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Object Programming in a Rule-Based Language
with Strategies

Hubert Dubois and Hélene Kirchner
LORIA-Université Nancy 2 & LORIA-CNRS
BP 239
54506 Vandceuvre-les-Nancy Cedex, France
{Hubert.Dubois|Helene.Kirchner}@loria.fr

Abstract. This paper presents a programming framework that com-
bines the concepts of objects, rules and strategies, built as an extension
of the rule-based language with strategies ELAN. This extension is imple-
mented in a reflective way in ELAN itself and relies on the same formal
semantics, namely the p-calculus.

1 Introduction

Object-based languages and rule-based languages have independently emerged
as programming paradigms in the eighties. Languages like Ada [R0s92], Smalltalk-
80 [GRA83], Eiffel [Mey92] or Java [AG96] are well-known and largely used but
often lack of semantical basis. Rule-based systems, initially used in the artificial
intelligence community, have gained interest with the development of efficient
compilers.

The ELAN system [BCD'00] provides a very general approach to rule-based
programming. ELAN offers an environment for specifying and prototyping de-
duction systems in a language based on rewrite rules controlled by strategies. It
gives a natural and simple logical framework for the combination of computa-
tion and deduction paradigms. It supports the design of theorem provers, logic
programming languages, constraint solvers and decision procedures and offers a
modular framework for studying their combination. ELAN has a clear operational
semantics based on rewriting logic [BKKRO01] and on rewriting calculus [Cir00].
Its implementation involves compiled matching and reduction techniques inte-
grating associative and commutative functions. Non deterministic computations
return several results whose enumeration is handled thanks to a few constructors
of choice strategies. A strategy language is available to control rewriting. Evalu-
ation of strategies and strategy application is again based on rewriting. However,
ELAN lack object oriented features, the notion of states, which provides more
structuration, and the ability to define structures sharing the same properties.

More recently, the combination of object-based languages and rule-based lan-
guages has proved to be quite relevant to formalize and solve advanced industrial
problems that require some form of reasoning. Among many other languages, let
us mention three of them, more closely related to our approach: CLAIRE [CL96],
Oz [HSW95] and Maude [CDE*00].



CLAIRE is combines objects and propagation rules in the logic programming
style for problem solving and combinatorial optimization. Single inheritance and
full polymorphism are supported. CLAIRE has been realized to deal with appli-
cations with complex data structures with the ability to define rules. CLAIRE
rules associate a logical condition with an expression composed by one or two
objects: when a condition is evaluated into true, the expression is evaluated for
the given objects. Conditions are events that denote an evolution of an entity
(creation of an object, modification of an attribute, etc...). Rules can be grouped
together but control is not explicit.

Oz is a concurrent object oriented constraint language that offers multiple
inheritance, higher-order functions and search combinators. The programming
language Oz integrates the paradigms of imperative, functional and concurrent
constraint programming in a computational framework. The integration of ob-
jects into the programming language is interesting because they have defined
a small Oz that can support objects for concurrent constraint programming.
Propagation rules are also used in the context of constraint solving.

Maude is a language based on rewriting logic, with several extensions, among
which Full Maude where object oriented modules can be defined. It offers the
possibility to develop concurrent object systems, or configurations, where the
current state has a multiset structure of objects and messages, and evolves by
application of rules that implement message calls.

Compared to these existing languages, extending ELAN with objects provides
several advantages. First of all, the fact that ELAN provides a strategy language
and strategy constructors to define control on rules, appears as essential for
many applications. Second, the main features that characterize object languages
(definition of classes composed of attributes and methods; simple inheritance;
method call on objects) can be defined in a reflective way, since the extension
is defined in ELAN itself. Finally our last, but maybe more important, point is
that the extension has a semantics compatible with the rewriting calculus and
is achieved by mapping the theory of objects into the p-calculus.

In Section 2, we first present the syntax of the object extension of ELAN,
including object modules and rules on objects. The encoding of objects and
classes into an algebraic theory is presented in Section 3. This provides the basis
for the reflective implementation of the extension in ELAN itself. Section 4 first
introduces the rewriting calculus on which the semantics of the object extension
is defined. The conclusion gives some further perspectives. An extensive example
is developed in Appendix.

2 The language extension

Adding object-oriented features to ELAN was motivated by the need of repre-
senting structured data and states and to combine them with rewrite rules and
strategies describing their evolution. In this section, after a short presentation of
the ELAN system, we define the object-oriented extension of ELAN that consists
in declaring special modules that we call OModules (OModule for Object Mod-



ule) where the user can define the classes that he uses. In each module, attributes
and methods are defined for each class; the syntax of these object modules is
quite similar to object languages like Smalltalk-80 [GR83] or OCaml [RV98].

2.1 ELAN

The starting point of this work was the ELAN system. We briefly present the
features of the language that are used in this paper and the reader can refer
to [BCD*00] for further details and examples. In order to have some additional
informations, the reader can refer to several articles and presentations of the
system?.

