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Abstract

Digital Geometry Processing recently appeared (in the mid-

dle of the 90’s) as a promising avenue to solve the geomet-

ric modeling problems encountered when manipulating sur-

faces represented by discrete elements (i.e. meshes). Since

a mesh may be considered to be a sampling of a surface -

in other words a signal - the DGP (digital signal process-

ing) formalism was a natural theoretic background for this

discipline (see e.g. [20]). In this discipline, discrete fairing

[13] and mesh parameterization [9] have been two active

research topics these last few years.

In parallel with the evolution of this discipline, acquisi-

tion techniques have made huge advances, and todays meshes

acquired from real objects by range-laser scanners are larger

and larger (30 million triangles is now common). This causes

difficulties when trying to apply DGP tools to these meshes.

The kernel of a DGP algorithm is a numerical method, used

either to solve a linear system, or to minimize a multivariate

function. The Gauss-Seidel iteration and gradient descent

methods used at the early ages of DGP do not scale-up when

applied to huge meshes.

In this presentation, our goal is to give a survey of classic

and more recent numerical methods, to show how they can

be applied to DGP problems, from a theoretic point of view

down to implementation. We will focus on two different

classes of DGP problems (mesh fairing and mesh param-

eterization), show solutions for linear problems, quadratic

problems, and general non-linear problems, with and with-

out constraint. In particular, we give a general formulation

of quadratic problems with reduced degrees of freedom that

can be used as a general framework to solve a wide class of

DGP problems. Our method is implemented in the OpenNL

library, freely available on the web. The presentation will be

illustrated with live demos of the methods.

Keywords: DGP, numerical optimization

1 Introduction

Since the seminal work by Gabriel Taubin [20] in Digital

Geometry Processing, 3D acquisition and processing meth-

ods have made huge advances. As a consequence, the vol-

ume of the data manipulated by these algorithms has grown

by several orders of magnitude. For this reason, it is neces-

sary to replace the Gauss-Seidel iteration and gradient de-

scent methods used at the early ages by more sophisticated

methods. In this paper, we give an overview of efficient

numerical methods. In addition, we introduce a specific

formulation of quadratic problems with reduced degrees of

freedom, that can be used to implement a general frame-

work. This framework can be used to solve a wide class

of DGP problems. We have implemented this idea in the

“OpenNL” library, freely available from our web site[5],

and interfaced with existing efficient solvers (SuperLU[6],

MUMPS[2] and TAUCS[21]).

Before diving into the heart of the matter, we quickly

introduce below two important aspects of Digital Geome-

try Processing, namely mesh parameterization and discrete

fairing, together with some classic numerical problems en-

countered in this area. We will then show different methods

to solve those numerical problems.

1.1 Mesh parameterization

Mesh parameterization is a problem for which the Digi-

tal Geometry Processing have been investing much activ-

ity these last few years. “Curves and Surfaces” geometric

models are represented by parametric functions. This repre-

sentation is useful for many application domains, including

attaching properties to the surface (they can be represented

by 2D data structures in parameter-space), or meshing al-

gorithms. For this reason, methods to obtain a paramet-

ric representation from a mesh model were investigated. In

his pioneering work[9], motivated by a Spline fitting prob-

lem, Michael Floater had the idea to use Tutte’s barycentric

mapping theorem[22] to construct a piecewise linear param-

eterization of a triangulated mesh homeomorphic to a disc.

Tutte’s barycentric theorem states that given a triangulation,

given 2D coordinates ui = (ui, vi) associated with each

vertex i of the triangulation, the following two conditions

are sufficient to ensure that the ui’s define a valid (i.e. non-

overlapping) parameterization:

(1) the boundary is a convex polygon

(2) for all interior vertex i, diui =
∑

j∈Ni

uj

where di denotes the degree (or valence) of vertex i and

where Ni denotes the set of vertices connected to vertex i

by an edge.



