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Abstract
We present Ardeco, a new algorithm for image abstraction and conversion from bitmap images into vector graph-
ics. Given a bitmap image, our algorithm automatically computes the set of vector primitives and gradients that
best approximates the image. In addition, more details can be generated in user-selected important regions, de-
fined from eye-tracking data or from an importance map painted by the user. Our algorithm is based on a new
two-level variational parametric segmentation algorithm, minimizing Mumford and Shah’s energy and operating
on an intermediate triangulation, well adapted to the features of the image.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation
; I.4.10 [Image Processing and Computer Vision]: Image Representation Hierarchical

1. Introduction

With the development of standards like Flash or SVG, vector
graphics is more and more used on the Internet. This trend
is going to accelerate even more in a near future, since new
operating systems such as Windows Vista and Mac OS Tiger
will use them to draw most components of their graphic user
interface. By replacing the set of pixels used in raster im-
ages with a set of equations, vector images are usually more
compact than bitmaps. A more important motivation to use
them is the constant increase of screen resolution. With high-
definition TV, 1920 x 1200 pixel is becoming the standard.
Printing on large media without introducing pixel artifacts
is another important motivation. For those reasons, it is use-
ful to use a resolution-independent representation of images.
Another interesting property of vector image is that it is very
easy to edit, modify and animate them.

† {lecot|levy}@loria.fr

Figure 1: A: original bitmap; B: vector approximation (8
primitives with linear gradients); C: the primitives.

However, despite the existing semi-automatic tools (e.g. Sil-
houette and Vector Eye), producing a vector image remains
a user-intensive process, similar to 2D Computer Aided De-
sign. Our goal is to automatically produce a vector image
(e.g. in SVG) from a bitmap image. This is typically a diffi-
cult image abstraction [Hae90] and non-photorealistic ren-
dering [GG01], [Her01], [GCS02], [CRH05] problem. The
main difficulty comes from the highly constrained nature
of the target representation, that uses linear and quadratic
gradients to represent colors. As a consequence, not only
the algorithm needs to detect boundaries in the initial im-
age, but also it needs to approximate complex color varia-
tions by combining several gradients. Figure 1 gives an in-
tuition of the problem: the algorithm needs to both detect
the boundary of the sphere and organize the linear gradi-
ents inside it to reproduce the shading variations. To achieve
this, as done in [Her01] and [CRH05], we generate primi-
tives in a way that minimizes an objective function. In con-
trast with [Her01], that distributes a large number of brush
strokes over the image, we generate regions filled with lin-
ear or quadratic gradients. Note that our fully automatic al-
gorithm may be “blind” to human-specific saliency, such as
the eyes of characters. For this reason, we include the pos-
sibility of taking user-defined importance into account. This
importance map can be manually drawn, or acquired by an
eye tracker.
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Contributions

� Our method creates a vector image that approximates a
bitmap image. The so-constructed vector image is com-
posed of a set of regions delimited by cubic splines. Each
region is filled with a constant color, a linear or a circu-
lar gradient. In addition, user-defined importance can be
taken into account;

� The kernel of the algorithm is a novel unsupervised para-
metric segmentation method, that recognizes higher-order
gradients in the original image. Therefore, subtle shading
details and highlights can be reproduced in the vector im-
age;

� To accelerate convergence, we introduce an intermediate
“trixel” data structure, storing pre-integrated covariance
matrices;

� These trixels are computed by a generic rasterization al-
gorithm, that efficiently and accurately computes integrals
over an image, it is more efficient by several orders of
magnitude as compared to [Sec02];

� Ardeco uses simple parameters (maximum number of
trixels and maximum approximation error) ;

� It minimizes Mumford and Shah’s functional by gener-
alizing Variational Shape Approximation to higher-order
functions, robust estimators and pre-integrated covariance
matrices;

� Limitations: Ardeco is slower than existing vectorization
software (minutes instead of seconds). This may be the
price to pay for higher-order gradients. It is also not as
texture-resistant as supervised segmenters.

2. Previous Work

Image abstraction and stylizing

By the type of primitives it uses (shapes filled with constant
colors or gradients), vector graphics favors expressing im-
ages using a very specific graphics style. For instance, web
surfers are familiar with the specific look-and-feel of web
sites designed with Flash. This style is similar to the “art
deco” painting movement of the 1920’s (see e.g. Figure 2-
A), using geometric shapes and simple color gradients. Since
the “painting style” of the original image will be modified
by the way important primitives are chosen and unimpor-
tant details are ignored, our method belongs to the image
abstraction and to the non-photorealistic rendering domain.
Image abstraction was made popular by Haeberli’s “paint-
ing by number” paper [Hae90]. Besides Haeberli’s play on
words, the result of our method is very similar to the original
“painting by number” play sets (see Figure 2-C and Figure
11 at the end of the paper). In a certain sense, when repro-
ducing an image, our method will operate as an artist would
do, by decomposing the image into a set of simple primi-
tives. Perception theory is a key aspect in image abstraction
and stylization. An abstract image should put to the fore im-
portant features, and make the structure of the image clearly

