archives-ouvertes

Integration of UML and B Specification Techniques:
Systematic Transformation from OCL Expressions into
B

Hung Ledang, Jeanine Souquieres

» To cite this version:

Hung Ledang, Jeanine Souquiéres. Integration of UML and B Specification Techniques: Systematic
Transformation from OCL Expressions into B. Ninth Asia Pacific Software Engineering Conference -
APSEC’2002, 2002, Queensland, Australia, 10 p. inria-00107556

HAL Id: inria-00107556
https://hal.inria.fr /inria-00107556
Submitted on 19 Oct 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.inria.fr/inria-00107556
https://hal.archives-ouvertes.fr

Integration of UML and B Specification Techniques:
Systematic Transformation from OCL Expressions into B

Hung LEDANG

Jeanine SOUQUIERES

LORIA - Université Nancy 2 - UMR 7503
Campus scientifique, BP 239
54506 Vandceuvre-lés-Nancy Cedex - France
E-mail: { | edang, souquier}@oria.fr

Abstract

In the continuity of our research on integration of UML
and B, we address in this paper the transformation from
OCL (Object Constraint Language), which is an integral
part of UML, into B. Our derivation schemes allow to au-
tomatically derive into B not only the complementary class
invariants, the guard conditions in state-charts (in OCL) but
also the OCL specifications for class operations.

Keywords: UML, OCL, OCL operation, B expression,
B generalised substitution.

1 Introduction

The Unified Modelling Language (UML) [19] and the B
language [1] are two specification techniques well recog-
nised in software engineering for their application capabil-
ity in industry. Their integration is motivated by the hope to
be be able to use them jointly in a practice, unified and rigor-
ous software development. The practicity comes from UML
as the specification technique largely practised and accepted
in software industry. It also comes from B as the formal
technique whose industrial application are effective [9, 5].
The rigour comes from B as a formal method. The unifica-
tion comes at the same time from UML and B since they are
used during the whole software development from require-
ments expressions until the design and programming.

The transformation from UML specifications into B aims
at a two-fold goal. On the one hand, one can use B powerful
support tools like AtelierB [20], B-Toolkit [2] to analyse
and detect inconsistencies within UML specifications (see
further discussions in [12]). On the other hand, we can also
use UML specifications as the starting point to develop B
specifications which can then be refined automatically to an
executable code [10].

Meyer and Souquieres [17] and Nguyen [18], based on
the previous work of Lano [11], have proposed the deriva-
tion schemes from UML structural concepts into B. Each
class, attribute, association and state is modelled as a B vari-
able. The properties of those concepts are modelled as B
invariants. The inheritance relationship between classes is
also modelled as B invariant predicates between B variables
for the classes in question.

In [13] we have proposed approaches for modelling
UML operations (operations declared in class diagrams).
Each UML operation is firstly modelled by a B abstract op-
eration in which the expected effects of such an operation
on related data is specified directly on the derived data. If a
UML operation is realised by an interaction or activity dia-
gram then the B operation corresponding is refined to give
rise a B implementation operation.

The UML-B derivation schemes for UML structural con-
cepts and for UML operations are used in the derivation
procedure which allow to integrate UML class and collab-
oration diagrams into one B specification. At this stage,
only the architecture, data and the operations’ signature of
the derived B specification are generated automatically. For
the invariant within B specification, only the part that re-
flects the properties of UML structural concepts expressed
graphically in UML diagrams is generated. Therefore, the
B specification should be completed with invariants for sup-
plementary class invariant as well as B operations’ body.

As cited in the UML literature [19], OCL (Object Con-
straint Language) is often used to specify supplementary
class invariant as well as pre- and post-conditions of UML
operations; in the continuity of our research on integration
of UML and B, we address in this paper the transformation
from OCL expressions into B. This OCL-B translation is
applied for generating supplementary invariant and the ab-
stract operations’ body of the derived B specification.

Section 2 outlines the principles of the transformation

from OCL expressions into B. The derivation schemes for
OCL types and their operations are presented in Section 3.
The derivation schemes specific for postconditions are pre-
sented in Section 4. A case study is presented in Section 5.
Discussions in Section 6 conclude our presentation.

2 From OCL expressionsto B : overview

2.1 The OCL language

The Object Constraint Language (OCL) is now an in-
tegral part of UML [19]. One can use OCL to write con-
straints that contain extra information about, or restrictions
to, UML diagrams. OCL is intended to be simple to read
and write. Its syntax is similar to object-oriented program-
ming languages. Most OCL expressions can be read left-
to-right where the left part usually represents - in object-
oriented terminology - the receiver of a message. Fre-
quently used language features are attribute access of ob-
jects, navigation to objects that are connected via associ-
ation links, and “is-Query” operation calls. OCL expres-
sions are not only used to define invariants on classes and
types, they also allow specification of guard conditions in
UML state-charts and pre- and postconditions on UML op-
erations.

2.2 The B language and method

B [1] is a formal software development method that cov-
ers the software process from specifications to implemen-
tations. The B notation is based on Zermelo-Frankel set
theory and first order logic. Specifications are composed
of abstract machines similar to modules or classes; they
consist of variables, invariance properties related to those
variables and operations. The state of the system, i.e. the
set of variable values, is only modifiable by operations.
The means by which B operations specifies state transi-
tions is the generalised substitution language whose seman-
tics is defined by means of predicate transformers [8] and
the weakest precondition [7]. A generalised substitution
is an abstract mathematical programming construct, built
up from basic substitution 2 := e, corresponding to as-
signments to state variables, via a set of operators like No-
op (skip), bounded choice (choice S; or S, ...), precondi-
tioning (pre P then S end), unbounded non-determinism
(var vin S end, any v where P then S end), guarding,
sequential composition, multiple generalised composition
and looping.