Floater’s approach is based on the remark that besides

characterizing a class of valid parameterizations, Tutte’s the-

orem gives a way of constructing a parameterization. One

just needs to distribute the boundary vertices on a convex

polygon, and solve for the (ui, vi)’s of the interior vertices

in condition (2). In practice, this means solving two lin-

ear systems, one for the (ui)’s and the other one for the

(vi)’s. We will review in the next section different methods

to achieve this.

Many papers were then published on the specific topic

of mesh parameterization, relaxing the constraint of using

a fixed convex boundary in parameter space, and minimiz-

ing different deformation criteria, adapted to different ap-

plication domains. The recent survey[10] lists the most sig-

nificant advances in this area. A large category of these

methods ends up with minimizing a quadratic function. For

instance, the discretization of harmonic maps proposed in

[8] means minimizing the following energy functional:

Fharmonic =
∑

(i,j)∈E

ai,j‖ui − uj‖
2 (1)

where the ai,j’s are coefficients that depend on the geom-

etry of the surface. If the ai,j’s are defined by using the

famous cotangent weights proposed by Pinkall and Polthier

in [17], this defines a discrete harmonic energy. This was

later refined by Desbrun et. al in [7], where free bound-

ary conditions were introduced, together with a geometric

interpretation of the gradients.

We simultaneously developed an equivalent method in

[14], taking the dual path of minimizing the conformal en-

ergy of the parameterization, defined by:

Fconformal =
∑

T

AT ‖∇u− rot90(∇v)‖2 (2)

where T denotes a triangle, AT its area in 3D space, and

rot90 a 90 degrees rotation. Both approaches result in a

quadratic objective function to minimize. We will review

and compare different methods in the next section.

1.2 Discrete fairing

Adapting to meshed models all the modeling tools available

with the “Curves and Surfaces” representation is another

challenge of the Digital Geometry Processing discipline. In

“Curves and Surfaces” representations, the geometry is rep-

resented by a set of parametric surfaces. Time and effort

has been devoted to the problem of optimizing the shape

of a surface, by minimizing a “fairness” criterion. Fairness

is often defined using notions from differential geometry

(mean curvature, Gaussian curvature . . . ) or approxima-

tion of physics (thin-plate energy). In general, optimizing

the fairness means solving a Partial Differential Equation

[3]. Adapting this formalism to the case of a discrete mesh

model was an active research area. Kobbelt coined the term

discrete fairing in [13] to qualify this family of approaches.

In the context of this paper, we will use as an example the

formulation given in [16] of the Discrete Fairing problem:

Fsmooth =
∑

i

‖dipi −
∑

j∈Ni

pj‖
2 (3)

where pi = (xi, yi, zi) denote the coordinates at the ver-

tices of the triangulation and di the degree of vertex i.

As in the previous subsection, the energy functional

Fsmooth is a quadratic function of the variables. In the next

section, we will review different numerical algorithms to

minimize this energy functional.

2 Numerical methods

In all the DGP methods listed in the section above (Floater’s

parameterization method, harmonic parameterization, con-

formal parameterization and discrete fairing), we need ei-

ther to solve a linear system or to minimize a quadratic ob-

jective function. A specificity of the numerical problems

yielded in DGP is that the involved matrices are usually

sparse. As a consequence, we will first explain how to ef-

ficiently implement a data structure for sparse matrices. To

make user’s life easier, we will propose an implementation

that can dynamically grow when coefficients are added to

the matrix. A C++ version of this implementation is given

in Appendix A, based on the std::vector data struc-

ture. This data structure is available in our Graphite soft-

ware. We also provide a C version in OpenNL[5]. Note

that this data structure can be easily extended. Our C++

and C implementations also provide the following features

(not detailed in the implementation given in the appendix to

keep its length reasonable):

1. storage of the diagonal term

2. storage of both sparse rows and columns

3. symmetric storage (i.e., do not store the upper triangle

for symmetric matrices)

4. non-square matrices

5. matrix × matrix multiply

Features (1) and (2) are interresting for implementing

Jacobi preconditioner (requires 1) or SSOR preconditioner

(requires 1+2). Feature (3) speeds up the conjugate gradient

algorithm (but requires some modification in the matrix ×
vector routine). Features (4) and (5) can be used by more

sophisticated non-linear solvers (such as our ABF++ algo-

rithm [19]).

