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Abstract. Visualizing large unstructured grids is extremely useful to
understand natural and simulated phenomena. However, informative vol-
ume visualization is difficult to achieve efficiently due to the huge amount
of information to process. In this paper, we present a method to efficiently
tessellate on a GPU large unstructured tetrahedral grids made of mil-
lions of cells. This method avoids data redundancy by using textures for
storing most of the needed data; textures are accessed through vertex
texture lookup in the vertex shading unit of modern graphics cards. Re-
sults show that our method is about 2 times faster than the same CPU-
based extraction, and complementary with previous approaches based
on GPU registers: it is less efficient for small grids, but handles millions-
tetrahedra grids in graphics memory, which was impossible with previous
works. Future hardware evolutions are expected to make our approach
much more efficient.

1 Introduction

1.1 Motivations

Visualizing isosurfaces is essential in many different fields of scientific research
like Computational Fluid Dynamics (CFD), finite element modeling and medical
and seismic tomography. These applications often use large unstructured grids
made of millions of tetrahedra. Handling these kind of very large grids without
out-of-core or parallel algorithms using a simple pc leads our approach.

Each cell, in an unstructured tetrahedral mesh, has a constant topology.
Hence, very specialized algorithms for this type of cells have been carried out
using hardware acceleration techniques [1–4]. Unfortunately, these methods in-
troduce sometimes redundancy in the storage method, strongly limiting the size
of the grid or, sometimes, use special non-standard functionalities implemented
on few graphics cards.

We propose a way to efficiently extract an isosurface from a scalar field by
means of modern GPUs for unstructured tetrahedral meshes. Our method han-
dles very large grids made of millions of tetrahedra by means of common GPUs.
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1.2 Previous Work

Isosurface extraction can be optimized by going only through the intersected
cells in the grid, and by accelerating the extraction of the isovalue polygon in
each intersected cell.

When marching through all cells to extract an isosurface, most of the time
is spent checking for non-intersected cells. Therefore, algorithmic acceleration
techniques have been investigated to discard non-intersected cells before ren-
dering them. Contour seeds [5–7] start from seed cells to propagate over the
grid to build the requested isosurface. Interval Trees [8] work on value space to
classify cells within intervals of values. Octrees [9] recursively subdivide space
remembering at each stage the interval of values contained in each subdivision.
Others important algorithmic acceleration techniques exist [10–12] and are very
efficient.

This article is mainly focused on cell tessellation of large grids. Cell tes-
sellation has been extensively studied in the literature for the past 20 years.
The Marching Cubes [13] is one of the first efficient techniques to directly tes-
sellate a hexahedron. Cell projection [14] doing indirect extraction or a tech-
nique that turns around faces [15–17] using topological links between the ver-
tices/faces/edges of each cell, are others basis of art. Our method is inspired by
the Marching Cubes [13], so we now review the main steps of this algorithm.

The Marching Cubes algorithm efficiently tessellates a hexahedron, using
two precomputed lookup tables: the table of edges contains the numbers of the
beginning and ending vertices for each cell edge, and the table of cases contains
all possible configurations of the isosurface to be extracted. A plus (resp. minus)
is attached to each vertex if the value at this vertex is higher (resp. lower) than
the isovalue. Out of the 28 = 256 possible configurations for a hexahedron, the
Marching Cubes method takes into account symmetries to reduce the size of the
table of cases to only 15 entries. Knowing both description tables, extracting an
isosurface from a hexahedron is easy:

• From the current hexahedron configuration, compute the index in the table
of cases as: index =

∑7
i=0 (F (xi) >= w) ∗ (i + 1)2 , where F (xi) is the value

attached to the vertex xi and w the isovalue.
• Read the table of cases at this index to retrieve the list of intersected edges.
• Retrieve the end vertices of each intersected edge using the table of edges,

and compute the intersection with the isosurface by linear interpolation.

The Marching Cubes can be adapted to tetrahedral grids (Marching Tetrahe-
dra), using specific tables of edges and cases for a tetrahedron (Fig1).

Hardware Acceleration Techniques using GPUs. Programmable graph-
ics hardware have opened new perspectives for isosurface extraction. Currently,
due to hardware limitations, the only types of grids that have been hardware-
accelerated for direct isosurface extraction are unstructured tetrahedral meshes
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and regular hexahedral meshes. For regular hexahedral grids, isosurface extrac-
tion can be achieved using pre-integrated volume rendering [18, 19]. These meth-
ods volume-render the whole grid using a Dirac opacity transfer function so that
only one isovalue is rendered. They have a high computational complexity as
compared to polygonal isosurface extraction.