The abstract machine can be composed in various ways.
Thus, large systems can be specified in a modular way, pos-
sibly reusing parts of other specifications. B refinement can
be seen as an implementation technique but also as a spec-
ification technique to progressively augment a specification
with more details until an implementation that can then be

translated into a programming language like ADA, C or
C++. At every stage of the specification, proof obligations
ensure that operations preserve the system invariant. A set
of proof obligations that is sufficient for correctness must
be discharged when a refinement is postulated between two
B components.

2.3 Principles to translate OCL expressions into
B

The core of OCL is given by an expression language.
OCL expressions can be used in various contexts, for ex-
ample, to define constraints such as class invariants and
pre- and postconditions of UML operations. Our deriva-
tion schemes from OCL to B are therefore defined for con-
cepts related to OCL expressions: (i) the OCL types and the
associated operations and (ii) the postconditions of UML
operations.

It is natural to model an OCL type by a B type, which
would be a B predefined type such as Z, BOOL etc, or a
B user-defined type such as sets or relations. In addition,
the formalisation in B of OCL types is guided and moti-
vated by the wish to facilitate the formalisation in B of op-
erations on OCL types. Intuitively, an OCL expression for
class invariants, for guard conditions or for preconditions
on behavioural concepts should be modelled by a B expres-
sion; meaning that every OCL operation (except oclisNew,
which is used in postconditions of UML operations) should
be represented by a B expression.

The derivation schemes from OCL to B for types and as-
sociated operations are sufficient to derive a B expression
from an OCL expression of class invariants on class dia-
grams, guard conditions on state-charts or preconditions of
UML operations. To model postconditions of UML oper-
ations, the use of B generalised substitutions is necessary.
The OCL expressions involving values after the execution
of a UML operation are translated into B substitutions.

2.4 Related work

The transformation from OCL into other formal nota-
tions have been discussed in several works [3, 4], however
our choice of B as the target notation is motivated by the
fact that B is a stable language with powerful support tools
that have been advocated in industrial applications [9, 5].

The transformation from OCL into B has been previ-
ously discussed by Marcano and Lévy [15], in which the
authors presented the derivation schemes from OCL expres-
sions to B expressions. However there are several shortcom-
ings in this proposal:

1. the postconditions of behavioural concepts have not
been considered;

2. the fact to formalise an OCL operation by a B corre-
sponding operation seems to be ambiguous due to the
mismatch between OCL type system and B type sys-
tem. For example, the OCL type String does not corre-
spond to the B type ST RI NG B does not support the
real type;

3. the fact to model OCL collection types by B sets is
only appropriate if the collection type is a set; con-
sequently the modelling in B of collection operations
collect, select etc. is not appropriate.

Dealing with the three shortcoming above is essentially
our contributions in this paper.

3 Modelling OCL typesand their operations

The types in OCL can be classified as follows. The group
of predefined basic types includes Integer, Real, Boolean
and String. Enumeration types are user-defined. An object
type corresponds to a classifier in an object model.

Collections of values can be described by the collection
types Set(T), Sequence(T) and Bag(T). These are the clas-
sical types for bulk data, namely sets, lists and muli-sets
respectively. The parameter T denotes the type of the ele-
ments. Notice that types at the meta-level such as OclEx-
pression are not considered in the translation from OCL ex-
pressions into B.

3.1 Predefined basic types

Derivation 1 (Integer) In B there are two predefined types
Z and INT which correspond to the OCL type Integer. Z
is chosen as the formalisation of Integer since Z is more
abstractthan INT'. An integer value nn in OCL is modelled
in B as a value nn of Z. As shown in Table 1, all Integer
OCL operations but “/” can be expressed by a B expression
on Z.

Remark 1 (Modelling the operation “/)

1. In OCL, the operation “/” between two integers a and
b, gives as result a real value. Since B does not de-
fine the data type for real values, we propose to model
the ratio a/b by the pair a—b, where a and b denote
respectively the B formalisation of a and b.

2. The fact of using a ratio to express the real division
“I” between two integers implies to define the formal-
isation in B for operations on ratios. Operations be-
tween an integer and a ratio can be converted into op-
erations on ratios. As an example, the operation “+”
between two ratio a/b and c/d can be modelled by
a-d+c-b—b-d; details of a such formalisation can be
found in [14].

Operations OCL Semanticsin B
a=b a=1b

a<>b —(a =b)
at+b a+b

a-b a—b

-a —a

a*h axb

adivb a/b

a mod b a mod b
a<b a<b

a<=b a<b

a>b b<a

a>=b b<a
a.min(b) min({a, b})
a.max(b) maz({a, b})
a.abs maz(—a,a)
alb a—b

Table 1. Operations on integers

Derivation 2 (Boolean) The OCL type Boolean is mod-
elled in B by its correspondence BOOL. Table 2 shows the
B formalisation of OCL Boolean operations, where a, b and
c are three booleans and a, b and ¢ are their formalisation
in B. An OCL boolean variable or constant x is modelled
in B by z (variable or constante). An OCL boolean expres-
sion exp is modelled in B as a predicate exp or as a boolean
expression bool (exp), where exp is derived from exp ac-
cording to the rules in Table 2 and bool is a B predefined
function to convert a predicate into a boolean value.