2.1 Linear systems

We will review different methods, including the classic Gauss-

Seidel optimization, the Conjugate Gradient algorithm, pre-

conditioners (see e.g., [1]) and sophisticated sparse direct

methods, such as SuperLU[6], MUMPS[2] and TAUCS[21].

We will show how to implement and/or use these meth-

ods, and how they behave for problems ranging from sev-

eral thousand variables to millions of variables. Basically,

implementing an iterative solver (like the Conjugate Gra-

dient algorithm) only requires efficient matrix-vector mul-

tiplies. An implementation is proposed in Appendix A. If

we want to benefit from both the flexibility of our dynami-

cally growing sparse matrix data structure and the efficiency

of a sparse direct solver (MUMPS, TAUCS), it is neces-

sary to convert the dynamic sparse matrix into the more

standard CCS representation (compressed column storage).



The CCS representation cannot handle dynamically grow-

ing matrices. As in our case, it is based on storing only the

non-zero entries of the matrix, in an array a of dimension

nnz (number of non-zero coefficients). To represent the

sparsity pattern of the matrix, this array is complemented

with two arrays of indices. In a nutshell, the CCS represen-

tation is as follows:

• a (of size nnz), coefficients of the matrix

• row_ind (of size nnz): row_ind[i] corresponds

to the row index of a[i]

• col_ptr (of size n+1): col_ptr[i] indicates the

index in a from which the coefficients of column i

are stored. By convention, col_ptr[n] = nnz

The conversion algorithm is trivial (see Appendix B),

and for a reasonably large system, it requires only a negligi-

ble time as compared to the time spent in the solver. Using

the dynamic sparse matrix data structure (Appendix A), it is

easy to dynamically construct a linear system from a DGP

equation and a mesh, by traversing the mesh and adding

the terms to the matrix. Using the conversion routine (Ap-

pendix B), our dynamic sparse matrix data structure can be

interfaced with a large number of existing solvers. Note:

when interfacing with FORTRAN and other third-party rou-

tines, one needs to take care about the array indexing con-

version (0 . . . n − 1 in C and 1 . . . n in Fortran) and setting

the array_base parameter in consequence. The indexing

convention is most of the time indicated in the documenta-

tion of the routine.

2.2 Quadratic minimization

In this section, we consider the problem of minimizing a

quadratic form F given by

F (x) = ‖Ax− b‖2

where x is the vector of unknowns (of dimension n), A is

a m × n matrix (m is usually larger than n), and b is a

vector of dimension m. Note that in DGP, we commonly

need to fix some variables. For instance, in discrete fair-

ing, it is common to consider that some of the vertices are

fixed, and that the other vertices are free to move. For this

reason, we consider the possibility of removing degrees of

freedom from F . Formally, this means that the vector x of

unknowns is decomposed into two sub-vectors, xf and xl,

where xf denotes the set of variables that are f ree to move,

and where xl denotes the set of locked variables. The en-

ergy functional then becomes (in block matrix notation):

F (xf ) =

∥

∥

∥

∥

[Af |Al]

[

xf

xl

]

− b

∥

∥

∥

∥

2

where A is split into Af and Al according to xf and xl.

Note that the energy functionals minimized in harmonic

parameterization (Equation 1), conformal parameterization

(Equation 2) and discrete fairing (Equation 3) are a spe-

cific instance of this equation. The minimizer of F (xf )
satisfies ∇F (xf ) = 0, where ∇F (xf ) = 2At

fAfxf −

2At
fb + 2At

fAlxl. In other words, finding the minimizer

xf of F (xf ) means solving the following linear system:

Mxf = c

where:







M = At
fAf

c = At
fb−At

fAlxl

(4)

As a consequence, we are again faced with a linear sys-

tem to solve. A particularity is that the matrix At
fAf is sym-

metric, which enables us to use methods optimized for sym-

metric matrices (conjugate gradient and sparse cholesky fac-

torization). We will show some results and statistics of

those methods applied to parameterization and mesh fair-

ing problems.