For unstructured tetrahedral meshes, the fastest known GPU hardware ac-
celerated technique was recently introduced by Kipfer et al. [1]. This method is
fast, limits data storage redundancy and processing redundancy. However, this
method uses the SuperBuffers extension only available on some ATI graphics
cards, which are not part of any revision of the Shader Model standard and,
therefore, may disappear from the list of supported features on ATI graphics
cards. Consequently, we decided to base our work on another more general fast
technique shown by Pascucci [2] (also present in other papers [4]). Pascucci pro-
poses a hardware implementation of the Marching Tetrahedra, based on a table
of edges and a table of cases. Its method uses standard features but is only
applicable to small and medium-sized grids (less than one million of tetrahedra
with 256MB of graphics memory; see Figure 4 for details). Our technique is sim-
ilar, with the noticeable difference that we completely avoid data redundancy
by using indirect indexing.

On a GPU, textures are only reachable on the pixel shading unit for graphics
cards supporting Shader Model 2.0, and are reachable in both vertex and pixel
shading units for cards fully supporting Shader Model 3.0. Shader Model 3.0 is
supported by all Nvidia graphics cards of 6th generation and above; ATI does
not currently support this functionality, but claims that its next generation of
products will. Previous approaches [2, 4] use the vertex shading unit to implicitly
extract the isosurface. They send to the GPU four numbered vertices for each
tetrahedron, since an iso-polygon in a tetrahedron contains at most four vertices.
The number of the iso-polygon vertex, the geometry of the tetrahedron vertices
and the corresponding scalar are also streamed to the GPU through variable
registers. Constant GPU registers are used to efficiently store the tables of edges
and cases. For each vertex sent to the vertex shader unit, the Marching Tetrahe-
dra algorithm is applied: compute the entry in the table of cases, find the edge
corresponding to the vertex number (from 0 to 3), seek the extremities of this
edge in the table of edges, compute the intersection with the isosurface, then
move the current vertex to this position. When the iso-polygon is a triangle, the
extra vertex sent is stacked at the same place than the last found intersection,
and hence is ignored by the graphics card.

It is possible to combine this hardware accelerated isosurface extraction with
algorithmic optimization by sending to the GPU only the intersected cells by
using, e.g., an Interval Tree [8], an Octree [9] or a Seed Set [5].

1.3 Contributions

Pascucci’s method is similar to ours, but one of the strongest bottlenecks of
the Pascucci implementation is that sending all required data to the GPU for
each tetrahedron introduces a strong redundancy, since most of the vertices are
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Fig. 1. Tables of cases and edges.

shared between several tetrahedra. The GPU-accelerated method presented in
this paper overcomes these limitations by:

• avoiding data redundancy through shared vertices
• limiting AGP/PCI-Express bus transfers to a minimum
• efficiently storing the whole data inside a texture to improve isosurface ex-

traction performance for large grids
• handling grids made of millions of cells

Moreover, our method also supports both brute force extraction and combination
between GPU tessellation and CPU algorithmic filtering of non-intersected cells
like an Interval Tree, an Octree or a Seed Set. In the next section, we describe
our method to tessellate tetrahedra in very large grids. For this, we use vertex
texture lookup, introduced in the Shader Model 3.0 standard, corresponding to
the Nvidia 6th generation (and above) graphics cards.

2 Our Approach

2.1 Preprocessing

Adapted Data Storage for a GPU. The tables of cases and edges (Figure 1)
are defined during the preprocessing stage. The table of cases is symmetric, so
only the first half of the table must be stored. To handle every possible configu-
ration of the isosurface within a tetrahedron, some edge indexes are duplicated
in the table of cases. This means that the corresponding vertices will be stacked
at the same location and discarded during the real-time rendering stage.

The central question is how to store these two description tables and all re-
quired data to efficiently feed a GPU. Previous approaches [2, 4] send geometry,
values and both tables of edges and cases through GPU registers. These ap-
proaches send for each cell every needed data, and, since most of vertices are
shared between several cells, there is a strong redundancy which consumes a
lot of graphics memory and calls for more RAM/Graphics-RAM transfers than
necessary. Moreover, the whole data is packed in OpenGL vertex arrays or dis-
play lists for efficiency, which are also memory hungry. For a tetrahedral mesh,
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Fig. 2. Texture storage of the tetrahedra, the vertices and the description tables (each
texel obviously contains four indexes).

with Reck et al’s approach [4], size limitation is about 200k cells with a 128MB
graphics card. We propose to push this limit by storing the relevant information
in textures in order to deal with grids made of several million cells.

Our goal is to store every needed data in a texture. Four indexes can be stored
per texel of a texture, one in each RGBA component. As shown in Figure 2, ta-
bles of edges and cases are considered as 1D tables and are stored sequentially.

