
HAL Id: inria-00103184
https://hal.inria.fr/inria-00103184

Submitted on 3 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CAPSULE: Hardware-Assisted Parallel Execution of
Component-Based Programs

Pierre Palatin, Yves Lhuillier, Olivier Temam

To cite this version:
Pierre Palatin, Yves Lhuillier, Olivier Temam. CAPSULE: Hardware-Assisted Parallel Execution of
Component-Based Programs. MICRO-39, Dec 2006, Orlando, Florida, USA. �inria-00103184�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50424303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00103184
https://hal.archives-ouvertes.fr


CAPSULE: Hardware-Assisted Parallel Execution of Component-Based
Programs

Pierre Palatin † ⋆

INRIA Futurs, France
pierre.palatin@inria.fr

Yves Lhuillier ‡
LRI, University of Paris Sud, France

yves.lhuillier@lri.fr

Olivier Temam ⋆

INRIA Futurs, France
olivier.temam@inria.fr

Abstract

Since processor performance scalability will now mostly be
achieved through thread-level parallelism, there is a strong incen-
tive to parallelize a broad range of applications, including those
with complex control flow and data structures. And writing par-
allel programs is a notoriously difficult task. Beyond processor
performance, the architect can help by facilitating the task of the
programmer, especially by simplifying the model exposed to the
programmer.
In this article, among the many issues associated with writing par-
allel programs, we focus on finding the appropriate parallelism
granularity, and efficiently mapping tasks with complex control
and data flow to threads. We propose to relieve the user and com-
piler of both tasks by delegating the parallelization decision to the
architecture at run-time, through a combination of hardware and
software support and a tight dialogue between both.
For the software support, we leverage an increasingly popular
approach in software engineering, called component-based pro-
gramming; the component contract assumes tight encapsulation
of code and data for easy manipulation. Previous research works
have shown that it is possible to augment components with the
ability to split/spawn, providing a simple and fitting approach for
programming parallel applications with complex control and data
structures. However, such environments still require the program-
mer to determine the appropriate granularity of parallelism, and
spawning incurs significant overheads due to software run-time
system management.
For that purpose, we provide an environment with the ability to
spawn conditionally depending on available hardware resources,
and we delegate spawning decisions and actions to the architec-
ture. This conditional spawning is implemented through frequent
hardware resource probing by the program. This, in turn, enables
rapid adaptation to varying workload conditions, data sets and
hardware resources. Furthermore, thanks to appropriate com-
bined hardware and compiler support, the probing has no signifi-
cant overhead on program performance.
We demonstrate this approach on an 8-context SMT, sev-
eral non-trivial algorithms and re-engineered SPEC CINT2000
benchmarks, written using component syntax processed by our
toolchain. We achieve speedups ranging from 1.1 to 3.0 on our
test suite.
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1. Introduction

There is a consensus in architecture research that pro-
cessors will now achieve performance scalability in large
part through thread-level parallelism, using multi-threaded
and multi-core architectures. Therefore, a broad range of
programs will now have to rely on and take advantage of
thread-level parallelism, including those with complex con-
trol flow and complex data structures.

However, there is no consensus on how to easily paral-
lelize such programs, and the issue is now becoming crit-
ical. Since automatic compiler-based parallelization has
achieved only mixed results on programs with complex con-
trol and data structures [13], programs will have to be manu-
ally parallelized for the time being. And, writing or debug-
ging parallel programs is a notoriously difficult task [17].
Unfortunately, in the coming years, a broader community
of developers will have to be exposed to parallelism because
processors will essentially scale through thread-level paral-
lelism.

Since parallel programming complexity comes in large
part from the architecture model exposed to the user, ar-
chitects can greatly help by simplifying this model, beyond
performance issues. Parallel programming complexity is a
multi-facet issue, it includes, but is not restricted to: (1) ex-
tracting multiple execution threads, (2) sharing data among
threads through locks (and the associated races and dead-
lock issues) assuming a shared-memory model, (3) finding
the appropriate parallelism granularity, (4) mapping tasks
to threads. Currently, the user is exposed to all such is-
sues. Automatic parallelization or parallel languages such
as HPF [23] relate to the first issue. The currently popular
transactional memory model [14] relates more to the second
issue. The present article is particularly focused on the third
and fourth issues.

While (1) and (2) have received much attention and are
indeed important issues, (3) and (4) also play a big role in
complicating the task of the user. Deciding whether a code
section is worth parallelizing is deeply related to the archi-
tecture behavior, and it is difficult to grasp, even for an ex-
pert user. Mapping tasks to threads becomes a similarly
complex issue for programs with complex run-time control
and data flow behavior, which are typically plagued with
load balancing issues.

In this article, we propose to relieve the user, and the
compiler, of both tasks by delegating the decisions to the
architecture, at run-time. Then, for (3), the role of the user



is only to indicate if a code section may be parallelized, and
the role of the architecture is to poll its resources and an-
alyze program behavior to decide at run-time if the code
section can be parallelized. Furthermore, for (4), the ar-
chitecture dynamically distributes tasks among threads at
run-time. As a result, the user is free to identify parallelism
of any granularity without concern for overhead issues, and
neither needs to delve into tasks distribution issues.

The aforementioned symbiotic behavior between the
user and the architecture can greatly simplify the task of
the programmer. In order to implement this modified hard-
ware/software interface, we need to add support in both the
architecture and the program.

For the programming support, our proposition elaborates
upon component-based programming [34]. Components
are not a new language, they are simply the next step in
the evolution of encapsulation, beyond procedures and ob-
jects. The component contract is to provide tighter encap-
sulation: total isolation of the component code from the rest
of the program (e.g., no shared variable), explicit commu-
nications with other components (e.g., input/output ports),
so that the programmer can reason only locally on the com-
ponent code. As a result, this approach is becoming in-
creasingly popular for large development. Early on, Cilk [8]
and Charm++ [18] leveraged that approach for parallel pro-
gramming, because isolation and local programming sim-
plify the task of identifying data dependences in large ap-
plications, i.e., issue (2) above. Their granularity of encap-
sulation is often finer than in traditional component-based
environments used for software-engineering purposes.

