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Disjoint Unit Spheres Admit At Most Two Line TransversalsOtfried Cheong1 Xavier Goao
2 Hyeon-Suk Na3May 27, 2003Abstra
tWe show that a set of n disjoint unit spheres in Rd admits at most two distin
t geometri
permutations, or line transversals, if n is large enough. This bound is optimal.1 Introdu
tionA line ` is a line transversal for a set S of pairwise disjoint 
onvex bodies in Rd if it interse
tsevery element of S. A line transversal de�nes two linear orders on S, namely the order in whi
h `interse
ts the bodies, where we 
an 
hoose to orient ` in two dire
tions. Sin
e the two ordersare essentially the same (one is the reverse of the other), we 
onsider them as a single geometri
permutation.Bounds on the maximum number of geometri
 permutations were established about a de
adeago: a tight bound of 2n�2 is known for d = 2 [2℄, for higher dimension the number is in 
(nd�1) [5℄and in O(n2d�2) [10℄. The gap was 
losed for the spe
ial 
ase of spheres by Smorodinsky et al. [8℄,who showed that n spheres in Rd admit �(nd�1) geometri
 permutations. This result 
an begeneralized to \fat" 
onvex obje
ts [7℄.The even more spe
ialized 
ase of 
ongruent spheres was treated by Smorodinsky et al. [8℄and independently by Asinowski [1℄. They proved that n unit 
ir
les in R2 admit at most twogeometri
 permutations if n is large enough (the proof by Asinowski holds for all n � 4). Zhou andSuri established an upper bound of 16 for all d and n suÆ
iently large, a result qui
kly improvedby Kat
halski, Suri, and Zhou [6℄ and independently by Huang, Xu, and Chen [4℄ to 4.Kat
halski et al. show that for n large enough, two line transversals 
an make an angle ofat most O(1=n) with ea
h other, so all line transversals are \essentially" parallel. They de�nea swit
hed pair to be a pair of spheres (A;B) su
h that there are two line transversals ` and `0(for all n spheres) where ` visits A before B, while `0 visits B before A. Kat
halski et al. provethat any sphere 
an parti
ipate in at most one swit
hed pair, and that the two spheres forming aswit
hed pair must appear 
onse
utively in any geometri
 perturbation of the set. It follows thatany two geometri
 perturbations di�er only in that the elements of some swit
hed pair may havebeen ex
hanged. Kat
halski et al.'s main result is that there are at most two swit
hed pairs in aset of n disjoint unit spheres, implying the bound of four geometri
 permutations.We show that in fa
t there 
annot be more than one swit
hed pair. This implies that, forn large enough, a set of n disjoint unit spheres admits at most two geometri
 perturbations, whi
hdi�er only by the swapping of two adja
ent elements. Sin
e there are arbitrarily large sets of unitspheres in Rd with one swit
hed pair, this bound is optimal.The study of geometri
 permutations is motivated mostly by theoreti
al interest, yet there isan important appli
ation to 
omputer graphi
s. In various appli
ations, spa
e is de
omposed intoboxes, and light 
an pass only through portals, that is openings between the boxes (su
h as doors,1Department of Mathemati
s and Computer S
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dimension Obje
ts Known bound2 
onvex obje
ts �(2n� 2) [2℄2 n � 4 
ongruent disks 2 [1, 8℄3 spheres with a radius disparity of 
 O(
log 
) [?℄any 
onvex obje
ts 
(nd�1) [5℄ and O(n2d�2) [10℄any spheres of various radii, fat 
onvex obje
ts �(nd�1) [8, 7℄any n suÆ
iently large 
ongruent spheres 2 (this paper) [6, 4℄Table 1: Known bounds on the number of geometri
