
HAL Id: inria-00104990
https://hal.inria.fr/inria-00104990

Submitted on 9 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pipelined Sort-last Rendering: Scalability, Performance
and Beyond

Xavier Cavin, Christophe Mion

To cite this version:
Xavier Cavin, Christophe Mion. Pipelined Sort-last Rendering: Scalability, Performance and Beyond.
6th Eurographics Symposium on Parallel Graphics and Visualization - EGPGV 2006, May 2006,
Braga, Portugal. �inria-00104990�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50422631?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00104990
https://hal.archives-ouvertes.fr

Eurographics Symposium on Parallel Graphics and Visualization - Short Papers (2006)

Alan Heirich, Bruno Raffin, and Luis Paulo dos Santos (Editors)

Pipelined Sort-last Rendering:

Scalability, Performance and Beyond

Xavier Cavin† and Christophe Mion (Inria - Alice)

Abstract

We present in this paper a theoretical and practical performance analysis of pipelined sort-last rendering for both

polygonal and volume rendering. Theoretical peak performance and scalability are studied, exhibiting maximum

attainable framerates of 19 fps (volume rendering with back-to-front alpha blending) and 11 fps (polygonal ren-

dering with Z-buffer compositing) for a 1280× 1024 display on a Gigabit Ethernet cluster. We show that our

implementation of pipelined sort-last rendering on a 17-node PC cluster can nearly sustain these theoretical fig-

ures. We finally propose possible enhancements that would allow to go beyond the maximum theoretical limits.

This paper clearly shows the potential of pipelined sort-last rendering for real-time visualization of very large

models on standard PC clusters.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Computer Graphics]: Graphics Systems-

Distributed/network graphics; I.3.3 [Computer Graphics]: Picture/Image GenerationViewing algorithms; C.2.4

[Computer-Communication Networks]: Distributed SystemsDistributed applications

1. Introduction and related works

As polygonal and volume datasets become bigger and big-

ger (see Figure 1), solutions based on sort-last rendering

emerge as a mean to visualize them on PC clusters in

place of dedicated high-end systems. These solutions in-

clude CEI/HP Parallel Compositing API [CEI,HPP] or San-

dia Ice-T [MT03, PAR].

In sort-last rendering, the dataset to be displayed is de-

composed and distributed across the different nodes of a PC

cluster. For each new frame, each node renders a complete

image of the data it has been assigned to, using its local GPU.

Then it reads back the content of the frame buffer from the

GPU to main memory. A parallel image compositing step is

then performed to blend all the full resolution partial images

into a final image; this step intensively uses the intercon-

nection network to exchange parts of the composed image.

Finally, the master node (responsible for displaying the fi-

nal image to the user) gathers the final image from the slave

nodes (which involves transmitting a full resolution image to

a single node), and draws it from main memory to the frame

buffer of the GPU.

† Xavier.Cavin@inria.fr

Figure 1: Real-time visualization of the Power Plant model

(data courtesy of UNC-Chapel Hill): the model consists

of 12,748,510 triangles and is rendered at 11 fps on a

1280× 1024 display on our 17-node COTS PC cluster. No

pre-processing has been applied to the initial model, and no

acceleration technique has been used to speed-up the ren-

dering (just straightly drawing the triangles).

X. Cavin & C. Mion / An Analysis of Pipelined Sort-last Rendering

To our knowledge, the latest results for CEI/HP Par-

allel Compositing API report in [HP 05] 28.2 fps for a

512× 512× 512 volume dataset and 20.6 fps for a 28 mil-

lion triangle model on a 8-node PC cluster with InfiniBand

4x interconnect and a 1280× 1024 screen resolution. Simi-

larly, the latest results for Sandia Ice-T report in [HW05] 15

fps on a 264-node PC cluster with InfiniBand 4x (without

unfortunately mentioning the screen resolution).

These figures on very high end PC clusters obviously

serve as a reference of the obtainable performance of sort-

last rendering. However, if we consider Commodity Off-

The-Shelf (COTS) PC clusters, the available interconnection

bandwidth is much lower compared to Infiniband. For in-

stance, 650 MB/s are reported in [HP 05] for InfiniBand 4x,

and have to be compared with the 128 MB/s bandwidth of

standard Gigabit Ethernet.