Cilk and Charm++ showed that components can be par-
ticularly well suited for parallelizing programs with com-
plex data and control flow behavior because parallelization
can be expressed with a single simple and intuitive action:
component spawning. The intuition is that a component can
encapsulate part of its workload (control and/or data) into a
child component and spawn it, e.g., in another thread.

However, both Cilk and Charm++ have two key limita-
tions. First, the user must determine the appropriate paral-
lelism granularity to avoid spawning too small components,
which would incur a large overhead. Second, both environ-
ments implement component spawning through software
run-time systems, which is flexible but also comes with a
rather steep cost, adding to the overhead. These two limita-
tions come from the fact that both Cilk and Charm++ were
targeting large-scale multi-processors (coarse parallelism)
rather than small-scale multi-threaded architectures.

We get rid of both limitations through a better dia-
logue between program and architecture by: delegating the
spawning decision to the architecture, having the program
constantly probe the architecture for available resources to
spawn components, and consequently, taking into account
that component spawning can fail. Moreover our compo-
nents do not so much spawn child components, as divide
themselves in half (each taking a part of the control and/or
data workload), a bit like the mitosis of biological cells.
For instance, a component containing a loop would probe
hardware resources at each iteration and split the loop in
half whenever a resource is available. This frequent prob-
ing allows rapid adaptation in case of complex load balanc-
ing (within or across data sets, or even among processes).
In addition, we embed adaptive control to monitor the death

rate of components (i.e., the rate at which the corresponding
threads terminate) and throttle down component division if
components die too quickly (too small components).

In addition, we embed adaptive control to monitor the
death rate of components and throttle down component divi-
sion if components die too quickly (too small components).

We have designed our own component framework, and
the associated software tool chain, in order to remove most
of the overhead of spawning, and especially probing. How-
ever, the hardware support for fast spawning can potentially
be used with other existing environments, such as Cilk.
Such environments could either use the hardware support
for conventional systematic division, or keep their division
model but adapt their underlying run-time system to lever-

age the conditional division mechanism.1 Components are
implemented as threads within the architecture. The archi-
tecture support, beyond standard thread and lock manage-
ment, consists of two new additions to the ISA to imple-
ment probing and component spawning/destruction, as well
as control for steering spawning.

We ported this hardware support to a SMT processor and
we demonstrate that the component spawning parallel pro-
gramming model paired with appropriate hardware support
can efficiently execute programs with complex control flow
and complex data structures.

One of the main assets of our approach is its ability to dy-
namically and quickly adjust to varying workloads in small
code sections, or fast changing code sections. The approach
has other benefits. Programs become more portable and can
scale more easily with the number of threads than statically
parallelized programs, because they assume nothing on the
number of available threads or the nature of the supporting
hardware.

Section 2 illustrates the principles of our approach on an
example, Section 3 presents the hardware and compiler sup-
port for our component approach on a SMT, Section 4 in-
troduces the experimental methodology, Section 5 presents
experimental results, and Section 6 discusses related work.

2. Principles and Benefits

In this section, we illustrate the usage and benefits of
component-based programming for expressing fine-grain
parallelism, and highlight its potential synergy with a hard-
ware support for driving spawning and mapping decisions,
which is at the core of our approach.

One must understand that component-based program-
ming is a naturally decentralized form of programming;
the program is broken down into separate and indepen-
dent components. Unlike objects, components do not freely
reference other components within their code, they only
spawn or pass information to them, in order to ensure encap-
sulation. Implicitly, component-based programs are well
suited to multi-threaded single-core architectures, shared-
memory multi-cores, and even distributed-memory multi-
cores thanks to their separation properties. In the present
article we only target architectures with a single address
space. Component encapsulation has two side effects: (1)

1Note that the varying cost of probing and spawning could also result
in different run-time behavior.



Figure 1. Progress of normal and component versions of Dijkstra.

the same specification implemented using components and
using plain C or C++ can result in significantly different
implementations, if not algorithms; (2) but the component
implementation/algorithm is often more amenable to paral-
lelism thanks to a stricter separation of state and decoupled
component execution.

As a running example, consider the Dijkstra algorithm,
often used in routing [25] to determine the shortest path
between a starting node and all other nodes of an oriented
graph with weighted edges. The algorithm iteratively walks
through the graph, selects a node at each iteration, tags all
the neighbor nodes with the path distance from the root
node (sum of the path distance so far, and the distance to
the neighbor), and finally selects, among all tagged nodes,
the node which realizes the shortest path; the algorithm it-
erates until all target nodes are tagged, as shown in Figure 1

(see Normal).2

Because tagged nodes are not necessarily neighbor nodes
(they could have been tagged during previous iterations), a
standard Dijkstra implementation would use a central list
to store all tagged nodes. This central list actually hinders
parallelization, but it is only an artifact of imperative pro-
gramming. Obviously, the different paths can be scanned
concurrently.

So, a component view of Dijkstra could be the follow-
ing. A component walks through the graph, recording the
traversed path length both in the component and in the tra-
versed nodes.

At any node, if the traversed path length stored in a com-
ponent is smaller than the path recorded in the node (cur-
rent shortest path to that node), then a shorter path has been
found, and the component records it in the node; otherwise,
the component is traversing a sub-optimal path and should
thus die, as for A.C.E in Figure 1.

2The ∅ symbol in Figure 1 denotes an empty set, not 0; it indicates that
the node has never been reached.

If a node has multiple child nodes, then the component
needs to choose among as many paths. Instead of seri-
ally or recursively exploring them, the component can ex-
plore all child nodes concurrently by splitting itself into sev-
eral child components (division), as shown in Figure 1 (see
Component). The corresponding code is shown in Fig-
ure 2(a) (the pre-processed and post-processed versions will
be explained in Section 3), a component is called a worker
in our syntax, and probing+spawning a component is imple-
mented through a coworker call. The pre-processor trans-
forms this call into a switch statement, see Figure 2(b)
which effectively implements the probe+spawn operation.
The user writes what happens if the probe fails (usually,
that the component simply carries on its serial execution),
as shown in the case -1 statement.