appear to the reader. De Carlo et. al have presented in [DS02]
a method for revealing this structure, by stylizing an im-
age based on importance acquired from an eye-tracker. This
shares some common points with our work, with the excep-
tion that we produce vector images and that our algorithm
can recognize higher-order gradients. Our algorithm applied
to De Carlo’s images and taking into account his eye-tracker
data is demonstrated in Section 5. A similar video tooning
method was presented in [WXSC04], based on the mean-
shift segmentation algorithm with an anisotropic kernel. The
mean-shift algorithm is discussed in the next paragraph.

Segmentation

The kernel of our method is a segmentation algorithm, which
is a research topic for which much time and effort has been
devoted. A complete review of all the possible methods
would be well beyond the scope of this paper, for this rea-
son, we focus only on the most popular ones and on the ones
related with our method. Computing a segmentation of an
image means partitioning it into a set of regions (also called
segments), with uniform visual aspect. By “uniform”, differ-
ent methods mean different definitions, ranging from low-
level properties (e.g. color) to higher-level properties and vi-
sual cues from Gestalt and perception theory (e.g. texture).
Mumford and Shah’s functional [MS85] give a general for-
mulation, used by a wide variety of methods. As explained
in Section 3, our method minimizes an expression of this
energy.

Segmentation methods can be classified in different ways.
First, one distinguishes supervised methods, that use a train-
ing set segmented by human users to “learn” what a “good”
segmentation is (see e.g. [MFTM01]). Unsupervised meth-
ods solely use a mathematical definition of uniformity for
the regions. Our method belongs to this latter category. Sec-
ond, in parametric methods, regions are represented by a
set of coefficients (e.g., coordinates within a certain func-
tion basis), whereas non-parametric ones do not use any
underlying model function. Since our target vector rep-
resentation is composed of well-specified functions (i.e.
SVG/Flash/Postscript gradients), our method belongs to the
parametric category.

Then, two orthogonal families of methods can be distin-
guished, in function of what they try to optimize (boundaries
or regions):

Boundaries optimization: To optimize the boundaries, one
of the possibilities is to recast the problem as a classi-
cal min-cut/max-flow problem, well known in graph theory.
This family of methods is very popular in texture synthesis
(see e.g. [KSE∗05]). Graph-cut was also used to construct
an intermediate “super-pixels” data structure in [RM03],
used later in [HEH05] for 3D model popup from photos.
Our method also uses an intermediate data structure and a
two-level algorithm. The differences with super-pixels are
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Figure 2: The principal steps of Ardeco to convert a bitmap image into vector primitives. A: original image; B: saliency
estimation; C: saliency-adapted triangulation (trixels) and partition into regions; D: final result (240 cubic splines filled with
gradients)

discussed in Section 3.2. The SVG community also de-
velopped algorithms based on an intermediate triangula-
tion [BBNG05], similar to ours. The main difference is that
they perform local updates, whereas we minimize a well-
defined global energy functional. The boundary can also be
represented in parametric form, by the so-called “Snakes”
[KWT88], and optimized by an adpated expression of Mum-
ford and Shah’s functional. The main limitation with snakes
is that it is difficult to change the topology of the boundaries.
To relax this constraint, the boundary can also be represented
and optimized in implicit form (see e.g. [OF01]).

Regions optimization: Giving a formal definition of
“good” segmentations is a difficult task, involving high level
notions from perception theory. Some methods learn these
notions from human-segmented data bases [RM03]. Another
possibility is to use variational approaches. In this latter cat-
egory, the mean shift method [CM99] is one of the most pop-
ular. Its efficiency comes from the generality of the underly-
ing principle. The idea is to optimize an objective function
of all the pixel values in feature space, defined so that its
minimizer has constant values over the regions. To exhibit
such an objective function that detects the most significant
regions, the mean shift approach characterizes the local max-
ima of the density function in feature space, acting as attrac-
tors during the optimization process. This density function
is defined from the discrete set of samples, smoothed by a
density estimator. To improve the results, some refinements
of the method were described, such as using an anisotropic
kernel for the density estimator [WTXC04]. It still requires
some bandwidth parameters, but better adapts to the signal.
Our method will be compared to mean shift in Section 5.
The main differences are that our method is parametric, does
not require any bandwidth parameter and recognizes higher-

order gradients. In the context of mesh segmentation, the
VSA method (Variational Shape Approximation) described
in [CSAD04] finds the plane equations that best approximate
the initial mesh. VSA and its relations with our method are
discussed in more details in Section 3.1.