The following step of texture generation consists in iterating on each vertex
of the grid to pack the corresponding data in a texture. The 3D geometry of the
current vertex is packed in one texel, and so uses three of the four components of
this texel. The remaining component is used to store the scalar value attached
to the vertex. For rendering purposes, one more texel can be used to store a
precomputed gradient.

Similarly, the last step iterates on each tetrahedron to pack the index of its
four vertices in one texel. On the CPU side, each tetrahedron stores its unique
entry in the corresponding texture.

Remark. Using our data storage method (Figure 2), the texture memory usage
is evaluated to one texel per vertex without shading and one more texel per
tetrahedron, plus few texels for the storage of the description tables. For a 128MB
graphics card, a theoretical calculus shows that about 7 million tetrahedra could
be stored on the graphics memory. This theoretical limit is higher than the
practical limit because the graphics memory is not exclusively used for storing
our textures. Nevertheless, current graphics cards commonly board 512MB (up
to 1GB sometimes) of graphics memory. See results section 3 for more details.

2.2 Real-Time Rendering

Overview (Brute-force algorithm)After preprocessing, the isosurface extrac-
tion proceeds as follows:

• Done Once (Step 1)
• Load the texture in the graphics memory
• Load the vertex shading program



6 Luc Buatois, Guillaume Caumon, and Bruno Lévy

• Set the isovalue
• For Each Cell (Step 2, see details below)

• Send current cell index to the GPU
• Send four vertices to the GPU, and implicitly execute the vertex shading

program
• Updating (Step 3)

• Update isovalue and go to Step 2

Sending Vertices to the GPU. The requested vertex number is sent to the
vertex shading program through the position argument of the OpenGL vertex
creation call:
glBegin(GL\_QUAD) ;

glVertex2i(0, 0) ; // sends vertex 0
glVertex2i(1, 1) ; // sends vertex 1
glVertex2i(2, 2) ; // sends vertex 2
glVertex2i(3, 3) ; // sends vertex 3

glEnd() ;

Vertex Shading Program. To code our vertex shading programs, we decided
to use the high level programming language from Nvidia called CG4, which is
compatible with both ATI and Nvidia graphics cards. In this subsection, the
pseudo CG code for extracting an isosurface from a tetrahedron is provided.

First, the algorithm reads the indexes of the vertices of the currently pro-
cessed tetrahedron in the tetra texture ((1) in Fig.2). From these indexes, the
locations and values of the tetrahedron vertices are read in the vertices texture
((2) in Fig.2):
float4 verticesIndex = tex1D ( tetra_texture, index_tetrahedron ) ;
float4 vertex_0 = tex1D ( vertices_texture, verticesIndex.r ) ;
float4 vertex_1 = tex1D ( vertices_texture, verticesIndex.g ) ;
float4 vertex_2 = tex1D ( vertices_texture, verticesIndex.b ) ;
float4 vertex_3 = tex1D ( vertices_texture, verticesIndex.a ) ;
float4 values = float4(vertex_0.a, vertex_1.a, vertex_2.a, vertex_3.a );

where tex1D is a function which performs a 1D texture lookup.
Then, the four vertices are assigned a 1 or a 0 flag depending on the isovalue,

and the index in the table of cases is computed to determine the current con-
figuration:
bool4 tested_vertices = ( values >= isovalue ) ;
int index = dot ( tested_vertices, float4(1,2,4,8) ) ;
// The symmetry of the table of cases is exploited
if ( index >= 8 ) { index = 15 - index } ;

According to the number of the vertex being processed (from 0 to 3, denoted
vertex number), the index of the intersected edge and of its end-points are re-
trieved from the table of cases texture ((3) in Fig.2) and the
table of edges texture ((4) in Fig.2):
int intersected_edge = tex1D(table_of_cases_texture,index*4+vertex_number);
int vertex_index_0 = tex1D(table_of_edges_texture,intersected_edge*2 );
int vertex_index_1 = tex1D(table_of_edges_texture,intersected_edge*2+1 );

The vertex shading program then linearly interpolates the intersection of the
edge with the isosurface, and finally moves the isosurface vertex to this location.

4 http://developer.nvidia.com/object/cg toolkit.html
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Fig. 3. Isosurface rendering of the fluid pressure field in a tetrahedralized geological
model.

Comments. Texture lookup in vertex shader unit is, at this time, relatively
slow. Nvidia’s documentation5 indicates that a Geforce 6800 is theoretically
capable of processing more than 600 million vertices per second. Add to this
bench a vertex texture lookup for each vertex, and the performance falls to
33 million processed vertices per second. This drop of performance is due to
long latencies introduced when a texture lookup is requested. ‘Latency’ means
that vertex shading program could execute some assembly codes which are not
related to the texture lookup (even other texture lookups) while waiting for this
lookup. Therefore, grouping the texture lookups in the vertex shading program
parallelizes texture lookup latencies and optimizes performance.