The hardware support takes charge of the remaining de-
cisions. It monitors hardware resource usage, and whenever
it sees a spawning request in the form of an assembly nthr
instruction, it can either decide to act upon it or treat it as a
nop. For instance, in Figure 1, on step 1, the architecture
lets the first component (path A) replicate into A.B and A.C
because a hardware context is available. However, on step
2, the three contexts are used, and two components want to
replicate, so the architecture denies the replication of one of
them (component A.C).

Thanks to dynamic steering, hardware resources are not
over saturated and fully used when there are enough spawn-
ing opportunities. Therefore, a component program paired
with hardware support executes more efficiently than the
same statically parallelized component program, as shown
in Figure 3. This figure shows the execution time of the Di-
jkstra algorithm for 100 randomly generated graphs of 1000
nodes each, on a superscalar processor, a SMT architecture,
and a SMT architecture augmented with component sup-
port. The x-axis shows the execution time in millions of cy-
cles, the y-axis shows the number of data sets with the same
execution time. As can be seen, for almost all data sets, the



(a) Source

(b) Pre-processed source

(c) Assembly (switch statement)

Figure 2. Component version of Dijkstra

component program + hardware support pair not only out-
performs standard SMT (and superscalar) execution, but it
is fairly stable since hardware contexts are almost always
used. More precisely, whenever a component dies, either
because it has reached an end node or because it has met
a component with a shortest path, another component can
explore more paths concurrently. We could implement and
observe similar synergistic behavior between program and
architecture in most of our component programs.

3. Implementation

In this section, we present the architecture and compiler
support for component-based programming.

3.1. Architecture Support for Components

As mentioned in the introduction, our current target ar-
chitecture is SMT. SMT is a natural hardware platform for

Figure 3. Distribution of execution time (Dijkstra).

evaluating component programming because a lightweight
thread is a simple means for implementing a component.
Other architectures, like CMPs, would also provide an ade-
quate support, and we will extend our framework to CMPs
in the future. A SMT must be augmented with three features
to support component programming: (1) thread division, (2)
thread activation/deactivation, (3) fast thread synchroniza-
tion. The first item is component-specific, while the last two
features have already been proposed for SMTs. Because the
division feature enables the architecture to take paralleliza-
tion decisions, we say the SMT is a self-organized multi-
threaded processor and called SOMT.

Our baseline SMT implementation is similar to the one
proposed by Tullsen, et al., [38], see Figure 4. There are
8 hardware contexts, 32 registers per context, and 16 in-
structions can be fetched per cycle, using a policy similar
to Icount 4.4 policy [37], i.e., instructions are fetched for
4 threads per cycle, 4 instructions per thread. Each active
thread has its own hardware context, which includes the
thread state (see below for the different states), the thread
registers and the PC.

Thread division/replication. The SMT model already
allows multiple threads with separate contexts to be ex-
ecuted in parallel. A thread may, by means of a New

THRead instruction (nthr), divide itself into two new
threads. One of the key features of the architecture is that
it is free to ignore this instruction and not perform a thread
division if available hardware resources do not allow it.

The nthr instruction performs the following actions.
The instruction is initially treated as an unconditional
branch. Upon execution, the instruction creates a new
thread by seizing a hardware context. A hardware thread
context can have three states: free (not allocated to a
worker/thread), active (instructions are fetched), stall
(instructions are not fetched). After the nthr is decoded, a
free destination hardware context is chosen, and this chosen
context switches from state free to state stall.

When instruction nthr retires, all thread registers to
which instruction nthr belongs are copied into the reg-
isters of the new hardware context, the PC is set to the
first target instruction, the hardware context of the destina-
tion thread transits to active, and worker instructions are
fetched. The thread registers are only copied at the commit
stage because nthr could be speculative; it would also be



Figure 4. Self-Organized Multi-Threading.

possible (faster but more costly) to speculatively copy reg-
ister map tables. The parent thread is stall during one cycle
for the copy, and the child thread is stall a variable number
of cyles until all register copies are done. If the nthr in-
struction is on the wrong path and a thread has been started,
the corresponding context transits back to free state. Note
that fetching worker instructions following nthr is delayed
by the pipeline length. However, we also found that delay-
ing the thread start time had limited impact on performance
due to the large amount of parallelism and overlap among
threads/workers in most cases, so this optimization did not
seem worth the added hardware complexity.

A set of related workers, i.e., childs or parents or sib-
lings, forms a group which always has a single ancestor;
and each worker within such a group ends with a Kill

THRead instruction (kthr), except for the ancestor. Upon
decoding kthr, the corresponding thread transits from the
active to stall state, and stops fetching instructions.
When kthr reaches the commit stage, the hardware con-
text is deallocated (free state).

Division strategy. As mentioned before, the architec-
ture decides whether to act upon an nthr instruction. The
strategy is greedy unless threads are dying quickly, mean-
ing the parallel sections are too short with respect to thread
creation overhead. Precisely, an nthr instruction is exe-
cuted if there is a free hardware context, and if the number
of threads which died in the past N cycles (N = 128 in our
experiments) is smaller than half the number of hardware
contexts.

Thread activation/deactivation. The proposed model
also relies on the ability to swap in and out threads in or-
der to have more threads (workers) than hardware contexts,
much like a superscalar processor has more in-flight instruc-
tions than the number of functional units.

The architecture handles swaps using a LIFO stack of
hardware contexts connected to the register bank, see Fig-
ure 4. Tune et al. [40] already proposed to implement
virtual hardware contexts using a context stack, called an
inactive register buffer. Using micro-code instructions to
save/restore registers, they estimate their swapping latency
to no more than 15 cycles on average. Because we use no
register mask and no fine-tuned swapping implementation,
and because we use 16 virtual contexts instead of 4 (and
8 physical contexts versus 2), we estimated swapping at
200 cycles for 62 registers. We experimentally found that
a LIFO stack of 16 entries was sufficient for an architec-

ture with 8 hardware contexts. For 62 registers (31 FP, 31

Integer) plus a PC, the 16-entry LIFO stack has a size of
4kB. No stack overflow occurred in our experiments, but a
full architecture should include a system trap for dumping
the oldest threads to memory in order to free stack space.
When a thread is swapped out to the stack, the hardware
context transits back to stall, and once the last thread in-
struction retires, registers are copied to the inactive context
stack, freeing the hardware context.

