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Disjoint Unit Spheres Admit At Most Two Line Transversals

Otfried Cheong! Xavier Goaoc? Hyeon-Suk Na3

May 27, 2003

Abstract

We show that a set of n disjoint unit spheres in R? admits at most two distinct geometric
permutations, or line transversals, if n is large enough. This bound is optimal.

1 Introduction

A line ¢ is a line transversal for a set S of pairwise disjoint convex bodies in R? if it intersects
every element of S. A line transversal defines two linear orders on S, namely the order in which /¢
intersects the bodies, where we can choose to orient ¢ in two directions. Since the two orders
are essentially the same (one is the reverse of the other), we consider them as a single geometric
permutation.

Bounds on the maximum number of geometric permutations were established about a decade
ago: a tight bound of 2n—2 is known for d = 2 [2], for higher dimension the number is in Q(n?1) [5]
and in O(n??-2) [10]. The gap was closed for the special case of spheres by Smorodinsky et al. [8],
who showed that n spheres in R? admit ©(n?"!) geometric permutations. This result can be
generalized to “fat” convex objects [7].

The even more specialized case of congruent spheres was treated by Smorodinsky et al. [8]
and independently by Asinowski [1]. They proved that n unit circles in R* admit at most two
geometric permutations if n is large enough (the proof by Asinowski holds for all n > 4). Zhou and
Suri established an upper bound of 16 for all d and n sufficiently large, a result quickly improved
by Katchalski, Suri, and Zhou [6] and independently by Huang, Xu, and Chen [4] to 4.

Katchalski et al. show that for n large enough, two line transversals can make an angle of
at most O(1/n) with each other, so all line transversals are “essentially” parallel. They define
a switched pair to be a pair of spheres (A, B) such that there are two line transversals ¢ and ¢’
(for all n spheres) where /¢ visits A before B, while ¢' visits B before A. Katchalski et al. prove
that any sphere can participate in at most one switched pair, and that the two spheres forming a
switched pair must appear consecutively in any geometric perturbation of the set. It follows that
any two geometric perturbations differ only in that the elements of some switched pair may have
been exchanged. Katchalski et al.’s main result is that there are at most two switched pairs in a
set of n disjoint unit spheres, implying the bound of four geometric permutations.

We show that in fact there cannot be more than one switched pair. This implies that, for
n large enough, a set of n disjoint unit spheres admits at most two geometric perturbations, which
differ only by the swapping of two adjacent elements. Since there are arbitrarily large sets of unit
spheres in R? with one switched pair, this bound is optimal.

The study of geometric permutations is motivated mostly by theoretical interest, yet there is
an important application to computer graphics. In various applications, space is decomposed into
boxes, and light can pass only through portals, that is openings between the boxes (such as doors,
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| dimension | Objects | Known bound

2 convex objects O(2n —2) [2]

2 n > 4 congruent disks 21, 8§

3 spheres with a radius disparity of v O(~"°87) 7]
any convex objects Q(na-1) [5] and O(n??-2) [10]
any spheres of various radii, fat convex objects On1) I8, 7
any n sufficiently large congruent spheres 2 (this paper) [6, 4]

Table 1: Known bounds on the number of geometric permutations.

windows, and stairwell openings in building models) [9]. For a box to be visible from another box,
light has to pass through all the portals in-between, and if no line transversals for these portals
exists, then the two boxes are mutually invisible.

Surveys of geometric transversal theory are Goodman et al. [3] and Wenger [11].

2 The proof

A unit sphere is a sphere of radius 1. We say that two unit spheres are disjoint if their interiors
are (in other words, we allow the spheres to touch). A line stabs a sphere if it intersects the closed
sphere (and so a tangent to a sphere stabs it). A line transversal for a set of disjoint unit spheres
is a line that stabs all the spheres, with the restriction that it is not allowed to be tangent to two
spheres in a common point.

Given two disjoint unit spheres A and B, let g(A, B) be their center of gravity and II(A, B) be
their bisecting hyperplane. If the centers of A and B are a and b, then g(A, B) is the mid-point
of a and b, and II(A, B) is the hyperplane through g(A, B) orthogonal to the line ab.

We first repeat a basic lemma by Katchalski et al.

Lemma 1 [6, Lemma 2.3] Let ¢ and ¢' be two different line transversals of a set S of n disjoint
unit spheres in R?. Then the angle between the direction vectors of £ and ¢' is O(1/n).

Proof. A volume argument shows that the distance between the first and last sphere stabbed
by £is Q(n). Since £ and ¢’ have distance at most 2 over an interval of length Q(n), their direction
vectors make an angle of O(1/n).

Lemma 1 implies that all line transversals for a set of spheres are nearly parallel.
We continue with a warm-up lemma in two dimensions.