Operations OCL Semanticsin B

a=b bool(a) = bool(b)

a<>b —(bool(a) = bool(b))

aorb aVb

axorb —(bool(a) = bool(b))

aand b ab

not a -a

aimplies b —aVb

if a then b else c endif —(bool(aNb) = bool(—aNc))

Table 2. Operations on booleans

Derivation 3 (String) The B predefined type STRING
cannot be used to model the OCL type String due to re-
strictions of operations on STRING (only “=" and “<>"
are defined for STRING). Our solution is to use a B
user-defined type seq(0..255) to model String. The back-
ground idea is that a string can be considered as a sequence
of characters and the range 0..255 models the set of possi-
ble characters. A string str in OCL is therefore modelled

by an element str of seq(0..255). The OCL operations on
String (except two operations toUpper and toLower) can be
expressed by B expressions on seq(0..255) (cf. Table 3).

Remark 2 Two operations toUpper and toLower involve a
repetitive computation which is very sophisticated such that
they cannot be expressed by an expression B at the abstract
machine level.

Operations OCL Semanticsin B

a=b a="b

a<>b —(a=0b)

a.size size(a)

a.concat(b) a”b
a.subString(lower,upper) (a 1 upper) | lower
a.toUpper no definition
a.toLower no definition

Table 3. Operations on strings

Derivation 4 (Real) There is no B predefined type for real
values, a definitive solution for modelling the OCL type
Real in B has not been yet achieved. In waiting for a such
solution, a temporary solution, inspired from Remark 1, can
be used. It is to approximate a real value by a ratio. Hence
the type Real can be modelled in B by relation Z « Z.
The OCL operations on Real are modelled in B in a similar
manner of the operations on ratios.

Derivation 5 (Enumeration types) Each enumeration type
Enum={vals,...,val,} is modelled in B by an enumerated set
serving as a user-defined type Enum = {valy,...,valy}.
Each element val;# in Enum is modelled by an element val;
in Enum. The modelling in B of operations on an enumer-
ation type is shown in Table 4, where a#, b# are two values
of type Enum and a, b denote their B formalisation.

Operations OCL Semanticsin B
att=b# a=1>b
att<>b# —(a = b)

Table 4. Operations on enumerations

Derivation 6 (Object types) According to Meyer and
Souquieres [17], for each class Class, the B constant
CLASS models the possible instance set and the B
variable class, which is defined as a subset of CLASS,
models the effective instance set of Class. Therefore, the
object type Class is modelled in B as CLASS, whereas
the operation Class.alllnstances is modelled as class. An

object cc of Class is modelled in B by an element cc of
class.

3.2 Collection types

Derivation 7 (Collection types) Given T an OCL type and
T its B formalisation:

1. the collection type Set(T), which denotes all subsets of
T, is modelled in B by P(T);

2. the collection type Bag(T), which denotes all multi-sets
on T, is modelled in B by T-»A. An element bb of
Bag(T) can be modelled as bb €T-»A and for each
element tt of bb, bb(tt) denotes the occurrence number
of tt in bb;

3. the collection type Sequence(T), which denotes all
lists of elements of T, is directly modelled in B by
seq(T).

Using Derivation 7, almost predefined operations on col-
lection types (except asSequence on sets or bags and ex-
cluding on sequences?) can be expressed by a B expres-
sion. The semantics of OCL operations select, reject, col-
lect, forAll, exists on collection types can also be interpreted
by B expressions. Details of those formalisations can be
found in [14], Derivation 8 shows some examples.

Derivation 8 (OCL operations on collection types)
Given T an OCL type on which the collection types are
defined and ss : Set(T); bb : Bag(T); se, se2 : Sequence(T);
tt :T; boolexprtt is a boolean expression on tt and exprtt is an
expression on tt. Let’s call T', ss, bb, se, ses, tt, boolexprit
and exprtt respectively the B formalisation of T ss, bb, se,
ses, tt, boolexprtt and exprtt:

1. the OCL expression bb—>includes(tt), which checks
whether tt is an element of the bag bb, is modelled in
B by tt edom(bb);

2. the OCL sequence union expression se—>union(ses) is
modelled in B by the sequence concatenation expres-
sion se”sss;

3. the OCL expression ss—>select(tt|boolexprtt), which
extracts elements tt of ss satisfying boolexprtt, is mod-
elled in B by {tt|ttessAboolexprit};

4. the OCL expression ss—>collect(ttlexprtt), which de-
rives a collection (a bag) of values exprtt com-
puted on every element tt of the set ss, is mod-
elled in B by {tt, nn|tt€exprtt[ss]AnneN Ann =
card({zz|rxessnexprit(zx) = tt})}.

1The semantics of the operation asSequence on sets or bags has not
been defined in OCL therefore we cannot model it in B. It is the same for
the operation excluding on a sequence.

3.3 Property access operations

OCL expressions can refer to attributes, association ends
and “is-Query” operations thanks to property access opera-
tions. A property access operation on an object might return
a single value/object, a set of values/objects, a multi-set of
values/objects or a sequence of values/objects. It is also
possible to apply a property access operation on the result
of another property access operation. Hence the target of a
property access operation might be an object, a set of ob-
jects, a multi-set of objects or even a sequence of objects.
Our derivation schemes for property access operations are
based on the derivation schemes for UML structural con-
cepts and the derivation schemes for collection types (cf.
Derivation 7). The derivation schemes for UML structural
concepts are detailled in [17, 18, 16]; in Derivation 9, we
recall only essential points which facilitate the presentation
afterwards.