Scheduling and swapping strategy. The scheduling
policy of SOMT is ICount.4.4 [37], i.e., a policy that priv-
ileges best performing threads, which are more likely to
efficiently use functional units. In addition, we have im-
plemented a swapping strategy to evict threads incurring
long delays, mainly due to long memory latencies, much
like in large-scale multi-threaded machines [2]; as a result,
it is solely based on the observation of the threads cache
behavior.

Each load latency is compared against the average la-
tency of the last 1000 loads; if the latency is higher, a thread
counter is incremented, otherwise, it is decremented; when
the thread counter crosses a threshold (256 for an initial
value of 0), the thread is swapped out if there is no free
hardware context.

Fast thread synchronization techniques. As proposed
in [39], mutual exclusion for accessing shared variables is
implemented using a fast locks table, see Figure 4. The
lock is set by a Memory LOCK instruction (mlock) on
a given address. The lock is set on the base address of
the shared object to be accessed, independently of the ob-
ject size. If another mlock instruction wants to access a
locked address, the subsequent instructions are squashed,
the thread transits to the stall state and the thread id is
stored in the Locking table, see Figure 4. Each entry of
the table has three fields, the address locked, an identifier
of the thread possessing the lock, and an identifier of the
oldest thread stalled by the locking thread. Thus, when the
locking thread releases the lock, with a Memory UNLOCK

instruction (munlock), the oldest waiting thread becomes
the new owner.

3.2. Compiler Support for Component Pro-
gramming

Rather than forcing the adoption of a new component
language, we have implemented component support in the



form of C/C++ extensions that a user may or may not
take advantage of, enabling progressive adoption, much like
multimedia SIMD extensions. The role of the compiler sup-
port is to implement the C/C++ syntax extensions required
for component programming and illustrated by the example
of Figure 2(a), and to generate a code that can be manipu-
lated by the architecture, especially for replicating compo-
nents/workers. In the remainder of this section, we use our
syntax term worker rather than component.

Our toolchain takes the form of a source-level pre-
processor, an assembly-level post-processor, both combined
with GCC. The source-to-source pre-processor transforms
our C/C++ extensions for division into standard C/C++
code, as shown in Figure 2(b) for the example of Fig-
ure 2(a). This code is fed to GCC, and the corresponding as-
sembly code is post-processed to substitute the source con-
structs introduced by the pre-processor with binary libraries
for component programming and add several new assembly
instructions.

One of the key transformations is enabling a worker to
(efficiently) replicate or not, depending on the architec-
ture decision at run-time. For that reason, any call to a
C/C++ function identified as a worker, see Figure 2(a),
is replaced with the switch statement shown in Fig-
ure 2(b) by the pre-processor. Three different versions of
the worker are generated: a sequential version, left and
right versions which split the worker task and its data struc-

tures in some cases.3 The assembly post-processor will re-
place the assembly version of this switch statement with a
more efficient assembly code, and introduce a nthr (New
THRead) assembly instruction for the architecture, see Fig-
ure 2(c). If the architecture allows replication, the left/right
versions are executed, otherwise, the sequential version is
executed.

Now, replicating a worker does not amount to a standard
function call, especially with respect to stack management.
Because the left/right versions will execute concurrently,
they cannot share the same stack, so a new stack is allocated
from a pre-allocated pool in one of the versions (the right
version; the left version is actually the initial worker with a

reduced task).4 This stack management code adds a slight
overhead to replication, in addition to the hardware over-
head of replication detailed in Section 3.1; the measured
average programming overhead is 15 cycles per division.

Finally, replicating also requires to set synchronization
locks on variables passed to co-workers. Workers abide by
a simple rule enforced by the architecture: only one thread
can execute on one or a user-specified set of data structure
nodes. If another thread wants to use one or several data
structures nodes used by other workers, it is simply stalled
until the lock is released.

The architecture provides support for fast synchroniza-
tion/locks as explained in Section 3.1. By default, locks are
set by the toolchain on every variable passed by address;
they are only set on the sections where variables are modi-
fied, and they do not include spawning sections. Intuitively,
the principle is to set locks systematically when global data

3For instance, replicating a worker which uses an array may involve
changing loop bounds.

4Note that for small workers where only registers are used, there is no
need to allocate a new stack upon each division.

is manipulated, but to release these locks before any worker
“movement” on the data structures. However, the toolchain
does not include sophisticated inter-procedural or alias anal-
ysis and the user must still adjust locks manually when nec-
essary. More generally, in its current form, the approach
does not relieve the user from identifying deadlocks, and
lock placement can be modified by the user. For instance,
in Figure 2(a), the lock on variable from is not necessary
and has been removed; variable node is unlocked before
the for loop, where the worker “moves” to child nodes
(spawning sections). If a worker reaches a graph node cur-
rently scanned by another worker, it will stall until that
worker has either updated the node distance and moved to
neighbor nodes or died.

We are currently working on expanding the framework
syntax with special constructs for identifying data struc-
tures and data structure manipulations which will enable the
toolchain to implement data-centric synchronization, and to
handle locks in more cases, putting less emphasis on the
need for sophisticated inter-procedural and alias analysis.
This data-centric synchronization will itself be based on
protected objects. Protected objects are standard objects
where only a single method can be executed at any time.
This approach is based on Ada protected objects [42], and
the core concept itself comes from Monitors [16]. When
coupled with tight data encapsulation within objects along
the principles of components, it facilitates the identification
of deadlocks and the management of concurrency. By de-
fault, the software toolchain automatically generates locks,
but again, the user is free to alter the model and unprotect
some methods to ensure correct execution. The data struc-
tures and data structure manipulations will later be based on
protected objects and dedicated methods within these ob-
jects.