Lemma 2 Let S and T be two unit-radius disks in R?> with centers (—),0) and (\,0), where
A > cos 8 for some angle § with 0 < 8 < w/2. Then SN T is contained in the ellipse

(575) + () <t

Proof. Let (u,0) and (0, v) be the rightmost and topmost point of SNT (see Figure 1). Consider
the ellipse F defined as

E intersects the boundary of S in (0,v) and (0, —v), and is tangent to it in (u,0). An ellipse can
intersect a circle in at most four points and the tangency counts as two intersections, and so there
is no further intersection between the two curves. Since (—pu,0) lies on E and inside S, the part
of E between (0, —v) and (0, v) lies outside S, and SN T is contained in E. It remains to observe
that

P =1-X2<1-cos’ =sin’ 3,



Figure 1: The intersection of two disks is contained in an ellipse.

so v < sin 3, and
p=1-X<1-cosf<1-cos’B =sin’p,

which proves the lemma.

We now show that a transversal for two spheres cannot pass too far from their common center
of gravity.

Lemma 3 Given two disjoint unit spheres A and B in R? and a line ¢ stabbing both spheres, let
p be the point of intersection of £ and TI(A, B), and let  be the angle between ¢ and TI(A, B).
Then

d(p,9(4, B)) <sinf.

Proof. Let a and b be the centers of A and B and let v be the direction vector of £, that is, £
can be written as {p + Av | A € R}. We first argue that proving the lemma for d = 3 is sufficient.
Indeed, assume d > 3 and consider the 3-dimensional subspace I' containing ¢, a, and b. Since we
have d(a,?) <1 and d(b,¢) < 1, the line £ stabs the 3-dimensional unit spheres ANT and BNT.
And since 7/2 — 3 is the angle between two vectors in ', namely v and b — a, § is also the angle
between £ and the two-dimensional plane TI(A, B) N T". So if the lemma holds in T, then it also
holds in R?.

In the rest of the proof we can therefore assume that d = 3. We choose a coordinate system
where a = (0,0, —p), b = (0,0, p) with p > 1, and v = (cos 3, 0,sin 8). Then II := II(A, B) is the
zy-plane and ¢ := g(A, B) = (0,0,0). Consider the cylinders cyl(A) := {u+ v |u € A, € R}
and cyl(B). Since ¢ stabs A and B, we have p € cyl(4) Ncyl(B) N1I.

The intersection B’ := cyl(B) N1I is the ellipse (see Figure 2)

) P \2 2
—_— <1
sin B(athanB) +y- <1,
and symmetrically A’ := cyl(4) N1 is
) P \2 2
- <1
sin® B(z tanﬂ) +y

If we let 7 be the linear transformation



v

Figure 2: The intersection of the cylinder with the xzy-plane is an ellipse.

then 7(A") and 7(B') are unit-radius disks with centers (p cos 3,0) and (—pcos 3,0). By Lemma 2,
the intersection 7(A’ N B') is contained in the ellipse

(sinaj;ﬂ)2 + (sigﬂ)Q <L

Applying 77! we find that A’ N B’ is contained in the circle with radius sin 8 around g. Since
p € A'N B', the lemma, follows.

We now prove our key lemma.

Lemma 4 Let A, B, C, D be four spheres from a set S of n disjoint unit spheres in R%, for n
large enough. Assume there are two line transversal £ and (' for S, such that ¢ stabs the four
spheres in the order ABCD, and {' stabs them in the order BADC. Then

d(g(A,B),g(C,D)) <1+ 0(1/n).

Proof. Let II; := (A, B), II, = TI(C, D), g1 := g(4,B), and g2 := g(C,D). We choose a
coordinate system where II; is the hyperplane 2; = 0, and the intersection II; N1l is the subspace
21 = x5 = 0. We can make this choice such that the z1-coordinate of the center of A is < 0, and
that the zo-coordinate of the center of C is less than the zs-coordinate of the center of D. We
can also assume that the xo-coordinate of g1 is > 0 (otherwise we swap A with B, C' with D, and
¢ with £"). Figure 3 shows the projection of the situation on the z;xzo-plane.

Let p; := £N1;, p} := £ N1Tl;, let §; be the angle between ¢ and II;, and let 3] be the angle
between ¢' and II;. By Lemma 1 we have 3;, 8; € O(1/n).

Let us choose an orientation on £ and ¢' so that they intersect II; before II;. Since £ stabs A
before B and C before D, it intersects II; from bottom to top, and IlI, from left to right. The
segment p;ps therefore lies in the top-left quadrant of Figure 3. On the other hand, ¢' stabs B
before A and D before C, so it intersects Iy from top to bottom, and IT, from right to left, and
the segment p! p} lies in the bottom-right quadrant of the figure.
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Figure 3: The two hyperplanes define four quadrants
Let now ¢ := d(p1,p2) and t' := d(p},py). Lemma 3 implies

d(91,92) < d(g1,p1) + d(p1,p2) +d(p2,g2) <sinfy +t+sinfa <t + O(1/n),

and similarly
d(g1,92) < d(g1,p}) +d(p},py) +d(ph, 92) < sin By + 1 +sin gy <t + O(1/n),
and so
d(g1,92) < O(1/n) + min{t, #'}.