Derivation 9 (Structural concepts)

1. An attribute attr of type typeAttr in a class Class
is modelled by a B variable attr defined as
attreclass<typeAttr, where the variable class
models the effective instance set of Class and
type Attr is defined as a B set to model typeAttr. The
relation defining attr might be further refined accord-
ing to additional properties of attr.

2. A binary association assos between two classes
Class and Class, is modelled by a B variable assos
defined as assos€class+rclasss. If there are eventual
qualifiers g1 : Q1, ..., O : Q,, at the role end of Class,
they are modelled in a similar manner to an attribute:
q€classs>Qq, ..., qp€classs+>Q,. We add also
a B invariant linking assos and q,...,q, as follows:
(as50571Rq1® ...® q,) " LteclassxQ1X ... X Qné>
classs 2. As for attributes, the relation defining assos
could be further refined according to additional
properties of assos.

Derivation 10 (Attribute operations) Given attr, cc, sc,
bc, seqc an attribute, an object, a set of objects, a bag of
objects and a sequence of objects of a class Class. Let’s call
attr, cc, sc, be and segc their B formalisation according to
Derivation 6, Derivation 7 and Derivation 9:

1. the expression cc.attr, which denotes the value(s) of the
attribute attr associated to the object cc, is generally
modelled in B by attr[{cc}]. If the cardinality of attr
is equal to 1, cc.attr can be modelled by attr(cc); oth-
erwise and if attr is ordered, attr[{cc}] is interpreted
as a sequence;

2'® is the direct product between two relations.

2. the expression sc.attr denotes a collection of values for
attr associated with elements in sc. If the cardinality of
attr is equal to 1 then sc.attr denotes a set and is mod-
elled by attr[sc]. If the cardinality of attr is multiple
but attr is not ordered then sc.attr denotes a bag and
is modelled by {vv, nn|vveattr[sc]AnneN Ann =
card(attr—[{vv}]Nsc)}. Otherwise there is no se-
mantics for sc.attr and there is no therefore corre-
sponding B formalisation;

3. the expression bc.attr has no semantics if attr is mul-
tiple and ordered; otherwise bc.attr denotes a bag of
values of attr associated to the bag bc and is mod-
elled by {vv, nn|vveattr[dom(be)]AnneN Ann =
Y(cc).(cc€attr~[{vv}]Ndom(be)|be(ce)) };

4. the expression seqc.attr has only semantics if the car-
dinality of attr is equal to 1 and in that case it de-
notes a sequence of values for attr and is modelled by
A(i).(itedom(seqc)|attr(seqe(ii))).

Remark 3 The navigation operations without qualifiers are
modelled in a similar manner to the attribute operations.

Derivation 11 (Navigation operations with qualifiers)
Given a binary association assos from the class Class to
Classe. The association assos is qualified by attributes
g1 :Q1, ..., On: Q. at the role end of Class. Given
values and objects cc : Class, vi : Q1, ..., V, : Q,. Let’s
call roleClass, the role end of Classs in assos. The
expression cc.roleClassa[vi, ---., V,] is modelled in B by
(ass0s71Rq1®. . .Qqn) " H{ccmvi. . v, }], where
cc, vi, ...,v, are the B formalisation of cc, vi,...v, and
q1,----qn, are defined according to Derivation 9. Furthermore,
if the multiplicity property of Class, in assos is equal
to 1, cc.roleClasss[vy,...,v,] can be expressed in B by
(58057 1Rq1®. ..Qqn) ! (covim. . .—wy).

Remark 4 It is always possible to define the B semantics
for navigation operations with qualifiers on a set or a bag
of objects. However those situations are rarely encountered
and the corresponding derivation schemes are omitted here.

Derivation 12 (Navigation to association classes)
Given assos a binary association class between two classes
Class and Class.. Given cc, sc, bc, seqc an object, a set of
objects, a bag of objects and a sequence of objects of Class.
Let’s call assos, ce, sc, be and seqe the B formalisation of
assos, cc, sc, be and seqc according to Derivation 9:

1. the expression cc.assos, which denotes the instance(s)
of assos associated to cc, is modelled by {cc}<iassos;
if the cardinality of Class, in assos is equal to 1,
cc.assos can also be modelled by cc—assos(ce);

2. the expression sc.assos, which denotes the instances
of assos associated to the elements of sc, is modelled
by sc<lassos;

3. the expression bc.assos, which denotes a bag of
instances of assos associated to the elements of
bc, is modelled by {cc, nn|ccedom(be)<tassosAnn
eNAnn = be(dom({cc}))};

4. the expression seqc.assos has only semantics if the
cardinality of Class, in assos is equal to 1 and in that
case it denotes a sequence of instances of assos as-
sociated to the elements of seqc and is modelled by
A(i4).(itedom(seqc)|seqe(ii)—assos(seqc(ii))).

Derivation 13 (“is-Query” operations) The call to “is-
Query” class operations can appear in OCL expressions,
however, we can not call B operations in B expres-
sions. Therefore, we propose to create for each “is-
Query” operation Class::oper(p1:P1,...,p»:P»):P, which ap-
pears in OCL expressions, a B variable oper defined by
opereclass®P,®...QFP,+P. A call oper(vy,...,v,) to an
object cc of Class in OCL expressions is therefore modelled
by oper(ce—v1—-. . .—wvy,) in the corresponding B expres-
sions. Note equally that the call oper to a set, a bag or a
sequence of objects of Class is rarely encountered, hence
the corresponding derivation schemes are omitted here.