3. Ardeco

Our goal is to automatically produce from a given bitmap
image the set of vector primitives that best approximates
the original image. In other words, we want to translate
the image from the “language” of bitmap images (i.e., in
terms of pixels) into the “language” of vector graphics (i.e.,
in terms of vector primitives). Those vector primitives are
closed regions, bordered by cubic splines, and filled with
a constant, linear or quadratic variation of color (all possi-
ble circular gradients and their linear transformations used
in vector graphics corresponds to a quadratic function). We
will first introduce the pixel-based version of the algorithm
(Section 3.1), then explain how to accelerate the algorithm
by constructing an intermediate “trixel” data structure (Sec-
tion 3.2) and using it (Section 3.3). The post-processing al-
gorithms used to produce a standard vector file (e.g. SVG)
from our vector representation are described in Section 4.
We show some results in Section 5 before concluding and
giving some suggestions for future work.

3.1. Pixel-based algorithm

Using a particular color space (in our case, Luv and YIQ
give the best results), we now consider an individual chan-
nel. We will explain later how to combine the three chan-
nels. For a given channel, let g(x,y) represent the inten-
sity level at a given pixel (x,y). The image will be parti-
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tioned into a set of n regions Ri, and intensity will be ap-
proximated in each region using a linear combination of
basis functions (φ) = (φ1,φ2 . . .φm). For instance, for lin-
ear gradients, (φ) = (1,x,y), for quadratic gradients, (φ) =
(1,x,y,x2,xy,y2), and for constant colors, (φ) = (1). In the
generated vector image, the intensity fi(x,y) in region Ri
will be given by a linear combination of the basis functions:
fi(x,y) = ∑

m
j=1 αi, jφ j(x,y).

Following the formalism described by Mumford and Shah
[MS85], we aim at satisfying the three objectives they have
formalized in their seminal paper:

� fitting: we will minimize a norm of the approximation
error;

� smoothness of the regions: the constant, linear or
quadratic functions that we use already satisfy this cri-
terion;

� minimal boundary length: we use a variation of Lloyd’s
algorithm that partitions a given space into compact cells.

Given a set of n points p = (p1, . . . pn), referred to as sites,
Lloyd’s algorithm [Llo57] constructs a partition of the plane,
defined by the Voronoi diagram of the sites (pi), and mini-
mizing the following energy functional:

FLloyd(p) =
n

∑
i=1

∫
Ri

∥∥∥∥pi−
(

x
y

)∥∥∥∥2

dxdy

Note that the compactness of the cells also means that the
length of the boundary is minimal. As a consequence, this
energy corresponds to the boundary term of Mumford and
Shah’s objective function. We now study how to inject the
fitting term in it.

Our goal is to partition the original image into a set of re-
gions Ri, and compute in each region Ri a function fi that
best approximates the image function g. To simultaneously
find the regions Ri and the coefficients αi, j that define the
functions fi, we use a variation of Lloyd’s formulation, sim-
ilar to the one used by Cohen-Steiner et. al. in their VSA
(Variational Shape Approximation) method [CSAD04], and
including a fitting term. We generalize the VSA method in
different ways, well adapted to our image-processing set-
ting:

� we use higher-order functions fi (or “proxies” in VSA
parlance);

� VSA minimizes a quadratic deviation, that may be sen-
sitive to outliers, frequently encountered in image pro-
cessing. To be resistant to outliers, we use a robust M-
estimator to compute the parameters αi, j of the functions
fi;

� we keep the cells-compactness term in the energy func-
tional. This corresponds to Mumford and Shah’s bound-
ary length term;

Figure 3: Influence of the parameter λ , weighting the cells
compactness criterion. From left to right: λ = 0 uses the fit-
ting term alone; λ = 0.75 constructs compact cells aligned
with the features; λ = 1 ignores the fitting term and con-
structs a Voronoi tessellation.

� to improve efficiency, we will introduce a two-level al-
gorithm, with an intermediate “trixel” data structure, that
stores pre-integrated covariance matrices for a triangular
group of pixels.

We find the optimum partition and approximation in each re-
gion of the partition simultaneously, by minimizing the en-
ergy functional given in Equation 1:

F(α,p) = λFLloyd(p)+(1−λ )Ff it(α) (1)

In this energy functional, as usually done with methods de-
rived from Mumford and Shah’s formulation, the parame-
ter λ ∈ [0,1] corresponds to the user defined importance of
boundary length with respect to fitting the data. Figure 3
shows the influence of the parameter λ .

The fitting term Ff it(α) is given by Equation 2:

Ff it(α) =
n
∑

i=1

∫
Ri

ρ (ri(x,y))dxdy

where:


ri(x,y) = g(x,y)− fi(x,y)

= g(x,y)−∑ j αi, jφ j(x,y)

ρ(r) = |r|ν/ν ; ν = 1.2

(2)

The function ρ defines an M-estimator, resistant to outliers
(see e.g., [Zha96]). Note that if using ρ(r) = r2 instead, F
degenerates to the standard least-squares fitting. A family
of possible M-estimators exists, in our case we use the Lp
norm, that gives the best result (we also tried L1L2, “fair”
and Huber’s M-estimators [Hub81] that gave similar results
but were either less efficient or less stable).