It is important to understand that, while synchronization
is usually a strong performance limitation of parallel appli-
cations, component programs usually have no central data
structure that all workers need to access simultaneously.
Component programs reflect the notion that data structures
are laid out on a virtual space with multiple workers access-
ing their different nodes concurrently, so that, even though
synchronizations occur all the time, they only occur among
a few workers on a given data structure node. As a result,
the impact of synchronizations on performance is fairly low,
and it does not increase significantly with the number of
workers, i.e., when the number of available hardware re-
sources/threads increases. Finally, note that in the Dijk-
stra example, each worker uses only one node of one data
structure, but in other programs such as LZW, a worker uses
multiple nodes from two different data structures, i.e., the
approach does not limit how many data structures a worker
can handle, nor how many nodes of each data structure.

The final support for replication is the process of killing
a worker. Upon death, a worker must merge/combine its in-
formation with co-workers, and only one of them will sur-
vive. The nature of worker groups is program-dependent:
all workers may belong to the same group (as in Dijkstra)
or several worker groups may independently co-exist. In
some cases, like a reduction for instance, this merger in-
volves special processing, such as adding the worker result
with that of other co-workers. Progressively combining lo-
cal results from co-workers rather than updating a central



Fetch width 16

Issue / Decode / 8

Commit width

RUU size 256

(Inst. window )

LSQ size 128

FUs 8 IALU, 4 IMULT,

4 FPALU, 4 FPMULT

Branch prediction Combined, 1K meta-table size

4K entries bimodal,

8K 2nd level entries Gap predictor,

Memory latency 200 cycles

L1 DCache 8kB, 1 cycle

L1 ICache 16kB, 1 cycle

L2 Unified Cache 1MB, 12 cycles

Table 1. Baseline configuration of SOMT, SMT and
superscalar processors.

variable or data structure significantly improves program
parallel properties. Note that the REDUCTION OpenMP
directive provides a similar specific support for reductions
through the addition of local variables.

4. Methodology

Simulator. Our SMT simulator is built on top of Sim-
pleScalar version 3.0. The functional simulator part of Sim-
pleScalar was replicated to accomodate multiple threads;
modifications also involved a significant rewrite of the fetch
stage (see below), and lesser modifications of the dispatch
stage (replication of mapping tables). We ran experiments
on an SOMT processor, a SMT processor, and an aggressive
superscalar processor configured according to the parame-
ters in Table 1. While Capsule can potentially accomodate
several processes and leverage dynamic component division
to take advantage of periods of time with low system work-
load, multi-process workloads have not been implemented
nor evaluated yet, and are left for future work.

Instruction fetch. For each thread, one cache line (i.e.,
up to 8 instructions) is fetched from the instruction cache
to the instruction buffer. For the SMT/SOMT versions, 4
cache lines, corresponding to 4 different threads, are fetched
every cycle, i.e., up to 32 instructions. Two branch predic-
tions can be performed every cycle, and only one prediction
per cache line per cycle. We use a double 16-instructions
buffer to store the fetched instructions, but only the first 16
instructions can be used in a single cycle. The instructions
are stored in the second buffer solely to reduce the number
of cache accesses and to increase the overall fetch band-
width. Every cycle, only 4 threads can fetch instructions
from the buffer, and the instructions of the different threads
are interleaved in the buffer, but the repartition of instruc-
tions among threads is dynamic. If one thread can fetch
less than 4 instructions on a cycle, the instructions of other
threads are stored in the buffer. Therefore, while, on aver-
age, 4 threads get 4 instructions each per cycle, one thread
can get up to 8 instructions and issue them all in a single
cycle, see Table 1.

Benchmarks. Our benchmark suite contains 4
SPEC CINT2000 programs, indicated in Table 2, and 4 core

SPEC CINT2000 # Lines # Modified Modified % total

or added or added execution

functions lines time

181.mcf 2412 2 174 45%

175.vpr 17729 10 624 93%

256.bzip2 4649 3 317 20%

186.crafty 45000 8 201 100%

Table 2. SPEC CINT2000 modifications for compo-
nentization.

algorithms, 2 of which are used in other SPEC CINT2000
benchmarks (179.art, 164.gzip). We coded the al-
gorithms into independent components: the LZW com-
pression algorithm (164.gzip), the Dijkstra routing al-
gorithm (175.vpr), the Perceptron neural network
(179.art), the QuickSort sorting algorithm (181.mcf,
256.bzip2). The execution times of the different com-
ponentized algorithms vary from several hundred thousand
cycles to several hundred million cycles depending on data
set size.

As mentioned in Section 2, a component implementation
of a given program specification can be significantly differ-
ent from its C/C++ implementation. For that purpose, in
order to extract the full program specification, we had to
reverse-engineer the target program specification and then
re-engineer program sections using components. Because it
is a very time-consuming and tedious process, we have only
applied it to 4 SPEC CINT2000 programs. For each bench-
mark, we have identified a subset of the control-flow graph
where the program ”stays” (consecutively spends) a signif-
icant share of its execution (so that data structures may be
modified within these subgraphs without incurring too fre-
quent and excessive performance penalties when switching
back to the rest of the program). Then we have identified
and reprogrammed in a component way the corresponding
sets of functions. Table 2 indicates for each benchmark the
number of modified source lines and functions, and the total
execution time spent in the corresponding subgraph.

Static parallelization. In order to highlight the synergy
between component programming and component hard-
ware support, we have derived a statically parallelized ver-
sion of each core algorithm to be run on a standard SMT, in
addition to the baseline imperative version to be run on a su-
perscalar processor, and the component version to be run on
SOMT. All benchmarks were compiled on an Alpha 21264
using cc -O3.