Remark 5 (Let expressions) All the variables declared
by let expressions should be replaced by their values before
the transformation.

4 Modelling postconditions

This section presents the modelling of OCL expressions
on postconditions of an UML operation. As said earlier (cf.
Section 2.3), the OCL postconditions of an UML operation
oper are modelled in B by generalised substitutions in the
body of the B abstract operation oper for oper. First of all
are some definitions.

4.1 Definitions

Given an operation oper, the postconditions of oper

can be considered as a constraint P(out;...,out,,ini,...,in,,)
which links the potential “outputs” (cf. Definition 2) and
potential *“inputs” (cf. Definition 1) of oper.
Defintion 1 (Operation potential inputs) The set
Input={iny,....in,, } Of potential inputs of an operation
oper consists of: (i) the possible parameters stereotyped by
“in” or “inout” whose value is provided upon every call to
oper and (ii) the objects, the attributes and the associations
available upon the operation call.

Defintion 2 (Operation potential output) The set
Output={out,,...,out,} of potential outputs of an oper-
ation oper consists of: (i) the possible return parameter,
which is referenced by the name result in OCL, of oper;
(ii) the possible parameters stereotyped by “out” or “inout”
of oper; (iii) the possible newly created objects during the
execution of oper and (iv) the possible updated attributes
and associations.

Definition 3 presents a standard style of the constraint
P(outy,...,0out,,iny,..,in,,). In our opinion, the definition is
enough generalised to be able to cover almost class opera-
tions. Our derivation schemes in the sequel are defined in
reference to this definition.

Defintion 3 (Well-formed postconditions)

1. Every potential output out; is defined by an elementary
constraint P;(out;[,Input][,NewObject]), which defines
outi according to elements of Input as well as the newly
created objects (the elements of NewObject, which is a
subset of Output):

(a) P; states the creation of an object (out;) by oper;

(b) P; is a comparison between the value of out; and
the values of elements in InputUNewObject. Two
cases should be distinguished: (i) P; is repre-
sented by out;=expr(Input{UNewObiject]), mean-
ing that out; is defined deterministically in terms
of elements of Input{lUNewObject]; (ii) P; is
represented by a boolean expression but not
an equality on out; and possible elements of
Input{UNewObject], meaning that out; is defined
non deterministically in terms of elements of
Input{lUNewObject];

(c) P; might represent the application of the opera-
tion forAll on a set of objects/values to be updated
by oper.

2. The constraint P is a combination between the elemen-
tary constraints P, ..., P, and the operations and and
if ... then ... else ... endif:

(a) the condition part in an expression if ... then ...
else ... endif refers to potential inputs;

(b) the elementary constraints P4, ..., P,, are linked
by and in order to compose the body of expres-
sionsif ... then ... else ... endif;

(c) the expressions if ... then ... else ... endif can be
nested;

(d) two body expressions in an expression if ... then
... else ... endif contain either another expression
if ... then ... else ... endif or an expression and on
elementary constraints;

4.2 Elementary constraints

Derivation 14 (Return parameter)

1. Given P; in the form result=expr(Input{UNewObject])
to define deterministically the return value of oper. We
add in the B operation oper the following substitution:
out = expr(Input[UNewObject)),
where out represents the return parameter of oper and
expr is the B formalisation of expr.

2. Given P; in the form expr(result,Inputf{UNewObject])
to define non-deterministically the return parameter of
oper. We can rewrite the constraint P; in the following
manner:

e we introduce a temporary variable res which
takes the place of result in the old P;;

e We rewrite Pi as:
expr(res,InputflUNewObject]) and
result = res,

the new form of Pi enables us to update oper in the
following manner:

e we create a clause any...where... if it has not
been created (cf. Derivation 18);

o we declare res, which models res:
any...,res where
...expr(res, Input[UNewObject])

o we add the substitution out: = res in the body
of any...where...

Remark 6

1. The B formalisation of expr is done using deriva-
tion schemes in Section 3; all the possible occurrences
of @pre are omitted without losing the semantics of
@pre. To justify this point, let’s take an exemple: in
the B assignement statement x := a, the value of a is
always refered to be the value before execution of the
corresponding operation.

2. Derivation 14 can be extended to apply for possible pa-
rameters stereotyped by out or inout of oper.

Derivation 15 (Object creation) Given P; a constraint
specifying that an object cc of a class Class is created by
oper. We create in oper:

¢ aclause any...where... if this clause has not been cre-
ated (cf. Derivation 18);

e atemporary variable cc, which models cc:
any ...,cc where
..AcceCLASS—class

e a B substitution, which models the updating of a set
of effective instances of Class by the object cc, in the
body any...where...

class: = classU{cc}

Derivation 16 (Updating attribute value of an object)
Given an attribute attr and an object cc of a class Class:

1. given P; in the form cc.attr=expr(Input{UNewObject])
to define deterministically the new value of cc.attr in
which the cardinality of attr is equal to 1. We model
the constraint P; by the substitution B
attr := attr<{cc—expr};

2. given P; in the form cc.attr=expr(Input{UNewObject])
to define deterministically cc.attr in which the cardi-
nality of attr is multiple. We model P; by the substitu-
tion:
attr == attrU{cc} xexpr.

In the two cases above, attr, cc and expr are the B for-
malisation of attr, cc and expr.

Remark 7 Derivation 16 can be extended for updating as-
sociations.