We first explain the basic algorithm, operating at the pixel
level. We will then introduce the more efficient trixel-based
algorithm (Section 3.2). Our algorithm computes a label im-
age region(x,y) and the coefficients (αi,1, . . .αi,m) defining
the approximation fi in each region (see Figure 4, next page).
The algorithm is decomposed into two steps, applied repeat-
edly in an interleaved manner, until the approximation error
reaches a user-defined threshold.
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Figure 4: Segmentations and image approximations obtained with the pixel-based Ardeco algorithm, using regions of degree 0,
1 and 2.

The first step (Algorithm 1) greedily grows regions pixel by
pixel, with a priority dependent on the fitting and on the com-
pactness of the cell. The integer 2D array region(x,y) stores
the region labels.

Algorithm 1 : flood_fill()

S : priority queue < (x,y), i,cost > sorted by cost
// initialize S with the sites
for i = 1 to n { push(S,(xi,yi), i,0) } end for
// grow the regions
while not S is empty

(x,y), i,cost← pop(S)
if region(x,y) = 0

region(x,y)← i
for each neighbor (x′,y′) of (x,y)

if region(x′,y′) = 0
cost← λ

∥∥(x′,y′)t − pi
∥∥2 +(1−λ )ρ

(
ri(x′,y′)

)
push(S,(x′,y′), i,cost)

end if
end for

end if
end while

The second step (Algorithm 2) updates both the sites pi and
the parameters αi, j that define the functions fi.

Algorithm 2 : update_sites_and_fit()

for i = 1 to n
// update the fitting

(αi,1, . . .αi,m)← argmin
∫

x,y∈Ri
w(r(k−1)

i (x,y)))r2
i (x,y)dxdy

// update the sites
(xi,yi)← argminx,y∈Ri

(ρ (g(x,y)− fi(x,y)))
end for

In this algorithm, ri(x,y) = fi(x,y)− g(x,y) denotes the
residual at the current iteration, depending on the unknown
αi, j parameters. The function r(k−1)

i = f (k−1)
i (x,y)−g(x,y)

denotes the residual at the previous iteration, and w(x) =
ρ ′(x)/x denotes the weighting function of the M-estimator

yielded by ρ . In more details, the parameters (αi,1, . . .αi,m)
are updated by solving the linear system given Equation 3.

Ai
(
αi,1, . . . ,αi,m

)t = bi where:
Ai =

∫
Ri

w
(

r(k−1)
i (x,y)

)
Φ(x,y)Φt(x,y)dxdy

bi =
∫
Ri

w
(

r(k−1)
i (x,y)

)
g(x,y)Φ(x,y)dxdy

Φ(x,y) = (φ1(x,y), . . .φm(x,y))t

(3)

Equation 3 corresponds to the standard way of re-casting
the computation of an M-estimator in terms of a sequen-
tial reweighted quadratic optimization (a variant of New-
ton’s method to optimize a non-linear function). For the Lp
norm, the w weighting function is given by w(r) = |r|ν−2 =
1/|r|0.8. As can be easily checked, the weighting function
w quickly decreases with the value of the residual r, which
means the importance of outliers is reduced. To initialize the
estimator at the first iteration, we use the solution of the
least-squares problem. Note that the dimension of the lin-
ear systems to be solved at each iteration corresponds to the
dimension of the function basis (φ), which means simple di-
rect solvers can be used. In our implementation, we use the
Cholesky factorization with pivoting available in LAPACK.
In the specific case of constant colors, we simply use the me-
dian instead of the M-estimator. The median is more robust
(i.e. less sensitive to outliers), but more computationally in-
tensive, since it requires sorting the samples in each region.

Putting everything together gives Algorithm 3, that creates
regions one by one and optimizes them until convergence is
reached. The parameter ε is the user-defined maximum ap-
proximation error. At each iteration, a new region is created
around the pixel with maximum approximation error. Then,
n_inner_iter iterations (5 in our experiments) of our gener-
alized Lloyd relaxation are applied.

Adapting the algorithm to color images requires small mod-
ifications: first, each channel (L,u,v) has its own associated
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Algorithm 3 : ardeco()

while ∑i
∫

Ri
‖( f − fi)(x,y)‖2dxdy > ε

create new region from worst pixel
for k in 1 . . .n_inner_iter

flood_fill()
update_seeds_and_fit()

end for
end while

function basis (φ)L, (φ)u, (φ)v. Then, all operations are sep-
arated for each component, except in the region-growing al-
gorithm, in which the cost variable is obtained by summing
the contributions of L, u,v.