 permutations.windows, and stairwell openings in building models) [9℄. For a box to be visible from another box,light has to pass through all the portals in-between, and if no line transversals for these portalsexists, then the two boxes are mutually invisible.Surveys of geometri
 transversal theory are Goodman et al. [3℄ and Wenger [11℄.2 The proofA unit sphere is a sphere of radius 1. We say that two unit spheres are disjoint if their interiorsare (in other words, we allow the spheres to tou
h). A line stabs a sphere if it interse
ts the 
losedsphere (and so a tangent to a sphere stabs it). A line transversal for a set of disjoint unit spheresis a line that stabs all the spheres, with the restri
tion that it is not allowed to be tangent to twospheres in a 
ommon point.Given two disjoint unit spheres A and B, let g(A;B) be their 
enter of gravity and �(A;B) betheir bise
ting hyperplane. If the 
enters of A and B are a and b, then g(A;B) is the mid-pointof a and b, and �(A;B) is the hyperplane through g(A;B) orthogonal to the line ab.We �rst repeat a basi
 lemma by Kat
halski et al.Lemma 1 [6, Lemma 2.3℄ Let ` and `0 be two di�erent line transversals of a set S of n disjointunit spheres in Rd . Then the angle between the dire
tion ve
tors of ` and `0 is O(1=n).Proof. A volume argument shows that the distan
e between the �rst and last sphere stabbedby ` is 
(n). Sin
e ` and `0 have distan
e at most 2 over an interval of length 
(n), their dire
tionve
tors make an angle of O(1=n).Lemma 1 implies that all line transversals for a set of spheres are nearly parallel.We 
ontinue with a warm-up lemma in two dimensions.Lemma 2 Let S and T be two unit-radius disks in R2 with 
enters (��; 0) and (�; 0), where� � 
os� for some angle � with 0 < � � �=2. Then S \ T is 
ontained in the ellipse� xsin2 ��2 + � ysin��2 � 1:Proof. Let (�; 0) and (0; �) be the rightmost and topmost point of S\T (see Figure 1). Considerthe ellipse E de�ned as (x� )2 + (y� )2 � 1:E interse
ts the boundary of S in (0; �) and (0;��), and is tangent to it in (�; 0). An ellipse 
aninterse
t a 
ir
le in at most four points and the tangen
y 
ounts as two interse
tions, and so thereis no further interse
tion between the two 
urves. Sin
e (��; 0) lies on E and inside S, the partof E between (0;��) and (0; �) lies outside S, and S \ T is 
ontained in E. It remains to observethat �2 = 1� �2 � 1� 
os2 � = sin2 �;2
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Figure 1: The interse
tion of two disks is 
ontained in an ellipse.so � � sin�, and � = 1� � � 1� 
os� � 1� 
os2 � = sin2 �;whi
h proves the lemma.We now show that a transversal for two spheres 
annot pass too far from their 
ommon 
enterof gravity.Lemma 3 Given two disjoint unit spheres A and B in Rd and a line ` stabbing both spheres, letp be the point of interse
tion of ` and �(A;B), and let � be the angle between ` and �(A;B).Then d(p; g(A;B)) � sin�:Proof. Let a and b be the 
enters of A and B and let v be the dire
tion ve
tor of `, that is, `
an be written as fp+ �v j � 2 Rg. We �rst argue that proving the lemma for d = 3 is suÆ
ient.Indeed, assume d > 3 and 
onsider the 3-dimensional subspa
e � 
ontaining `, a, and b. Sin
e wehave d(a; `) � 1 and d(b; `) � 1, the line ` stabs the 3-dimensional unit spheres A \ � and B \ �.And sin
e �=2� � is the angle between two ve
tors in �, namely v and b� a, � is also the anglebetween ` and the two-dimensional plane �(A;B) \ �. So if the lemma holds in �, then it alsoholds in Rd .In the rest of the proof we 