Note that in both harmonic parameterization, conformal

parameterization and discrete fairing, it is easier to con-

struct the matrix A and the right-hand side b in a row-by-

row order:

• In harmonic parameterization and discrete fairing, each

vertex yields one row in A and b.

• In conformal parameterization, each triangle yields one

row in A and b.

Generally, all DGP methods minimize an expression, in-

volving terms attached to all the vertices (or edges, or trian-

gles) of the mesh. These terms (also called stencils in the

finite elements community) involve small neighborhoods of

the vertices, edges or triangles. Therefore, constructing the

expressions involved in the numerical optimization process

means traversing all the vertices (or edges, or triangles) of

the mesh. This gives the coefficients of the the matrix A and

the right hand side b in row-major order. Based on this re-

mark, to facilitate the implementation of these methods, we

show how to incrementally compute the terms of the prob-

lem with reduced degrees of freedom (Equation 4).

From a practical point of view, this gives a unified frame-

work to implement various parameterization and mesh fair-

ing methods that we will demonstrate. These concepts are

implemented in our “OpenNL” library, with a syntax sim-

ilar to the OpenGL graphics library: the lines of A and b

are simply constructed by calling sequences of functions

nlBegin(), nlAddCoefficient(i,a), . . . , nlEnd().

Our algorithm automatically updates the matrix M = At
fAf

and the right hand side c = At
fb − At

fAlxl for each row k

of A and b. They are updated by applying the following

scheme (simply yielded by ordering the terms of the linear

system by the index k):

for i from 1 to nf

for j from 1 to nf

mi,j ← mi,j + ak,i × ak,j

end for

end for

S ← −bk

for j from nf + 1 to nf + nl

S ← S + ak,j × xj

end for

for i from 1 to nf

ci ← ci − ak,i × S

end for



Note that the updating formula depends on the locked

variables xnf+1 . . . xnf+nl. In practice, to reduce computa-

tions, we only store the non-zero entries of the row ak,. (to-

gether with the corresponding indices). This formulation,

combined with our dynamically growing sparse data struc-

ture (Appendix A), is especially convenient to construct the

type of linear system mentioned above. Our OpenNL li-

brary is freely available on the web [5]. OpenNL was suc-

cessfully integrated in the Blender 3D modeler, and used

to implement texture atlas generation tools based on our

LSCM method. We will show in the presentation how to

easily implement various parameterization and fairing al-

gorithms based on this framework.

2.3 Non-linear minimization

However, some numerical methods do not fall into the two

categories above (i.e. linear systems and quadratic energy

functionals). For instance, Hormann et. al’s MIPS parame-

terization method [12] is based on a non-linear energy func-

tional. The energy minimized by the ABF method [18] is

quadratic, but the introduction of constraints required by the

method transforms it into a non-linear function. More re-

cent works, such as the Discrete Willmore Flow [4] also

involve the minimization of a non-linear function.

A possible strategy is to use a simple gradient descent

method, and apply it in a multi-resolution setting. This was

successfully applied to MIPS by Hormann. However, it

is difficult to tune the different parameters involved in the

process (i.e. metric used by the mutliresolution algorithm,

number of levels, number of iterations per level . . . ). An-

other possible alternative is to use Newton’s method, de-

fined as follows:

while ‖∇F (x)‖ > ǫ

solve ∇2F (x)δ = −∇F (x)
x← x + δ

end

(5)

As can be seen, this means solving a series of linear

systems. We will show in the presentation some examples

of Newton’s method applied to simple and more compli-

cated cases. We will show how we successfully applied

this method in [19] together with several optimization tech-

niques (Schur complement) to parameterize meshes of mil-

lions vertices.