Figure 4 shows the result of our algorithm. The main lim-
itation of this method is the speed of convergence. For a
1024×1024 image, the algorithm did not converge after 30
minutes. As done in [RM03], to speed-up the algorithm, we
introduce a higher-level data structure. We will construct a
triangulation of the image, well adapted to the discontinu-
ities. The facets of this triangulation define groups of pix-
els, that will be called trixels in what follows. Section 3.2
explains how to construct this triangulation, and Section 3.3
shows how to use it to define the two-level Ardeco algorithm.

3.2. Constructing the Trixels

To accelerate the algorithm, we introduce an intermediate
trixel data structure, that partitions the image into a set of
triangles. In the subsequent variational segmentation step,
each trixel will become indissociable: the final regions will
be defined as groups of trixels. For this reason, the trixels
need to be smaller in zones rich in details, and their edges
need to be aligned with the discontinuities of the image.

The super-pixel approach developed in [RM03] also uses
an intermediate data structure. The main difference is that
we use a CVT (centroidal Voronoi tessellation) steered by
an image saliency map instead of the graph-cut algorithm
they use. This has the following two consequences: first,
as shown further, since the trixels are triangles, some inte-
gral computations required by our algorithm can be made

Figure 5: Constructing the intermediate “trixel” data struc-
ture. User-defined importance map (right part of the char-
acter), saliency map and resulting trixels, adapted to both
maps.

simpler by using quadratures. Second, corners of the orig-
inal images can be easily constrained to appear as vertices
in the CVT, which ensures they will be preserved in the fi-
nal segmentation. Centroidal Voronoi Tesselations were ap-
plied in [Sec02] to image stiplling. Our algorithm is subpixel
exact and more efficient with several orders of magnitude
(our algorithm computes 20000 exact weighted barycenters
per second, therefore takes 15 seconds to stipple an image,
whereas [Sec02] takes 20 minutes).

We first compute an image saliency map s(x,y). We exper-
imented different methods, including Canny edge detectors
and curvature approximants. Finally, the simple “compass”
filter with Sobel’s weight [RT01] used in [MZD05] gives
satisfying results and is trivial to implement. The result of
a corner detector is then inserted in this map, by giving a
high importance (s(x,y) = 10000) to the pixels x,y tagged
as corners. In our specific case, false positives are not a real
problem (they will only artificially densify the CVT where
they appear). For this reason, the SUSAN algorithm [SB97]
with a low acceptance threshold (threshold = 20) gives sat-
isfying results. Note that since the saliency map is integrated
over larger regions in subsequent steps of the algorithms, we
do not need using saliency estimators based on global quan-
tities or large neighborhoods.

Then, we compute a CVT steered by the saliency map s(x,y),
using Lloyd’s relaxation. Given a set of vertices (vi) (initially
located at random locations), Lloyd’s relaxation optimizes
the compactness of the cells, by iteratively relocating each
vertex to the barycenter of its Voronoi cell (Algorithm 4).

Algorithm 4 : Lloyd_relax()

for each vertex vi

v(k+1)
i ←

∫
Di

s(x,y)

(
x
y

)
dxdy /

∫
Di

s(x,y)dxdy

end for
update Delaunay triangulation

In this algorithm, v(k+1)
i denotes the location of vertex i at the

next iteration, and Di denotes the Voronoi cell of the vertex
vi. The uniform barycenters of the original Lloyd relaxation
are replaced with barycenters weighted by the saliency map
s(x,y). To compute the Delaunay triangulation, we use the
CGAL library [FGK∗00]. The main remaining difficulty is
to evaluate the integrals of the saliency map s(x,y) over the
Voronoi cells Di. To deal with this issue, we have designed
a sub-pixel accurate generic rasterizer (Appendix A).

At this point, it is possible to simply generate
max_nb_vertices vertices at random locations then use
Lloyd’s relaxation to optimize them. However, it is more ef-
ficient to process in a multi-resolution manner, by iteratively
splitting the triangles sorted by their integrated saliency
(see Algorithm 5). In this algorithm, s(Ti) =

∫
Ti

s(x,y)dxdy
denotes the integrated saliency in triangle Ti. In our experi-
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ments, we used max_nb_trixels = 30000, nb_Lloyd = 10
and re f ine_ f actor = 10.

Algorithm 5 : generate_trixels()

insert 1000 vertices at random locations
while nb_trixels < max_nb_trixels

sort all the trixels T by decreasing s(T )
insert a vertex in the first re f ine_ f actor % triangles
for k in 1.. nb_Lloyd

Lloyd_relax()
end for

end while

To be able to capture details in user-selected zones, it is easy
to inject a user-defined importance map I(x,y) in the algo-
rithm, by simply multiplying the saliency map s(x,y) with
I(x,y) in all computations. The result is shown in Figure 5.
The right half of the character has 5 times as importance as
the rest of the image.