While there is a broad literature on coarse-grain par-
allelization, and parallel versions for several algorithms
(MxM, QuickSort, Perceptron, MxV) which could bring bet-
ter performance than our fine-grain thread-level paralleliza-
tion, we could not find parallel versions of some algorithms

(LZW,5 Dijkstra,6 MCF). In order to have a homogeneous
statically parallelized version of all programs, we have de-
rived a static parallel version for each program from our
component version using profile-based techniques. The
general principle is akin to iterative parallelization: we run
the component version, monitor how data structures are im-
plicitly being divided by workers, and whenever the number
of workers reaches the maximum number of hardware con-
texts, we record how the data is distributed among work-

5Derivatives of LZW have been parallelized but not LZW itself.
6The Dijkstra parallel versions are intended for very coarse parallelism,

and would not perform efficiently on small data sets.



Figure 5. Distribution of execution time (QuickSort).

ers, and use this distribution as a static task paralleliza-
tion. Therefore, the comparison of our component version
against our static version is rather pessimistic for two rea-
sons. It assumes a static compiler will always be capable
of identifying a parallel version of the algorithm, which is
not the case, especially for pointer-based applications; and
it assumes the compiler will be capable of finding enough
parallelism to use all hardware threads available.

5. Performance Evaluation

We first use the core algorithms to illustrate a number of
properties of our hardware/software component approach,
and then apply it to the re-engineered SPEC CINT2000 pro-
grams.

Core algorithms. As mentioned in Section 4, in most
of the experiments, we compare superscalar execution (i.e.,
“sequential” execution, in the sense that there is no thread-
level parallelism) with a statically parallelized program run-
ning on a standard SMT, and with a component version dy-
namically parallelized on a self-organized SMT.

Irregular data structures and parallelism. One of the
first benefits of component hardware support is dynamic
load balancing. Our division strategy greedily grants com-
ponent spawning requests as long as hardware contexts are
available. If an algorithm needs to partition complex and
irregular data structures, the workload of each thread may
significantly vary. With static parallelization, a thread with
a small workload which terminates early will stay idle. With
the component approach, all components will constantly
probe the architecture for division through the nthr in-
struction. As soon as a worker (thread) has terminated, its
hardware context will be granted to one of the remaining
components, so that hardware resource utilization is maxi-
mized.

This effect shows in Figures 3 and 5 for both Dijk-
stra and QuickSort; respectively 100 graphs of 1000 nodes
were generated for Dijkstra and 500 lists of various distri-
butions for QuickSort; the x-axis shows the execution time,
and the y-axis is the number of data sets with the same
execution time. These figures show both the performance
difference as well as the performance variability of each

node0

node1

node2

node3

node4

node8

node15

node19

node20

node5

node6

node9

node7

node16

node11

node13

node14

node17

node21

node24

node25

node28

node10

node12

node18

node29

node30

node32

node33

node40

node42

node44

node45

node47

node49

node54

node55

node56

node57

node61

node62

node69

node70

node71

node74

node76

node77

node83

node90

node94

node95

node101

node102

node103

node104

node105

node189

node26

node22

node23

node31

node34

node41

node43

node46

node48

node50

node58

node59

node63

node72

node75

node78

node79

node84

node85

node86

node91

node96

node108

node106

node109

node111

node114

node118

node119

node120

node121

node123

node124

node127

node128

node132

node134

node135

node138

node139

node146

node148

node149

node151

node153

node154

node157

node161

node163

node165

node166

node168

node170

node171

node172

node173

node175

node180

node181

node186

node107

node27

node35

node36

node37

node38 node39

node51 node52 node53

node60

node64

node65

node66

node67 node68

node73

node80 node81 node82

node87

node88 node89

node92 node93

node97 node98

node99 node100

node110

node112

node115

node122

node125

node126

node129

node130

node131

node133

node136

node140

node147

node150

node152

node155

node158

node162

node164

node167

node169

node174

node176

node177

node178

node182

node183

node187

node113

node116 node117

node137

node141

node143

node144

node142

node145

node156

node159 node160

node179

node184

node185

node188

Figure 6. Irregular divisions in QuickSort.

Figure 7. Division throttling of small parallel sec-
tions.

approach. Dijkstra partitions the graph into as many sub-
graphs of varying size as the number of child nodes after
each node selection, and QuickSort partitions the list to sort
into two sub-lists of varying sizes depending on the pivot
selection. The component version has a speedup of 1.23 for
Dijkstra and 2.51 for QuickSort over the statically paral-
lelized version, and respectively 2.51 and 2.93 over the su-
perscalar version. Its performance is also significantly more
stable than the statically parallelized version due to dynamic
load balancing, which has interesting implications for em-
bedded real-time systems. Figure 6 illustrates for Quick-
Sort how irregular divisions can be depending on the list
lengths after each pivoting operations.

Small parallel sections. Greedy component division
improves dynamic load balancing by maximizing hardware
resource usage. However, as mentioned in Section 3.1, if
the lifespan of a worker (thread) is short, the overhead will
eradicate the benefits of exploiting parallelism. For that rea-
son, we explained that the architecture monitors the average
number of thread destructions per cycle, and takes this met-
ric into account in the cost function driving division deci-
sions. LZW and Perceptron, are two algorithms which ben-
efit from this division throttling feature.

The Perceptron component version constantly attempts
to split its initial group of 10000 neurons into two child
components with half the number of neurons. The
LZW component version recursively splits the initial se-
quence of N = 4096 characters it must match into two se-
quences of N/2 characters in order to parallelize the search.



Figure 8. Speedup (overall and component sections;
% above bars correspond to fraction of total execu-
tion spent in componentized sections).

Benchmark # divisions # divisions % divisions # insts
requested allowed allowed / division

allowed
mcf 99598 40532 40% 3.7K
vpr 67560 2702 4% 4.5M

bzip2 38656 2319 6% 30M

Table 3. Percentage and rate of successful divisions.

Because both components perform little processing on their
data and have frequent opportunities to split, Figure 7 shows
that they benefit from dynamic division throttling.