Recently, Cavin et al. have proposed in [CMF05] a

pipelined implementation of sort-last rendering on a COTS

PC cluster. They reported peak performance of 19 fps for

volume rendering and 11 fps for polygon rendering on a 5-

node PC cluster with Gigabit Ethernet interconnect and a

1280× 1024 screen resolution. If we put these figures into

perspective with the latest results of the CEI/HP Parallel

Compositing API using Infiniband 4x, they obtain 67% and

53% of the performance respectively for volume and poly-

gon rendering, with only 19% of the interconnection band-

width (not talking about the price ratio). Unfortunately, their

experiments were limited to a small scale PC cluster (4 slave

nodes), and the scalability of their approach still remains to

be proved.

The goal of this paper is first to demonstrate the scalability

of pipelined sort-last rendering, and second to suggest pos-

sible ways of acceleration. Section 2 of this paper presents

a scalability and performance analysis of pipelined sort-last

rendering, and applies the theory to practical cases. In Sec-

tion 3, we present practical experimentations on our 17-node

COTS PC cluster with a Gigabit Ethernet interconnect, and

we show that the theoretical values can be attained. We con-

clude in Section 4 and present possible enhancements that

could push pipelined sort-last rendering to new heights.

2. Pipelined sort-last rendering analysis

2.1. Theoretical performance evaluation

In this Section, we present a performance evaluation of

the pipelined sort-last algorithm proposed by Cavin et al.

in [CMF05].

According to their notations, the time needed to display

a single frame using standard (non pipelined) sort-last algo-

rithm is decomposed as:

time = render + read + compose+ collect +draw (1)

With their pipelined implementation, that overlaps:

• rendering (render) and parallel image compositing

(compose) of the current frame with final image gather-

ing (collect) and drawing (draw) of the previous frame;

• reading the frame buffer from GPU to main memory

(read) with parallel image compositing (compose);

the time needed to display the same frame is now:

time =

{

compose if render ≤ compose

render if render ≥ compose
(2)

If we assume, as in [CMF05], that:

• we use an ideal COTS cluster with no latencies;

• we use one master node and n slave nodes;

• f ps is the number of frames per second on a single node;

• xy is the number of pixels of the display, bpp is the num-

ber of bits per pixels of the color frame buffer and zdth is

the size in bits of the depth buffer;

• bop is the bandwidth in bits per second of the operation

op;

and if we assume that the depth buffer is not collected at

the end of each frame, then the terms of equation 2 can be

rewritten as:

render =
1

f ps
(3)

compose = xy× (1−
1

n
)×

(

bpp

bsendandrecv

+
zdth

bsendandrecvZ

)

where zdth can possibly be zero in the case of back-to-front

compositing without the Z-buffer.

Note that equation 2 gives the minimum time to render

a frame, in the case where overlap is completely attained.

If some parts are not overlapped, then this time would be

higher. This equation gives us an upper bound of the maxi-

mum obtainable frame rate.

2.2. Applying the theory

To get more concrete, we assume in the remaining of this

Section that our application uses a RGBA 32 bits color buffer

and a 32 bits depth buffer if required. We also assume an

ideal PC cluster with a given interconnect exhibiting a point-

to-point full-duplex bandwidth of b Gb/s and capable of an

infinite aggregate bandwidth. We will come back later in

Section 3 on this assumption.

If we consider that the rendering speed is infinite (i.e.

render = 0), then compose gives us an upper bound of the

maximal obtainable frame rate on our cluster. Figure 2 shows

this upper bound for increasing resolutions, both on a Giga-

bit Ethernet (b = 109) and on a InfiniBand 4x (b = 5.2×109)

PC cluster, for polygonal (with Z-buffer compositing) and

volume (with back-to-front compositing without Z-buffer)

rendering.

The latest results for the CEI/HP Parallel Compositing

X. Cavin & C. Mion / An Analysis of Pipelined Sort-last Rendering

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200
 210
 220
 230
 240

1600x12001280x10241024^21024x768

F
ra

m
es

 p
er

 s
ec

on
d

Number of pixels

b = 1 Gb/s, no Z-buffer
b = 1 Gb/s, with Z-buffer
b = 5.2 Gb/s, no Z-buffer

b = 5.2 Gb/s, with Z-buffer

Figure 2: Theoretical optimal rendering speed of pipelined

sort-last rendering in frames per second on a 17-node PC

cluster, with different interconnects (Gigabit Ethernet b = 1

Gb/s, InfiBand 4x b = 5.2 Gb/s), with zero rendering time

(render = 0), with and without Z-compositing.