3.3. Two-level Ardeco

Once the trixels are constructed, we can now proceed to re-
express the pixel-based algorithm explained in Section 3.1 in
terms of trixels. The main idea is based on the observation
that the matrix Ai and right-hand side bi used to estimate
the parameters (αi, j) of the gradient attached to region Ri
can be expressed as the sum of matrices AT and right hand
sides bT attached to the trixels T included in region Ri. As
a consequence, the AT ’s and bT ’s can be computed before
entering the main loop of the Ardeco algorithm, as shown in
Algorithm 6.

Algorithm 6 : pre_integrate()

for each trixel T
AT ←

∫
T Φ(x,y)Φ(x,y)t

bT ←
∫

T Φ(x,y)
for k in 1 . . .nb_iter_M_estimator

solve AT (αT,1 . . .αT,m)t = bT
AT ←

∫
T w(rT (x,y))Φ(x,y)Φt (x,y)dxdy

bT ←
∫

T w(rT (x,y))g(x,y)Φ(x,y)dxdy
end for
IT ←

∫
T I(x,y)dxdy

end for

This results in a significant speedup, since no pixel access
nor rasterization is required anymore in Ardeco’s main loop.
In the algorithm, rT denotes the residual function in triangle
T defined by rT = g− fT = g−∑ j αT, jφ j. In the case an
importance map I(x,y) is defined by the user, the algorithm
also computes the importance of the trixels IT by integrating
the importance map.

The matrix AT and right-hand side bT are simply the co-
efficients of the linear systems at the last iteration of the
reweighted quadratic optimization process (see Equation 3,
previous section). As can be seen (Figure 6), trixels carry
more information than just the set of pixels intersected by a
given triangle: for a given trixel, not only fT gives a good
approximation of color variation in trixel T , but also AT

Figure 6: Trixels with the attached pre-integrated higher-
order representation of degree 0, 1 and 2 (2000 trixels).

and bT capture the higher-order information related with T .
Note that this also includes the information of which pix-
els are outliers (through the weighting function w of the M-
estimator).

Once the trixels T and associated pre-accumulated higher-
order information AT ,bT is computed, it is possible to re-
cast the original Ardeco method (Algorithms 1 and 2) in
terms of trixels (see Algorithm 7).

In this algorithm, each region Ri has a “seed” trixel Ti (the
discrete version of the sites of a Voronoi tessellation). The
point ci is the center of gravity of Ti. The two integrals over
T ′, involved in the computation of the cost term, are evalu-
ated using the classical quadrature, given here for a function
D(x,y):∫
T

D(x,y)dxdy' |T |
6

(
d2

1 +d2
2 +d2

3 +d1d2 +d2d3 +d3d1

)
where d1,d2,d3 denote the value of D at the vertices of T .

Figure 7: Left: Result of the two-level algorithm, obtained in
24 s. Right: The pixel-based version took 187 s on the same
image.
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Algorithm 7 : ardeco_trixels_iteration()

// f lood_ f ill
for i from 1 to n { push(S,Ti, i,0); bi ← 0; Ai ← 0 } end for
while not S is empty

(T, i,cost)← pop(S)
if region(T ) = 0

Ai ← Ai +AT ; bi ← bi +bT ; region(T )← i
for each T ′ adjacent to T

if region(T ′) = 0

cost← λ
∫

T ′

∥∥∥∥∥
(

x
y

)
− ci

∥∥∥∥∥
2

dxdy+(1−λ )
∫

T ′
ρ (ri(x,y))dxdy

push(S,T ′,cost, i)
end if

end for
end if

end while
//update sites and f it
for i from 1 to n

solve Ai(αi,1 . . .αi,m)t = bi

Ti ← argmin
T ⊂ Ri

(
∫

T ρ(ri(x,y))dxdy)

end for

Note that the algorithm is not exactly equivalent to the pixel-
based version, since the pre-accumulated weighting terms
w(ri(x,y)) characterizing the outliers are computed with re-
spect to the trixel’s approximant instead of the region’s ap-
proximant. This does not make a difference in practice, since
pixels that are outliers with respect to a specific region are
likely to be outliers with respect to the trixel they belong to.
Figure 7 shows the segmentations obtained with both ver-
sions of the algorithm. Similar segmentations are obtained,
with a significant speed-up for the trixel version.