Re-engineered SPEC CINT2000. Most of the perfor-
mance assets of our component approach have been illus-
trated with core algorithms in the previous paragraphs. The
purpose of this section is twofold: (1) to demonstrate the ap-
proach on larger applications, and (2) to highlight that even
complex applications like SPEC CINT2000 embed signif-
icant parallelism, at least at the specification level. As ex-
plained in Section 4, we had to reverse-engineer the whole
programs in order to extract their specification, even though,
in the end, we sometimes re-engineer/componentize only a
small part. We have applied our component approach to
SPEC CINT2000 programs because there are few examples
of parallel versions of these benchmarks; however, directly
writing components programs is both faster and yields more
efficient programs. We report the performance of the com-
ponent version on an 8-context SOMT versus a superscalar
processor with the same resources; unless otherwise men-
tioned, the hardware configuration of the SOMT and super-
scalar processors is the one indicated in Table 1.

Figure 8 shows the overall speedup obtained for the de-
fault architecture, the speedup of the componentized sec-
tion, and recalls the percentage of execution time spent
in component sections, already indicated in Table 2. Ta-
ble 3 indicates the number of divisions requested, the num-
ber of divisions allowed (recall divisions are not allowed
if all hardware contexts are used) and the rate of divisions
allowed (exactly the number of instructions per division).
These statistics are an indication of the amount of available
parallelism and how often components can saturate hard-
ware contexts. We briefly describe the component part of
each program below, and provide a few additional details
on the specific behavior of each benchmark.

In 181.mcf, the component replaces a sequential tree
traversal (for route planning) with a parallel tree search.
Note that the rate of divisions of 181.mcf is significantly
higher than for the two other benchmarks (though a division
occurs only every 3679 instructions on average) because we
chose to test division at every tree node, and because the

code only performs an elementary task at each node. While
a coarser division level could have been chosen, this exam-
ple also shows that performance benefits can be achieved
even when divisions are implemented at a very fine granu-
larity.
In 175.vpr, the component implements FPGA routing
and placement by simultaneously exploring many circuit
graph paths (up to 8000). The parallel version of the algo-
rithm converges in 9 iterations instead of 8 for the original
version, which decreases the overall speedup. The parallel
version is memory bandwidth-limited, so doubling cache
size and cache ports improves the speedup of a single itera-
tion from 2.47 to 3.5, and the overall speedup to 3.0.
In 256.bzip2, a block-sorting compression algorithm,
the component targets the string sorting process.
In the 186.crafty chess program, the component ver-

sion is derived from an existing parallel implementation7

which uses the pthread library [26] for splitting the
search tree. The purpose of this example is to illustrate: (1)
that component-based programming is compatible with ex-
isting parallel implementations, and (2) that static manage-
ment of parallel hardware contexts is not as efficient as the
dynamic management as in SOMT. The program maintains
a pool of threads in active wait and, in some sense, manages
thread contexts by software, and mostly inhibits dynamic
component division. As a result 186.crafty is not men-
tioned in Figure 3. Moreover, because there is an overhead
for maintaining such a pool of pthreads, increasing the num-
ber of threads can actually degrade performance. The over-
all speedup of the same application on a 4-context SOMT is
2.3 instead of 1.7 for an 8-context SOMT.

Potential impact of CMPs on dynamic spawning. In
this paragraph, we explore how porting our approach to
CMP could affect its behavior and performance. We have
not yet simulated a CMP version of our hardware support,
we only extrapolate based on our SMT implementation.
The two most critical parameters of our approach are the
division/spawning latency and the probing latency.

On a shared-memory CMP, the probing latency is not
expected to change significantly, but the division latency
can vary more greatly due to the cost of starting a thread
on a remote processor. We have simulated division laten-
cies up to 200 cycles, and observed an average performance
variation of less than 1% with respect to the results pre-
sented in this section. The main reason for this reduced
impact of the division latency is that, in fact, the actual
division rate remains limited. For instance, in 181.mcf,
which has the highest ratio of successful divisions among
the SPEC CINT2000 programs we evaluated, there is only
one division every 3679 insts on average. The approach
does not necessarily require a high number of divisions to
perform well, but rather the ability to adapt to irregular
workloads, as illustrated in Figure 6. Frequent probing also
enables rapid adaptation to changing conditions. Still, for
significantly higher division latencies, we can naturally ex-
pect codes with high division rates such as 181.mcf to

7Version 19.19 versus 14.3 in SPEC CINT 2000; the main algorithm is
the same in the two versions, but several heuristics were modified, such as
in scoring mechanisms.



benefit less from the division mechanism.
We are also investigating distributed-memory CMPs

which are popular in embedded systems. In that context, we
expect a more complex hardware support will be necessary,
especially for probing, which will require fast communica-
tions between neighbor processors.

6. Related Work

Architectures for improving single-process performance.
Many other research works propose to use single-chip
multi-threaded architectures, such as CMPs or SMTs, to
speed up single processes. For instance, Tullsen et al. [22]
evaluates static parallelization on an 8-context SMT and
achieves an average 2.68 speedup on 5 parallel SPLASH-
2 benchmarks and 2 SPEC-95 benchmarks. Another ap-
proach for taking advantage of multiple threads to speedup
single processes are helper threads [29], which spawn a re-
duced version of the main process, capable of running ahead
of it, in order to warm up the cache or to provide a feedback
on branch behavior.

Snavely et al. [31] proposes to co-schedule jobs that per-
form well together on a SMT. While this work focuses on
multi-process workloads rather than improving the perfor-
mance of a single process through parallelization, it demon-
strates the potential synergy between software layers (the
OS in this case) and micro-architecture support.

The micro-architecture support of SOMT shares sev-
eral features with Balanced Multithreading proposed by
Tune et al [40]. They implement a context stack that can
hold idle threads so that the number of virtual threads can be
significantly larger than the number of hardware contexts.
The processor can quickly swap threads in and out, and the
swapping strategy is based on their memory behavior. How-
ever, this work focuses on multi-process workloads again,
so it cannot improve single-process performance other than
by relying on a parallelizing compiler.

Wish Branches [19] bear some similarity with our ap-
proach because it delegates at run-time the decision to
choose between a normal and a predicated branch; the deci-
sion depends on the quality of prediction.