Derivation 17 (forAll operation on an object set) Given
a set sc of objects and an attribute attr of the cardinality 1
of a class Class:

1. given P; in the form sc—>forAll(p|p.attr =expr(Input{U
NewObject]) to define deterministically the value of at-
tribute attr of all elements in sc. We model P; by the
following substitution B: attr := attr<scx{expr},

2. given P; in the form sc—>forAll(p|expr(p.attr,Input[U
NewObject])) to define non deterministically the value
of attribute attr of all elements in sc. We model P; in
creating in oper:

e aclause any...where... if this clause has not been
created (cf. Derivation 18);

e atemporary variable at defined as:
any...,at where
ateclass-typeAttrA
dom(at) = scA
v(tt).(tteran(at)=
expr(at, Input{UNewObject]))
e the substitution:
attr: = attr<at...||
in the body of the clause any...where...

In the two cases above, attr and sc are the B formalisation
of attr and sc, expr is the B formalisation of expr in which
tt replaces p.attr.

Remark 8

1. Derivation 17 did not consider the case where several
attributes of the same set of objects have changed their
values. However this situation can be solved by apply-
ing Derivation 17 several times.

2. We did not consider the case where forAll is applied on
a sequence or a bag of objects since those situations
have no semantics in the context of postconditions.

3. Derivation 17 can be extended for the case where the
body of forAll is the navigation operation.

4. Derivation 17 can also be extended for the case where
the cardinality of attr is greater than 1. However this
situation is rarely encountered.

4.3 Substitution unification

In the previous section, we have presented the principles
for modelling an elementary constraint. In general, each
elementary constraint gives rise to a B substitution. This
section discusses the way to unify the derived substitutions.

Derivation 18 (Substitution unification) Given “P; and
... and P;” an OCL and expression on the elementary con-
straints Py, ..., P, in the postconditions of oper. The B sub-
stitutions derived from this expression are unified in the fol-
lowing manner:

¢ all the possible temporary variables as well as the pos-
sible created objects are declared in the same clause
any...where...;

¢ all the substitutions involving the same B variable are
unified;

o the substitutions for the different B variables are placed
on parallel (“||”) and they constitute the body of the
clause any...where... if this clause has been created.

Derivation 19 (The expression if ... then ... else ... endif)
Given if cond then expr; else exprs, endif an expression of
postconditions of an operation oper. The B formalisation
of this expression gives rise to a clause:

e if cond then subst(expr,) else subst(exprs) end, if
exprs is not an expression if ... then ... else ... endif or

o if cond then subst(expri)
elsif condy then subst(expray) ... end, if expry is
also in the form if conds then expra; ...;

where cond is the B formalisation of cond and subst(expr)
denotes the substitutions derived from expr.

Remark 9 skip is the substitution of true.

Derivation 20 (Operation) Given {pre,post} the precondi-
tions and the postconditions in OCL of an operation oper,
where post is defined according to Definition 3. The B op-
eration oper modelling oper is generated in the following
manner:

¢ the signature and a part of precondition of oper for
typing possible parameters are generated according to
derivation schemes described in [17, 13];

o if pre is not true then the precondition in oper is aug-
mented by predicates derived from pre in using deriva-
tion schemes in Section 3;

¢ the substitution part of oper is generated from post
using derivation schemes previously presented in this
section.

In the context of postconditions Remark 5 may be ap-
plied. However, there is also another alternative for let ex-
pressions as described in Derivation 21.

Derivation 21 (let ... in postconditions) The expression
let vi : type; = vali, ..., v, : type, = val, in expr in
postconditions of an operation oper gives rise to a clause
Let... in oper:
let vy, ...,v, be
v = vali N\
. A
v, = val,
in
subst(expr)
end
where vy, ..., Uy, valy, ..., val, and subst(expr) denote the
B formalisation of vy, ..., v, val, ..., val,, and expr.

5 Transformation example

The class diagram in Figure 1 is extracted from the UML
specification [13] for the pump component in a system con-
trolling petrol dispensing, customer payment handling and
petrol tank level monitoring as described in chapter 6 of [6].

The class diagram is composed of an aggregation of
the classes Pump, Clutch, Display, Gun, Holster and Mo-
tor which model fives pumps with included components.
We defined the class Delivery to model deliverance. The
attributes, the operations as well as data types used by at-
tributes and operations are presented in [6].

5.1 The operation Pump::enable_Pump in OCL

To illustrate the application of derivation schemes, let’s
consider the OCL specification (Figure 2) of the class oper-
ation Pump::enable_Pump.

Delivery Pump 5 fon . off}] _ Motor 5
cost: COST status : PG, STATUS Status T M_STATUS
ump_idv: PU_ID
Volume : INT 0 pump_jd: PUI start()
grade : GRADE punih_Of Id(PU_ID) : Pump stop()
pump_id : PU_ID id_Of_Pump() : PUMPID
/
veh_id : VEH_ID is_Enabled() : Boolean
1d:ver] -Enabled) Clutch s
7| ts_Disabled) : Boolean
Delivery(COST,INT,GRADE,PU_ID,VEH_ID) , enable_Local(status : C_STATUS
P disable_Local() T
. O free()
= enable_Pump(PU_ID,GRADE VEH_ID !
- engage() |
< DE,VEH_ID) ;
{enabl ed . di sabl eq} delivery_Complete() -
= =
/
Gun_-" s epressed , rel eases
staws: PG_STATUS _ _ — |~ ~ Tt -—l
= “t- Holster s
trigger : TH_STATUS Display 5 i N
switch : TH_STATUS
enable() cost: COST
disable() volume : INT is_Depressed() : Boolean
is_Enabled() : Boolean grade : GRADE is_Released() : Boolean
depress_Trigger_Local() veh_id : VEH_ID release()
depress_Trigger depress
press Trigger) feset(GRADE VEH_ID) press
release_Trigger_Local() remove_Gun()
read_Display(out c:COST,out V:INT,out g:GRADE,out v:VEH_ID)
release_Trigger() 00 replace_Gun()
pulse