Comparision with segmentation algorithms: As explained in
the introduction (see Figure 1, first page), in addition to de-
tecting the boundaries, our algorithm needs also to approx-
imate complex color variations by several gradients. As a
consequence, our algorithm does not really belong to the cat-
egory of segmentation methods. We cannot apply the clas-
sical segmentation benchmarks to our algorithm, since the
multiple gradients would be interpreted as oversegmentation
by these benchmark. However, we give some comparisons
with the mean-shift algorithm, used in image and video styl-
ization. Figure 8 compares the result of our algorithm to the
original mean-shift algorithm [CM99] and to the anisotropic
generalization [WTXC04], using a fixed number of regions
(287 in this example), the images and results are from the
cited references. Despite the obvious improvements of the
anisotropic generalization, mean-shift still generates a large
number of small regions in zones of sharp lighting varia-
tions. In contrast, since it uses higher-order gradients and
does not require any bandwidth parameter, our method bet-
ter balances the regions. As a consequence, a significantly
smaller number of regions can be used.

Figure 9 shows the main failure mode of our algorithm,
caused by certain textures that have intermediate scale and
high contrast. Ardeco fails considering all these details as
a whole and may generate a large number of regions (one

Figure 8: Compared results of mean-shift (A), anisotropic
mean-shift (B) (results from [WTXC04]) and Ardeco (C), us-
ing the same number of regions (287) and λ = 0. As can
be seen, Ardeco creates well-balanced regions. As a conse-
quence, it is possible to use a much smaller number of region
(160), while keeping significant details (D).

per spot on the shirt), before segmenting the more important
features of the image (eyes and mouth).

Now that we have presented the two-level Ardeco algorithm,
we proceed to show how to export its result to standard vec-
tor graphics file formats. The output of Ardeco is very near
to the representation used by standard vector file formats,
but still requires some post-processing to be fully compati-
ble with them.

4. Post-Processing

The first problem concerns the gradients used in vector
file formats, that are not as general as those generated by
Ardeco. The other problem concerns the conversion of re-
gion boundaries into splines, supported by most standard file
formats. Using splines results in smoother boundaries and
more compact files.

Figure 9: Ardeco may fall directly in the traps of Berkeley’s
segmentation data set. A large number of regions may be
generated.
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Figure 10: Converting polygonal regions into Splines.

4.1. Converting Gradients

The linear gradients computed by Ardeco are represented by
three independent linear equations (i.e. 9 coefficients). Stan-
dard vector file formats are more restricted, since they use
the same gradient direction for r, g and b. To enforce this
condition, we find the “average gradient direction”, by com-
puting the eigen vector associated with the smallest eigen
value of the 2× 2 matrix VrV t

r +VgV t
g +VbV t

b where Vr de-
notes the gradient vector associated with r (resp. g, b).

Quadratic gradients are more difficult to convert to standard
vector file formats. In those file formats, higher-order gradi-
ents are limited to elliptic gradients (expressed by a linearly
transformed circular gradient). Depending on the eigen val-
ues δ1,δ2 of the quadratic form computed by Ardeco, we
distinguish the following cases:

� δ1 > 0,δ2 > 0: we output a transformed circular gradient.
The rows of the transform (i.e. the axes of the ellipse) are
given by the eigen vectors;

� δ1× δ2 = 0: this corresponds to a “cylindrical” gradient,
that we approximate by two linear gradients;

� δ1 < 0 or δ2 < 0: this corresponds to a “hyperbolic” gra-
dient. We approximate it by cutting the concerned region
into four parts, in the direction of the eigen-vectors.

4.2. Converting Region Boundaries

Converting region boundaries into splines can be easily
achieved by standard methods, since the vertices are ordered
along the boundaries. We first determine the vertices that
correspond to corners. A corner is either a vertex shared by
more than two region or a vertex for which the correspond-
ing pixel in the image was tagged as a corner (by SUSAN).
A cubic spline segment is then attached to each polygonal
line connecting two corners. Then, we apply to each seg-
ment regularized spline fitting and recursive subdivision (see
e.g. [Chu80]) until the approximation error drops below a
user-defined threshold (corresponding to 1 pixel in our case).

Figure 10 shows the algorithm applied to polygonal curves
(left). The number of vertices in the so-constructed spline

(right) is dramatically reduced (1105 control points instead
of 9286 vertices in this example).

5. Results

The timings of the algorithm are given in the table below.
(Lena, 30k trixels, λ = 0.001, ε = 20). As can be seen,
using our two-level algorithm, image resolution has a small
influence.

degree 0 degree 1 degree 2 degree 3
nb regions 161 138 124 106
512x512 72 s. 83 s. 105 s. 125 s.
2048x2048 105 s. 120 s. 142 s. 172 s.

The algorithm applied to various data sets is demonstrated
in Figure 11.

The first row shows that our method successfully repro-
duces a painting already in the “art deco” style. It recognizes
the color gradients and simple geometric shapes that com-
pose the image. Increasing the cell compactness λ creates a
mosaic-like image.

Second row: Stylizing “Lena”, with constant and linear gra-
dients. Importance was painted on the face.