The Network-Driven Processor proposed by
Chen et al. [10] also shares several features with
CAPSULE, and its initial version called Agent Pro-
gramming+SOMT [21]. They similarly propose to delegate
thread creation decisions at run-time to the hardware, and
show an example application on a CMP; there is also a
significant development on streaming applications and
support. However, with respect to thread management,
NDP is more like the hardware implementation of the Cilk
run-time system: all thread spawning commands are ef-
fected, stored in a table and spawning stops when the table
is full. There is no constant probing of hardware resources
and conditional spawning. Furthermore, components seem
to spawn childs of a given granularity, e.g., loop iterations,
rather than gracefully divide in half until resources are full
or the granularity is too small.

GPA/TRIPS [30], RAW [35] or WaveScalar [33] pro-
pose several innovative approaches to take advantage of on-
chip space. GPA is attractive because it speeds up com-
putations by mapping them on hardware instead of paral-

lelizing them, and thus imposes a small burden on the com-
piler; however, its scalability may be limited. RAW favors,
but is not restricted to, dataflow-like computations, and the
StreamIt [36] compiler and language is focused on stream-
ing applications for RAW. WaveScalar has a larger applica-
tion scope but it still relies on compile-time automatic par-
allelization.

Speculative parallelization. Because of the limitations
of compiler-based parallelization, thread-level speculation
(TLS) has received significant attention in the past few
years. Prabhu et al. [27] explored the potential of TLS on
several SPEC CPU2000 benchmarks on the Hydra multi-
processor. The Mitosis compiler and architecture [28] is
one of the most recent and thorough attempt. It proposes
complex but sophisticated hardware support combined with
compiler-based precomputation of threads live-ins. How-
ever, it is difficult to know whether this scheme can scale
up to large amounts of parallelism. Steffan et al. [32]
proposed a scalable hardware support for TLS for shared-
memory multiprocessing systems. Program Demultiplex-
ing [5] recently introduced an approach where parallelism
is exploited at the procedure level, and procedures are spec-
ulatively spawned earlier than in a sequential execution. A
hardware support helps buffer the program state modifica-
tions until the speculation is resolved.

Parallel programming and languages. There is such a
large body of research works on expressing parallel seman-
tic, that it is just impossible to convey them all here. Clas-
sical UNIX semantics (fork(), posix threads) and MPI
are widely used but they are error-prone and hard to debug.
Approaches like Hood [7] or Continuations [15] help hid-
ing low-level primitives but still let the programmer handle
concurrency accesses. To circumvent this difficulty, parallel
programming paradigms have proposed to let the user ex-
press specifications using implicit concurrency [11, 4, 20].
However, many of these paradigms are domain-specific
(scientific computing for OpenMP, spatial organizations for
MGS, etc...). Intentional Programming, Generative Pro-
gramming and Language Oriented Programming [41] aim
at further facilitating the creation, usage and interoperabil-
ity of parallel paradigms; they use domain-specific lan-
guages [6] to easily express programs, and then automati-
cally generate standard code. X10 [9] and Fortress [1] have
proposed implicit transactions and weak atomicity which
help the programmer express the concurrent constraints of
her code through dedicated language modifications. Spec-
ulative Synchronization [24] circumvents expensive lock
checking through an optimistic policy with fallback. Both
approaches require to implement a rollback mechanism.
STAPL [3] is a different approach, more a programming
framework than a language, for both easily designing par-
allel applications and simultaneously confronting the asso-
ciated software engineering issues; the principle is to build
a parallel version of the C++ STL library combined with
the appropriate run-time support. TSM (Time-Shifted Mod-
ules) [43] proposes a similar library-based approach which
further relieves the user of programming tasks at the ex-
pense of creating programs with slightly less and coarser
parallelism. The principle is to leverage the fact that many
programs are built as a set of mostly independent tasks. By
building a program as a set of modules providing data en-
capsulation, it is possible to let the programmer reason al-



most sequentially on its program, while taking advantage
of the parallelism between modules when several hardware
contexts are available.

Our approach is more related to component program-
ming environments such as Cilk and Charm++ mentioned
in the introduction. Beyond the spawning support for
parallelism, the separation property of components and
their explicit communications provide an implicit hardware
model. This model corresponds to a virtual space where
components reside and are linked with each other. This
model is significantly different from the Von Neumann
model (processor/memory view) implicitly used by all
programmers. It is more amenable to parallelism (two
components residing in the space at the same time and
not communicating implicitly execute concurrently), and
shares properties with spatial computing models such as
Blob Computing [12]. This implicit model can somewhat
help the programmer for the task of extracting parallelism,
though just rewriting a program into components is usually
not enough to parallelize it.

7. Conclusions and Future Work

We have introduced a combination of component-based
programming and component hardware support as a prag-
matic approach for harnessing the parallelism in programs
with complex data structures and control flow. By dele-
gating component spawning and mapping decisions to the
architecture, we have both simplified the task of the pro-
grammer, and achieved a better exploitation of hardware re-
sources.

Furthermore, we have observed that, because this run-
time component allocation strategy follows a simple rule of
maximizing resource occupation, it has the side-effect of
making the execution time of programs with complex be-
havior significantly more predictable. This property has in-
teresting implications for real-time embedded systems.

Instead of proposing a new language or complex syn-
tax extensions to write parallel programs, we have essen-
tially leveraged (and are thus compatible with) a current
software engineering trend towards greater encapsulation
through component programming, and improved upon past
research works combining components and parallel pro-
gramming. Our component syntax can be adapted to Jav-
aBeans, .Net or other component frameworks. It is also in-
teresting to note that, intuitively, this current software engi-
neering trend blends quite well with the current architecture
trend towards multi-cores: both consist in breaking down
respectively a complex program and a complex architecture
into several more simple pieces. We essentially proposed a
method for efficiently marrying them together.

Future work will focus on applying our component-
based approach to shared-memory and distributed-memory
CMPs. We do not foresee significant evolutions in the pro-
gramming approach to tackle shared-memory CMPs; on the
other hand, the hardware support must be augmented with
probing neighbor nodes on thread availability, and thread
migration. For distributed-memory CMPs, the program-
ming support will encapsulate not only code sections but
also data structures into separate components. We believe

this can be achieved without significantly extending our cur-
rent syntax, except spawning will affect both code and data
components.
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