:�,3&�����4���, 2