Conclusion and Perspectives

We have given a quick overview of numerical methods, from

an insider’s perspective instead of considering them as black

boxes. The sparse matrix implementation given in Appendix

A is fully functional (with only 58 lines of source code), and

can solve problems with thousands of unknowns (by adding

the corresponding conjugate gradient routine, i.e. a hand-

full of C++ lines). To solve larger problems (up to million

variables), interested readers can download our freely avail-

able implementation. In addition, our formulation of least

squares problem facilitates the implementation and experi-

mentation of new DGP algorithms.

With this project, one of our goals was to experiment

with the futurist programming philosophy [11] and produce

a programming library useful to a wider community than

the DGP research community. The result of this experiment

is OpenNL [5], a minimalist numerical library. In less than

6000 lines of portable C, it is possible to efficiently solve

large sparse linear systems and minimize quadratic forms

with reduced degrees of freedom. The usability goal was

reached, since OpenNL was integrated into the widely used

3D modeler Blender in less than two weeks (by Brecht Van

Lommel and Jens Ole Wund).

We will conclude the talk by giving some perspectives

about future works. More specifically, we will mention a

new class of functional optimization problems where both

the coefficients and function bases are unknowns. We will

also mention research in mixed symbolic/numeric solvers,

and show early results in this area.

Acknowledgments

Thanks to the EU Network of Excellence AIM@Shape (IST

NoE No 506766) and to the ARC GEOREP (INRIA grant)

for supporting this work. Thanks to Brecht Van Lommel

and Jens Ole Wund for their fantastic work in Blender (they

implemented LSCM unwrapping based on OpenNL, see [15]).

A Sparse Matrix Data Structure

class SparseMatrix {

public:

struct Coeff {

Coeff() { }

Coeff(unsigned int i, double val) : index(i), a(val) { }

unsigned int index ;

double a ;

} ;

class Column : public std::vector<Coeff> {

public:

void add(unsigned int index, double val) {

for(unsigned int i=0; i<size(); i++) {

if((*this)[i].index == index) {

(*this)[i].a += val ;

return ;

}

}

std::vector<Coeff>::push_back(Coeff(index, val)) ;

}

} ;

SparseMatrix(unsigned int dim) : dimension(dim) {

column = new Column[dim] ;

}

˜SparseMatrix() { delete[] column; }

// aij <- aij + val

void add(unsigned int i, unsigned int j, double val) {

column[j].add(i, val) ;

}

// A <- 0

void clear() {

for(unsigned int j=0; j<dimension; j++) {

column[j].clear() ;

}

}

// y <- Ax

void mul(double* x, double * y) {

for(unsigned int i=0; i<dimension; i++) {

y[i] = 0 ;

}

for(unsigned int j=0; j<dimension; j++) {

const Column& C = column[j] ;

for(unsigned int i=0; i<column[j].size(); i++) {

y[ C[i].index ] += C[i].a * x[j] ;

}

}

}

// number of non-zero coefficients

unsigned int nnz() const {

unsigned int result = 0 ;

for(unsigned int i=0; i<dimension; i++) {

result += column[i].size() ;

}

return result ;

}

unsigned int dimension ;

Column* column ;

} ;



B Converting to CCS format

void to_CCS(

const SparseMatrix& M,

double*& a, unsigned int*& row_ind, unsigned int*& col_ptr,

unsigned int array_base = 0

) {

unsigned int n = M.dimension ;

unsigned int nnz = M.nnz() ;

a = new double[nnz] ;

row_ind = new unsigned int[nnz] ;

col_ptr = new unsigned int[n+1] ;

unsigned int count = 0 ;

for(unsigned int j=0; j<n; j++) {

const SparseMatrix::Column& C = M.column[j] ;

row_ptr[j] = count + array_base ;

for(unsigned int i=0; i<C.size(); i++) {

a[count] = C[i].a ;

row_ind[count] = C[i].index + array_base ;

count++ ;

}

}

col_ptr[n] = nnz + array_base ;

}
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