an therefore assume that d = 3. We 
hoose a 
oordinate systemwhere a = (0; 0;��), b = (0; 0; �) with � � 1, and v = (
os�; 0; sin�). Then � := �(A;B) is thexy-plane and g := g(A;B) = (0; 0; 0). Consider the 
ylinders 
yl(A) := fu+ �v j u 2 A; � 2 Rgand 
yl(B). Sin
e ` stabs A and B, we have p 2 
yl(A) \ 
yl(B) \ �.The interse
tion B0 := 
yl(B) \ � is the ellipse (see Figure 2)sin2 �(x+ �tan� )2 + y2 � 1;and symmetri
ally A0 := 
yl(A) \� issin2 �(x� �tan� )2 + y2 � 1:If we let � be the linear transformation� : (x; y) 7! (x sin�; y);3
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Figure 2: The interse
tion of the 
ylinder with the xy-plane is an ellipse.then �(A0) and �(B0) are unit-radius disks with 
enters (� 
os�; 0) and (�� 
os�; 0). By Lemma 2,the interse
tion �(A0 \ B0) is 
ontained in the ellipse� xsin2 ��2 + � ysin��2 � 1:Applying ��1 we �nd that A0 \ B0 is 
ontained in the 
ir
le with radius sin� around g. Sin
ep 2 A0 \ B0, the lemma follows.We now prove our key lemma.Lemma 4 Let A, B, C, D be four spheres from a set S of n disjoint unit spheres in Rd , for nlarge enough. Assume there are two line transversal ` and `0 for S, su
h that ` stabs the fourspheres in the order ABCD, and `0 stabs them in the order BADC. Thend(g(A;B); g(C;D)) < 1 +O(1=n):Proof. Let �1 := �(A;B), �2 = �(C;D), g1 := g(A;B), and g2 := g(C;D). We 
hoose a
oordinate system where �1 is the hyperplane x1 = 0, and the interse
tion �1\�2 is the subspa
ex1 = x2 = 0. We 
an make this 
hoi
e su
h that the x1-
oordinate of the 
enter of A is < 0, andthat the x2-
oordinate of the 
enter of C is less than the x2-
oordinate of the 
enter of D. We
an also assume that the x2-
oordinate of g1 is � 0 (otherwise we swap A with B, C with D, and` with `0). Figure 3 shows the proje
tion of the situation on the x1x2-plane.Let pi := ` \ �i, p0i := `0 \ �i, let �i be the angle between ` and �i, and let �0i be the anglebetween `0 and �i. By Lemma 1 we have �i; �0i 2 O(1=n).Let us 
hoose an orientation on ` and `0 so that they interse
t �1 before �2. Sin
e ` stabs Abefore B and C before D, it interse
ts �1 from bottom to top, and �2 from left to right. Thesegment p1p2 therefore lies in the top-left quadrant of Figure 3. On the other hand, `0 stabs Bbefore A and D before C, so it interse
ts �1 from top to bottom, and �2 from right to left, andthe segment p01p02 lies in the bottom-right quadrant of the �gure.4
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Figure 3: The two hyperplanes de�ne four quadrantsLet now t := d(p1; p2) and t0 := d(p01; p02). Lemma 3 impliesd(g1; g2) � d(g1; p1) + d(p1; p2) + d(p2; g2) � sin�1 + t+ sin�2 � t+O(1=n);and similarlyd(g1; g2) � d(g1; p01) + d(p01; p02) + d(p02; g2) � sin�01 + t0 + sin�02 � t0 +O(1=n);and so d(g1; g2) � O(1=n) + minft; t0g:It remains to prove that minft; t0g � 1. Let u1 (u01) be the orthogonal proje
tion of p1 (p01) on �2,u2 (u02) the orthogonal proje
tion of p2 (p02) on �1. Consider the re
tangular triangle p1u2p2. Wehave \u2p1p2 = �1, and so t sin�1 = d(p2; u2) = d(p2;�1): (1)Similarly, we 
an 
onsider the re
tangular triangles p2u1p1, p01u02p02, and p02u01p01 to obtaint sin�2 = d(p1; u1) = d(p1;�2); (2)t0 sin�01 = d(p02; u02) = d(p02;�1); (3)t0 sin�02 = d(p01; u01) = d(p01;�2): (4)We now distinguish two 
ases.The �rst 
ase o

urs if, as in the �gure, the x1-
oordinate of g2 is � 0. By Lemma 3 we haved(p2; g2) � sin�2. Sin