It remains to prove that min{¢,¢'} < 1. Let uy (u}) be the orthogonal projection of p; (p}) on I,
uy (uf) the orthogonal projection of pe (py) on II;. Consider the rectangular triangle pjusps. We
have Zuapips = B, and so

tsin 1 = d(p2, u2) = d(p2, I1). (1)

Similarly, we can consider the rectangular triangles pouips1, pjuspsy, and phu'p) to obtain

tsinfy = d(pi,u1) =d(p, 1), (2)
t'sin By = d(ph,uy) = d(py, ), (3)
t'sinfBy, = d(py,uy)=d(p],1s). (4)

We now distinguish two cases.

The first case occurs if, as in the figure, the z1-coordinate of g, is < 0. By Lemma 3 we have
d(p2, g2) < sin f2. Since py and go lie on opposite sides of IT;, we have d(p2, I11) < sin 5. Similarly,
we have d(p1,¢g1) < sin 1, and p; and g; lie on opposite sides of Iy, implying d(p1, ) < sin 5.
Plugging into Eq. (1) and (2), we obtain

sin (s smﬁl} <1

t < min{ -
- sin 3; " sin By

which proves the lemma for this case.



The second case occurs if the z1-coordinate of go is > 0. We let s; := d(g1,Ils), and sy :=
d(g2,111). Applying Lemma 3 , we then have

d(p2, ) < d(p2, g2) + 52 < sin Py + 89, (5)
d(pr, 1) < d(pi,g1) —s1 <sinfy — 81, (6)
d(py, 1) < d(py, g2) — s2 <sinfly — so, (7)
d(py, 1) < d(py, 1) + 51 <sinfy + s1. (8)
Plugging Ineqgs. (5) to (8) into (1) to (4), we obtain
sin 62 + 89
< — 9
sin ,8] ( )
sin 61 — 81
t< ——— 10
sin ,82 ( )
P by s (11)
sin 3]
(g Snbit s o (12)
sin [},

We want to prove that min(¢,¢') < 1. We assume the contrary. From ¢ > 1 and Ineq. (10) we
obtain
sin By < sin B; — s1,

and from ¢’ > 1 and Ineq. (11) we get
sin 8] < sin 8 — so.

Plugging this into Ineq. (9) and (12) results in

sinf3y + s sinf3; —s1 + s So — 8§
t < .32 2 . 51' 1 2 14 2. 17
sin 31 sin 31 sin 31
, sin 8] +s1 _ sinfy — s + 81 81 — 89
t — — =1+ —".
sin f3), sin 3, sin 3/,
It follows that if so < s7 then ¢t < 1, otherwise ¢’ < 1. In either case the lemma follows.

Given a set S of n spheres, Katchalski et al. [6] define a switched pair to be a pair of
spheres (A, B) from S such that there is a line transversal £ of S stabbing A before B and
another line transversal ¢ of S stabbing B before A. (Both transversals must be oriented in the
same direction, as discussed in the remark after Lemma 1.)

The notion of switched pair is well defined because of the following lemma.

Lemma 5 [6, Lemma 2.8] Let S be a set of n disjoint unit spheres in R?, with n large enough.
A sphere of S can appear in at most one switched pair.

The number of switched pairs determines the number of geometric permutations, as the following
lemma shows.

Lemma 6 [6, Lemma 2.9] Let S be a set of n disjoint unit spheres in R?, for n large enough.
The two members of a switched pair must appear consecutively in in all geometric permutations
of §. If there are a total of m switched pairs, then S admits at most 2™ different geometric
permutations.

The following lemma provides a lower bound on the distance of the centers of gravity of two
switched pair. It will be a key ingredient in our proof that only one switched pair can exist, as
the lower bound contradicts the upper bound we have shown in Lemma 4.



Lemma 7 [6, Lemma 3.2] Let S be a set of n disjoint unit spheres in R? with two switched
pairs (A, B) and (C, D). Then

d(g(A=B)=g(C=D)) Z \/5_ 5(”):
where £(n) > 0 and lim,,_,» £(n) = 0.

Finally, the following lemma allows us to apply Lemma 4.

Lemma 8 [6, Lemma 3.1] Let S be a set of n disjoint unit spheres in R? with two switched
pairs (A, B) and (C, D), for n large enough. Then there are two line transversals ¢ and ¢' of S
such that £ stabs the four spheres in the order ABCD and {' stabs them in the order BADC,
possibly after interchanging A and B and/or C and D.

Theorem 9 A set S of n disjoint unit spheres in R?, for n large enough, has at most one switched
pair and admits at most two different geometric permutations.

Proof. The second claim follows from the first by Lemma 6. Assume there are two different
switched pairs (A4, B) and (C, D). By Lemma 8 there exist two line transversals £ and ¢' and four
spheres A, B, C, D in S such that ¢ stabs them in the order ABCD and ¢’ stabs them in the
order BADC. Choosing n large enough, we have by Lemma 7

d(g(AB)g(CD)) Z \/5_ 1/5'
By Lemma 4, we also have
d(g(A,B),9(C,D)) <1+1/5<V2—1/5,

a contradiction. The theorem follows.
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