API reported in [HP 05], i.e. 28.2 fps for volume render-

ing and 20.6 fps for polygonal rendering on a 8-node PC

cluster with InfiniBand 4x interconnect and a 1280× 1024

screen resolution, are below the theoretical optimal per-

formance of pipelined sort-last rendering, i.e. 140 fps and

70 fps. This clearly shows the potential enhancements that

pipeline sort-last rendering could bring to their implementa-

tion. On the other hand, the 19 and 11 fps reported by Cavin

et al. [CMF05] on a 5-node PC cluster with Gigabit Ethernet

interconnect are closer to the theoretical maximum perfor-

mance, i.e. 27 fps and 14 fps.

It is also interesting to study how the maximal obtain-

able frame rate varies with different rendering speeds (i.e.

different values of render), as illustrated on Figure 3: the

curves compare the theoretical performance of the pipelined

sort-last algorithm compared to the classical sort-last algo-

rithm with or without taking into account the Z-buffer. They

clearly show the gain of pipelined sort-last rendering as com-

pared to classical sort-last rendering (up to 300% for the case

without the Z-buffer).

3. Experimentation

3.1. Experimental setup

We have implemented the pipelined sort-last algorithm on

Linux in C using OpenGL, Pthreads and TCP/IP sockets. We

have run our experiments on a 16-node COTS PC cluster.

Each node is equipped with:

• a bi dual core AMD Opteron (275) 2.4 GHz;

• a NVIDIA GeForce 6800 Ultra 512 MB;

and nodes are interconnected through a Gigabit Ethernet in-

terconnect.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28

 0 5 10 15 20 25 30 35 40 45 50 55 60

F
ra

m
es

 p
er

 s
ec

on
d

on
 o

ut
pu

t

Frames per second on each node

Pipelined sort-last without Z-buffer
Classical sort-last without Z-buffer

Pipelined sort-last with Z-buffer
Classical sort-last with Z-buffer

Figure 3: Evolution of the theoretical optimal rendering

speed in frames per second for different nodes rendering

speeds on a 17-node PC cluster with Gigabit Ethernet in-

terconnect (b = 1 Gb/s), a 1280 × 1024 display, with and

without Z-compositing.

We have performed experimentations both with poly-

gon rendering (with Z-buffer compositing) and volume ren-

dering (with back-to-front compositing without Z-buffer).

For polygonal rendering, we have written a very simple

OpenGL application that displays polygonal models stored

in PLY format. For volume rendering, we have written an-

other OpenGL application that displays volumetric raw data.

3.2. Black screen rendering

Our first benchmarks rely on a “black screen rendering”

scheme: nothing is rendered (render = 0) and the black im-

ages are composited together (without optimization of any

kind) and displayed on the master node. This allows to test

the maximum attainable framerate on our PC cluster. For any

number of slave nodes (from 2 to 16), we obtain the same

output rendering speed: Table 1 reports the obtained perfor-

mance for different resolutions and compares it to the theo-

retical maximal value. The results are very similar to those

reported in [CMF05] on their 5-node PC cluster. They also

point out that the overlapping of the different parts of the

algorithm is not completely perfect, i.e. some parts are seri-

alized.

The scalability of our implementation for PC clusters big-

ger than our 17-node one only relies on the capability of

the interconnect to handle the simultaneous n
2 point-to-point

full-duplex communications occurring during the parallel

image compositing stage between the n slaves of the cluster.

Indeed, in our analysis, we have made the assumption that

the interconnect supports an infinite aggregate bandwidth.

This is clearly and unfortunately not the case. We point out

that a lot of care must be taken in the choice of the intercon-

nection switch when building a large graphics PC cluster.

X. Cavin & C. Mion / An Analysis of Pipelined Sort-last Rendering

Resolution Volume Polygon

1024×768 (theory) 46 fps 22 fps

1024×768 (observed) 31 fps 17 fps

1280×1024 (theory) 27 fps 14 fps

1280×1024 (observed) 19 fps 11 fps

Table 1: Observed and theoretical output performance of

our pipelined sort-last implementation for “black screen

rendering” (render = 0) on our 17-node PC cluster in the

volume (without Z-buffer) and the polygonal (with Z-buffer)

rendering case.