Figure 1. Pump class diagram

CONTEXT Pump::enable_Pump(pi : PU_ID, gg : GRADE,
vi : VEH_ID) : void

PRE

Pump.alllnstances—collect(pump_ld) —includes(pi)
POST

let pp : Set(Pump) = Pump.allinstances — select(tt|

tt.pump_ld@pre=pi and tt.status@pre=disabled)

in
if pp — notEmpty then

pp — forall(p | p.status = enabled) and

pp — forall(p | p.display.grade = gg) and

pp — forall(p | pdisplay.cost = costOfGrade(gg)) and

pp — forall(p | p.display.volume = 0) and

pp — forall(p | pdisplay.veh_Id = vi) and

pp — forall(p | p.motor.status on) and

pp — forall(p | p.clutch.status free)
else true endif

Figure 2. Operation enable_.Pump in OCL

The operation has three arguments: the identifier pi of
the pump to be invoked; the category gg of the petrol to
be distributed and the registration number vi of the vehi-
cle. The precondition says that the pump with identifier pi
exists. The postcondition is formatted according to Defini-
tion 3 and says that in case the pump with identifier pi is
disabled, it should be enabled and its display is initialised,
its motor is running and its clutch is free, otherwise noth-
ing happens. Notice that although there is only one pump
with the identifier pi but we can not extract it from the set
of effective pumps (denoted by Pump.allinstances) due to
restrictions of OCL collection operations. That is why the
postcondition is composed of expressions on a singleton pp
whose unique element is the disabled pump with identifier
pi.

5.2 The operation Pump::enable Pump in B
Figure 3 represents the B specification of the opera-

tion Pump::enable_.Pump which is derived from the OCL
specification in Figure 2 by applying systematically Deriva-

tion 20 and implied derivation schemes in Section 3 and
Section 4.

OPERATIONS
pump_enable_Pump(pi, gg, vi) =
pre
pi € PUID A
gy € GRADE A
Vi € VEH_ID A
piedom({tt, nn|tt € pump_pump_Id[pump]Ann € N'A
nn = card({xx|xx € pumpApump_pump_ld(xx) = tt})})
then
let pp be
pp = {tt|tt € pumpApump_pump_ld(tt) = piA
pump_status(tt) = pg_status _disabled}
in
if —(pp = ¢) then
pump_status := pump_status<
ppx {pg_status_enabled}||
display_grade := display_grade<}
displayPump[pp] x {gg}||
display_cost := display_cost<}
displayPump[pp] x { costOfGrade(gg) } ||
display_volume := display_volume<d
displayPump[pp] x {0} |
display_veh Id := display_veh |d<J
displayPump[pp] x {vi}||
motor_status := motor_status<t
motor Pump[pp] x {m_status_on}||
clutch_status := clutch_status<t
clutchPump[pp] x {c_status free}
else skip end
end
end;

Figure 3. Operation enable_.Pump in B

As an example, let’s consider the expression
Pump.allinstances—>collect(pumpld)—>includes(pi) in
the OCL precondition of Pump::enable_ Pump. Analysing
its sub-expressions we know that: the expression
Pump.allinstances denotes the set of effective instances of
the class Pump. Applying the operation collect(pump_ld)
on set Pump.allinstances we obtain a bag. The operation
includes(pi) will check whether the identifier pi is an
element of the bag Pump.allinstances—>collect(pump.d).
Let T(expr) denotes the B formalisation of the OCL
expression expr and pump_pump Id the B vari-
able for the attribute pump.ld of the class Pump.
The transformation process from the precondition
Pump.allinstances—>collect(pumpldd)—>includes(pi)
into B proceeds as follows:

T(Pump.allinstances—>collect(pump_ld)—>includes(pi))
== (cf. point 1 in Derivation 8)
pi€dom(T(Pump.allinstances—>collect(pump.d)))

== (cf. point 4 in Derivation 8)

piedom({tt,nn|tt € pump_pump_Id[T(Pump.alllnst-
ances)]Ann € N'Ann = card({xx|xx € T(Pump.allinst-
ances) Apump_pump_ld(xx) = ¢t})})

== (cf. Derivation 6)

piedom({tt,nn|tt € pump_pump_ldjpump]Ann €
NANn = card({xx|xx € pumpApump_pump_ld(xx) =

tt})})

Remark 10 In order to avoid the eventual name conflicting
in the derivation of attributes into B, we prefixe the name
of attributes by the the class name. Hence the attribute
pump_ld is modelled by the variable pump pump Id. Itis
similar for constants in the enumeration type; the constant
enabled of the enumeration type PG_STATUS is modelled
by pg_status_enabled.

Let’s consider now the application of derivation schemes
specific for postconditions. According to Derivation 21, we
transform the let expression in the postcondition of the OCL
operation Pump::enable_Pump into a clause let... in the B
operation pump_enable_pump. The substitution body if...
of let... is derived from the body expression if ... of let ...
using Derivation 19. The B guard condition —(pp = ¢) is
derived from the OCL guard condition pp—>notEmpty. The
body of the substitution if... is generated from the the ex-
pression if ... according to Derivation 18 and Derivation 17.