e p2 and g2 lie on opposite sides of �1, we have d(p2;�1) � sin�2. Similarly,we have d(p1; g1) � sin�1, and p1 and g1 lie on opposite sides of �2, implying d(p1;�2) � sin�1.Plugging into Eq. (1) and (2), we obtaint � minn sin�2sin�1 ; sin�1sin�2o � 1;whi
h proves the lemma for this 
ase. 5



The se
ond 
ase o

urs if the x1-
oordinate of g2 is > 0. We let s1 := d(g1;�2), and s2 :=d(g2;�1). Applying Lemma 3 , we then haved(p2;�1) � d(p2; g2) + s2 � sin�2 + s2; (5)d(p1;�2) � d(p1; g1)� s1 � sin�1 � s1; (6)d(p02;�1) � d(p02; g2)� s2 � sin�02 � s2; (7)d(p01;�2) � d(p01; g1) + s1 � sin�01 + s1: (8)Plugging Ineqs. (5) to (8) into (1) to (4), we obtaint � sin�2 + s2sin�1 ; (9)t � sin�1 � s1sin�2 ; (10)t0 � sin�02 � s2sin�01 ; (11)t0 � sin�01 + s1sin�02 : (12)We want to prove that min(t; t0) � 1. We assume the 
ontrary. From t > 1 and Ineq. (10) weobtain sin�2 < sin�1 � s1;and from t0 > 1 and Ineq. (11) we get sin�01 < sin�02 � s2:Plugging this into Ineq. (9) and (12) results int � sin�2 + s2sin�1 < sin�1 � s1 + s2sin�1 = 1 + s2 � s1sin�1 ;t0 � sin�01 + s1sin�02 < sin�02 � s2 + s1sin�02 = 1 + s1 � s2sin�02 :It follows that if s2 < s1 then t < 1, otherwise t0 � 1. In either 
ase the lemma follows.Given a set S of n spheres, Kat
halski et al. [6℄ de�ne a swit
hed pair to be a pair ofspheres (A;B) from S su
h that there is a line transversal ` of S stabbing A before B andanother line transversal `0 of S stabbing B before A. (Both transversals must be oriented in thesame dire
tion, as dis
ussed in the remark after Lemma 1.)The notion of swit
hed pair is well de�ned be
ause of the following lemma.Lemma 5 [6, Lemma 2.8℄ Let S be a set of n disjoint unit spheres in Rd , with n large enough.A sphere of S 
an appear in at most one swit
hed pair.The number of swit
hed pairs determines the number of geometri
 permutations, as the followinglemma shows.Lemma 6 [6, Lemma 2.9℄ Let S be a set of n disjoint unit spheres in Rd , for n large enough.The two members of a swit
hed pair must appear 
onse
utively in in all geometri
 permutationsof S. If there are a total of m swit
hed pairs, then S admits at most 2m di�erent geometri
permutations.The following lemma provides a lower bound on the distan
e of the 
enters of gravity of twoswit
hed pair. It will be a key ingredient in our proof that only one swit
hed pair 
an exist, asthe lower bound 
ontradi
ts the upper bound we have shown in Lemma 4.6



Lemma 7 [6, Lemma 3.2℄ Let S be a set of n disjoint unit spheres in Rd with two swit
hedpairs (A;B) and (C;D). Then d(g(A;B); g(C;D)) � p2� "(n);where "(n) > 0 and limn!1 "(n) = 0.Finally, the following lemma allows us to apply Lemma 4.Lemma 8 [6, Lemma 3.1℄ Let S be a set of n disjoint unit spheres in Rd with two swit
hedpairs (A;B) and (C;D), for n large enough. Then there are two line transversals ` and `0 of Ssu
h that ` stabs the four spheres in the order ABCD and `0 stabs them in the order BADC,possibly after inter
hanging A and B and/or C and D.Theorem 9 A set S of n disjoint unit spheres in Rd , for n large enough, has at most one swit
hedpair and admits at most two di�erent geometri
 permutations.Proof. The se
ond 
laim follows from the �rst by Lemma 6. Assume there are two di�erentswit
hed pairs (A;B) and (C;D). By Lemma 8 there exist two line transversals ` and `0 and fourspheres A, B, C, D in S su
h that ` stabs them in the order ABCD and `0 stabs them in theorder BADC. Choosing n large enough, we have by Lemma 7d(g(A;B); g(C;D)) � p2� 1=5:By Lemma 4, we also have d(g(A;B); g(C;D)) < 1 + 1=5 < p2� 1=5;a 
ontradi
tion. The theorem follows.A
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