Third row: Using importance acquired from an eye-tracker
(data from [DS02], available on the web). Importance varies
from 1 to 30, and is proportional to both the distance to fix-
ations and fixation time. In the result (middle image), the
variations in object detail convey the notion of depth-of-
field. However, vector images with constant colors still have
a “flat” looking. The perceptual depth-of-field effect is im-
proved (right image) by using Ardeco’s higher-order gradi-
ents and a Gaussian filter (supported in SVG and Flash8)
applied to the primitives in the background (i.e, primitives
with no importance).

Last row: User-defined importance can fix the segmentation
when the algorithm misses some features.

Conclusion

In this paper, we have presented a new automatic segmen-
tation method that produces vector images from bitmaps.
Overall, we have proposed an efficient two-level numeri-
cal scheme to minimize Mumford and Shah’s energy func-
tional and that recognizes regions with higher-order gradi-
ents. These gradients make it possible to create vector im-
ages that convey a better sensation of depth and an overall
lighting atmosphere.
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An “art deco” painting by Tamara de Lempicka is reproduced in vector form by our method, using only 180 primitives and gradients.
Rightmost image: increasing the cell-compactness term (λ = 0.75) and using constant colors generates a mosaic-like image.

Trixels, constant colors and higher-order gradients. See how the classical “Lena” image has been stylized by the method (242 primitives).

Importance computed from De Carlo et. al’s data and adapted triangulation; constant colors; higher-order gradients with SVG Gaussian filter.
Note how the higher-order gradients combined with the blurred background improve the perception of depth.

Automatic result, and result obtained with an importance map (in red). Black strokes are superimposed as in De Carlo’s paper.
The strokes are extracted from the constant-color segmentation and superimposed to the higher-order gradients.

Figure 11: Stylizing and vectorizing various images. In all these examples, except in the upper-right image, we used λ = 0.01
(boundary length minimization) and ε = 20 (maximum approximation error). Note how higher-order gradients reproduce the
lighting, conveying the same atmosphere as the original bitmap images. The vector files are available in the supplemental
material (in SVG and PDF file formats).
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Figure 12: Using Bresenham’s algorithm to compute exact
integrals over images.

Appendix A: A Generic Rasterizer

In Ardeco, several steps of the algorithm require computing
integrals over polygonal subsets of images:

� weighted barycenters:
∫

Di
s(x,y)

(
x
y

)
dxdy/

∫
Di

s(x,y)dxdy

� pre-accumulated covariance matrices: AT =
∫

T ΦtΦdxdy
� trixels importance: I(T ) =

∫
T I(x,y)dxdy

This process may be thought of in term of rasterization, then
implementing it on the GPU is an idea that comes immedi-
ately to mind. However, the GPU programming model does
not allow individual pixels to communicate, which prevents
it from computing integrals. For this reason, we used a soft-
ware rasterizer instead. To efficiently find all the pixels in-
side a convex polygon, we use the classic algorithm, that
first rasterizes the contour of the polygon, then processes
each individual horizontal scan-line (see Figure 12). We use
a variation of the highly efficient implementation available
on the web [Lev95], developed in the “pre-GPU-hic” ages.
However, in our case, special care needs to be taken when
computing integrals over an image. Since trixel edges may
be near discontinuities, it is especially important to compute
the exact filling ratio for the concerned pixels in order to
avoid artificially increasing their importance. A slight vari-
ation of the classic antialiased polygons algorithm can give
the exact filling ratio. The basic idea is to use the displace-
ments ei and ei+1 computed by Bresenham’s algorithm (see
Figure 12). In the two different cases of Bresenham’s al-
gorithm, the filling ratio is then given by 0.5(ei + ei+1) if
ei+1 < 0 or 0.5(e j ∗e j)/(e j +e j+1) if e j+1 > 0. To compute
the filling ratio at the corners of the polygon, we directly
compute the intersection between the pixel and the poly-
gon, using Sutherland and Hogdman’s reentrant clipping al-
gorithm. The resulting algorithm computes the exact filling
ratio for all pixels, and is reasonably fast (20000 polygons
per second on a 2 Ghz Pentium M), which is more efficient
by several orders of magnitude as compared to the method
described in [Sec02]. In terms of implementation, the func-
tionality is exposed through a generic class (see Algorithm
8).

Algorithm 8 Generic rasterizer
template <class Process> class GenericRasterizer {
public:

void beginPolygon() ;
void addVertex(int x, int y) ;
void endPolygon() ;
PROCESS process ;

} ;

class IntegralProcess {
public:

void addPixel(int x, int y, double coverage) {
value += image->getPixel(x,y) * coverage ;

}
double value ;
Image* image ;

} ;

The addPixel() function is called for each pixel or pixel
fragment of the polygon. Various Process classes can be
used, to compute integrals, means or medians, or to integrate
covariance matrices. This is extensively used in our imple-
mentation. The complete C++ code of the generic rasterizer
is available in the supplemental material.
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