3 Results & Comparisons

Our algorithm has been tested on several tetrahedral grids used in geological
modeling, made of up to 5 million cells (see for instance Fig.3). All benchmarks
(Fig.4) are done on a laptop with an Intel Centrino 2Ghz processor with 1GB
of RAM and an Nvidia QuadroFX Go 1400 256MB PCI-Express graphics card
(6th generation from this manufacturer). This card has only 3 vertex shading
units, against 8 units in a 7th generation card: using the last 7th generation from
Nvidia would have further increased the differences between the CPU and the
GPU methods. Notice that the desktop equivalent to our testing graphics card
is now a low cost hardware.

Figure 4 presents the number of tessellated tetrahedra per second in a brute-
force algorithm with shading for several grid sizes using different methods: a pure
CPU based, a GPU register based [2, 4] and our GPU texture based extraction
algorithm. The GPU register curve can be split into three parts: below 600K
tetrahedra, the whole grid fits in graphics memory, figuring a constant process-
ing speed of about 6.7 million tetrahedra per second; between 600k tetrahedra
and about 1 million, the grid does not fit in graphics memory and the PCI-
Express bus is used to swap some data with the RAM, resulting in an important
performance drop; for more than one million tetrahedra, both the 256MB of

5 http://developer.nvidia.com/object/using vertex textures.html
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Fig. 4. Number of tetrahedra tessellated per second versus the size of the grid in brute
force mode with shading. GPU(R) denotes GPU method using Registers [2, 4] and
GPU(T) our method using Textures.

graphics memory and the 1GB RAM are fully loaded, and then performance
drops tremendously, since swapping between hard-drive and PC memory is nec-
essary. Pascucci and Reck et al. [2, 4] note that performance drops by a factor
of 10 to 20 with an AGP graphics card when the whole data do not fit in video
memory. They also suggest that using a PCI-Express card may greatly help,
which is confirmed by this work. In our tests, at the limit of a grid counting
1 million tetrahedra, the speed is still near 4 million tetrahedra processed per
second (to compare with about 0.5 million processed per second using an AGP
card). Both CPU and GPU texture-based methods are linear, and our texture-
based method applied to tetrahedra appears to be, on average, twice faster. It
is, hence, slower than the GPU register-based method but only for grids made
of less than 1 million tetrahedra. Above (up to at least 5 million tetrahedra),
our method remains linear. Thanks to these benchmarks, choosing the fastest
method for isosurface extraction can be done automatically depending on the
grid size and the available memory (RAM and graphics memory).

Comments. The results above were obtained using a brute-force grid traver-
sal to prove the efficiency of the compared algorithms. These methods, including
ours, can be combined with algorithms that narrow marching time by previously
discarding non-intersected cells (section 1.2). In this case, the whole texture is
uploaded once to the graphics memory and only the list of indexes correspond-
ing to intersected cells is sent to the graphics card at the rendering stage. For
example, with our approach combined with an Interval Tree [8], we get an ac-
celeration factor of about 4 times on average.

Latencies in accessing textures in the vertex shading unit will soon be im-
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proved, according to manufacturers’ plans for their graphics cards supporting
Shader Models 3.0 and 4.0. These accesses would be as fast as accessing a tex-
ture in the pixel shading unit, so about as fast as accessing a register. Then, our
method would combine the speed of the register based approaches [2, 4] and the
advantages of the texture based storage. Also, most manufacturers6 are consid-
ering the possibility of unifying the vertex and pixel shading units under only
one unique hardware unit. Since the pixel shading unit is much more powerful
than the vertex shading unit, our method would be strongly accelerated by this
evolution. Moreover, these manufacturers will introduce the Geometry Shading
Unit in their next generation of graphics cards, enabling the creation of vertices
within the GPU. This functionality will limit the redundancy of the computation
of the configuration index, and will speed up the extraction process.

4 Conclusion

Our method introduces a hardware-accelerated algorithm to efficiently tessellate
very large unstructured tetrahedral meshes, as used for finite element modeling.
This method overcomes several limitations by using textures to store efficiently
the whole data without introducing redundancies through shared vertices, and
limits the AGP/PCI-Express transfers. Our technique handles grids up to five
million tetrahedra at least, while improving tessellation performance as com-
pared to CPU extraction. Moreover, it supports both brute-force extraction and
extraction after discarding non-intersected cells using, e.g., an Interval tree, an
Octree, a Seed Set, etc...

Future works include studying the extraction of isosurface on strongly het-
erogeneous grids using GPU acceleration; the first step in this direction will
be the support for hexahedral meshes. Moreover, non-linear interpolation in iso-
polygons could be interesting to improve rendering quality. This study could also
be extended to time-varying data, volume-rendering and parallel processing.
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