3.3. Case study: the Power Plant model

As a final experiment, we have used our polygonal rendering

application to visualize the famous Power Plant model (see

Figure 1). This model is composed of 12,748,510 triangles

distributed among several sections. In our application, we do

not use any acceleration technique of any kind (no Level of

Details, no culling, no impostors, no display list, no vertex

array, . . .): we simply draw each triangle one after the other

by sending its three vertices to the GPU. Moreover, we have

performed absolutely no pre-processing on the model. This

allows the interactive manipulation of the triangles of the

model at constant frame rate, as compared to more sophisti-

cated rendering approaches relying on a static model.

The decomposition of the model across the different

nodes is very simple: every single triangle that is read from

a PLY file is distributed in a round-robin manner to the

given nodes. This ensures an excellent load balancing, since

for any point of view, the visible triangles are equally dis-

tributed among the nodes. On our 17-node PC cluster, each

sub-model (composed of less that a million of triangles) can

be rendered at 45 fps on each node. Not surprisingly, the

whole Power Plant model can be displayed at the framerates

reported in Table 1.

4. Conclusion and future works

In this paper, we have presented an analysis of the perfor-

mance and of the scalability of the pipeline sort-last render-

ing algorithm introduced in [CMF05]. Our theoretical anal-

ysis allows the authors of related works to compare their

observed performance with the theoretical maximum value,

with respect to their cluster characteristics. It also shows that

pipeline sort-last rendering is a very scalable approach, if

one take care in the choice of the interconnection switch,

which is a potential bottleneck when the number of nodes in

the cluster increases. Finally, we have presented experimen-

tations of our implementation of pipeline sort-last rendering

on a 17-node COTS PC cluster. These experimentations have

proved the scalability of this approach for a cluster of this

size; our theoretical analysis makes us confident about the

scalability for larger clusters.

However, the results we have obtained are below the theo-

retical maximum values, as shown by Table 1. This is due to

the fact that some parts of the algorithm are not completely

overlapped. In particular, we suspect that the exchanges oc-

curring during the parallel image compositing and the send

operations occurring during the final collect operation con-

flict in some way. We are currently investigating these parts

to optimize the overlap. This should help us getting closer to

the theoretical limit.

Then, the only way to increase the performance will be

to increase the available bandwidth for the communications.

For instance, Figure 2 shows the theoretical frame rate that

could be achieved using an InfiBand 4x interconnect. The

drawback of InfiniBand is obviously its price, as compared

to classical Gigabit Ethernet. We are currently investigating

another (cheaper) way of increasing the available bandwidth:

each node of our cluster is actually equipped with four Gi-

gabit Ethernet attachments, which gives us a potential band-

width of 512 MB/s, to be compared with the 650 MB/s of

InfiniBand 4x. Our future works include finding solutions to

make a full usage of this potential bandwidth.

A success in both directions (maximizing the overlapping

and increasing the bandwidth) will give a scalable sort-last

rendering solution capable of very high framerates with high

resolutions.

References

[CEI] CEI Ensight Parallel Compositor. http://www.

ensight.com/.

[CMF05] CAVIN X., MION C., FILBOIS A.: COTS

cluster-based sort-last rendering: Performance evaluation

and pipelined implementation. In Proceedings of IEEE

Visualization 2005 (2005).

[HP 05] HP VISUALIZATION TEAM: Composit-

ing using COTS components, 2005. http:

//www.hp.com/techservers/hpccn/

downloads/HP-Compositing-public.pdf.

[HPP] Advanced visualization collaboration. http://

www.hp.com/techservers/hpccn/sci_vis/.

[HW05] HIGHAM D., WYLIE B.: Sandia National

Labs achieves breakthrough performance using NVIDIA

technology for scientific visualization, 2005. NVIDIA

press release, http://www.nvidia.com/object/

IO_19962.html.

[MT03] MORELAND K., THOMPSON D.: From cluster to

wall with VTK. In Proc. of IEEE 2003 Symp. on Parallel

and Large-Data Visualization and Graphics (2003).

[PAR] Paraview - parallel visualization application.

http://www.paraview.org/.

http://www.ensight.com/
http://www.ensight.com/
http://www.hp.com/techservers/hpccn/downloads/HP-Compositing-public.pdf
http://www.hp.com/techservers/hpccn/downloads/HP-Compositing-public.pdf
http://www.hp.com/techservers/hpccn/downloads/HP-Compositing-public.pdf
http://www.hp.com/techservers/hpccn/sci_vis/
http://www.hp.com/techservers/hpccn/sci_vis/
http://www.nvidia.com/object/IO_19962.html
http://www.nvidia.com/object/IO_19962.html
http://www.paraview.org/