6 Conclusion

This paper presents a systematic way for transforming
OCL expressions into B, which can be applied to generate B
supplementary invariants as well as B abstract operations in
B specifications generated according to the derivation pro-
cedure in our previous work [13], from the OCL specifica-
tions for the supplementary class invariants and for UML
operations in UML specifications.

For the further work, the prototype ArgoUML+B bas been
developped from ArgoUMLS3, a platform for editing UML
diagrams with the code in java and freely available. We
have added to ArgoUML the possibility to transform a set
of class and collaboration diagrams into a B specificattion
according the derivation procedure in [13]. In ArgoUML,
there is a component “ocl-argo”, which is in charge to parse
OCL expressions. We would like to extend this component
by implementing our derivation schemes from OCL into B.
So that the OCL constraints within UML class diagrams can
be transformed into B.

References

[1] J.R. Abrial. The B Book - Assigning Programs to Meanings. Cam-
bridge University Press, 1996. ISBN 0-521-49619-5.

[2] B-Core(UK) Ltd, Oxford (UK). B-Toolkit User’s Manual, 1996. Re-
lease 3.2.

[3] Thomas Baar, Bernhard Beckert, and Peter H. Schmitt. An extension
of Dynamic Logic for modelling OCL’s @pre operator. In Proceed-
ings, Fourth Andrei Ershov International Conference, Perspectives of

Shttp://www.ArgoUML.org

10

[4]

[5]

[6]

[71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

System Informatics, Novosibirsk, Russia, LNCS 2244, pages 47-54.
Springer, 2001.

Bernhard Beckert, Uwe Keller, and Peter H. Schmitt. Translating
the Object Constraint Language into first-order predicate logic. In
Proceedings, VERIFY, Workshop at Federated Logic Conferences
(FLoC), Copenhagen, Denmark, 2002. To appear.

P. Behm, P. Desforges, and J.-M. Meynadier. METEOR: An Indus-
trial Success in Formal Development, April 1998. An invited talk at
the 2nd Int. B conference, LNCS 1939.

D. Coleman, P. Arnold, St. Bodoff, Ch. Dollin, H. Gilchrist,
F. Hayes, and P. Jeremaes. Object-Oriented Development : The Fu-
sion Method. Prentice Hall, 1994.

E.W.D. Dijkstra. A Discipline of Programming. Prentice-Hall, En-
glewood Cliffs, 1976.

D. Gries. The Science of Programming. Springer Verlag, New York
(USA), 1981. 350 pages.

H. Habrias, editor. Putting Into Practice Methods and Tools for In-
formation System Design - 1st Conference on the B Method, Nantes
(F), November 1996.

R. Laleau and A. Mammar. A Generic Process to Refine a B Specifi-
cation into a Relational Database Implementation. In ZB 2000: For-
mal Specification and Development in Z and B, LNCS 1878, York
(UK), August/September 2000. Springer-Verlag.

K. Lano. The B Language and Method : A Guide to Practical Formal
Development. FACIT. Springer-Verlag, 1996. ISBN 3-540-76033-4.

H. Ledang and J. Souquiéres. Formalizing UML Behavioral Di-
agrams with B. In the Tenth OOPSLA Workshop on Behav-
ioral Semantics: Back to Basics, pages 162-171, Tampa Bay,
Florida (USA), October 15, 2001. Notheastern University Press.
http://www.loria.fr/~ledang/publications/oopsla0l.ps.gz.

H. Ledang and J. Souquieres. Modeling Class Operations in
B: Application to UML Behavioural Diagrams. In ASE2001:
the 16th IEEE International Conference on Automated Soft-
ware Engineering, pages 289-296, Loews Coronado Bay, San
Diego (USA), November 26-29, 2001. IEEE Computer Society.
http://wwuw.loria.fr/~ledang/publications/ase01.ps.gz.

H. Ledang and J. Souquieres. Derivation Schemes from OCL Ex-
pressions to B. Technical Report A02-R-042, Laboratoire Lor-
rain de Recherche en Informatique et ses Applications, May 2002.
http://wwuw.loria.fr/~ledang/publications/oclb.ps.gz.

R. Marcano and N. Lévy. Transformation d’annotations OCL en ex-
pressions B. In Journées AFADL’2001 : Approches Formelles dans
I’Assistance au Développement de Logiciels, Nancy (F), 11-13 juin,
2001.

E. Meyer. Développements formels par objets: utilisation conjointe
de B et d’UML. PhD thesis, LORIA - Université Nancy 2, Nancy (F),
mars 2001.

E. Meyer and J. Souquiéres. A systematic approach to transform
OMT diagrams to a B specification. In FM’99 : World Congress on
Formal Methods in the Development of Computing Systems, LNCS
1708, Toulouse (F), September 1999. Springer-Verlag.

H.P. Nguyen. Dérivation de spécifications formelles B a partir de
spécifications semi-formelles. PhD thesis, Conservatoire National
des Arts et Métiers - CEDRIC, Paris (F), décembre 1998.

The Object Management Group (OMG). OMG Unified Modeling
Language Specification, June 1999. Version 1.3.

STERIA - Technologies de I’Information, Aix-en-Provence (F). Ate-
lier B, Manuel Utilisateur, 1998. Version 3.5.