The language is close to the algebraic specification formalism with abstract
data types defined by operators and rewrite rules, but provides additional speci-
ficities that are worth emphasizing. Three main principles have guided the design
of the ELAN language.

— First, the language allows rules to be non-terminating and non-confluent,
but then their application has to be controlled. A distinction is made be-
tween unlabelled rules for computations, which are required to be confluent
and terminating, in order to give a unique result, and labelled rules for de-
ductions, for which no confluence nor termination is required.

— Rules and strategies are first-class objects in the language.

— Application of a rule or a strategy on a term may give zero, one, or several
results. This non-determinism related to the production of sets of results is
handled by backtracking.

Modules Following the algebraic languages tradition, ELAN is modular. A pro-
gram is a collection of hierarchically constructed modules together with a re-
quest, which is a term to be evaluated in this hierarchy. A module may import
already defined modules and this importation may be local (not visible outside
the module) or global (visible outside). A module also defines a set of sorts, a list
of operators with their types, several lists of rules, classified by the type of their
left and right-hand sides, and strategies, also defined by operators and rules.

Predefined modules exist in the ELAN library, such as bool, int, ident,
list[X]...

Confluent and terminating rules Conditional rewrite rules can be grouped
together according to the sort of their left (and right) hand side. For rewrite
systems with mutually exclusive conditions in rules, we have confluence and
terminating properties. An application of such set of rules on an initial term
produces a unique result.

! See the Web site of ELAN: http://elan.loria.fr



Strategy language A strategy language is provided to express control and
derivation tree exploration. A few strategy constructors, similar to those for
tactics in proof assistants, are offered and efficiently implemented.

— A labelled rule is a primal strategy. Applying a rule labelled lab returns
in general a set of results. This primal strategy fails if the set of results is
empty.

— Two strategies can be concatenated by the symbol “;”, i.e. the second strat-
egy is applied on all results of the first one. Sy ; Sy denotes the sequential
composition of the two strategies. It fails if either Sy fails or Sy fails. Its
results are all results of S; on which S5 is applied and gives some results.

— dk(Si,...,S,) chooses all strategies given in the list of arguments and for
each of them returns all its results. This set of results may be empty, in
which case the strategy fails.

— first(S;,...,S,) chooses in the list the first strategy S; that does not fail,
and returns all its results. This strategy may return more than one result,
or fails if all sub-strategies S; fail.

— first_one(Sy,...,Sy,) chooses in the list the first strategy S; that does not
fail, and returns its first result. This strategy produces at most one result or
fails if all sub-strategies fail.

— The strategy id is the identity that does nothing but never fails.

— fail is the strategy that always fails.

— repeat*(S) applies repeatedly the strategy S until it fails and returns the
results of the last unfailing application. This strategy can never fail (zero
application of S is possible) and may return more than one result.

But the user may also design his own strategies. The easiest way to build a
strategy is to use the strategy constructors to build strategy terms and to de-
fine a new constant operator that denotes this (more or less complex) strategy
expression. This gives rise to a class of strategies called elementary strategies.
Elementary strategies are defined by unlabelled rules of the form [| S = strat,
where S is a constant strategy operator and strat a term built on predefined s-
trategy constructors and rule labels, but that does not involve S. The application
of a strategy S on a term t is denoted (S) ¢.

Rules with local variables and patterns Labelled rules and more generally
strategies are always applied at the top position of a term. In order to be able to
apply them inside expressions, a more general form of rule with local variables
allowing to apply strategies on subterms is allowed in ELAN.

One can also generalize variables to patterns, i.e. terms with variables. We
define T (F,X) as the set of terms built from a given finite set F of function
symbols and a denumerable set X’ of variables and Var(t) as the set of variables
occurring in a term ¢t. We assume that the reader is familiar with these notations
and to get more details, he can refer to the main concepts of general logic [Mes89]
and rewriting logic [Mes92].



To summarize, the general form of ELAN rules is actually as follows:
[[] | - r where p; := (S1)c1... where p, := (Sp)cp

- larapla"'apn;cla"'acn € T(ZJX)J

= Var(p;) N Var() UVar(p1) U---UVar(p;—1)) = 0,
— Var(r) CVar(l) UVar(p1) U---UVar(p,) and

— Var(¢;) € Var(l) UVar(pr) U ---UVar(pi—1).

In such expressions, where true := c is usually written if c¢. The pattern p;
often reduced to a variable z. S; may be the identity strategy, which is written
()Ci.

To apply the rule
[(] | - r where p; := (S1)c1... where pp := (Sp)cp

to a subject ¢, the matching substitution from ! to t (lo = t) is successively
composed with each matching p; from p; to (S;)ciopy - .. pi—1, fori=1,... n.
To evaluate each (S)c¢, ¢ is first normalized using the unlabelled rules, then one
tries to apply a labelled rule according to the strategy S. Choice points are set
when there are several results and if at some point the set of results is empty,
the system backtracks to the previous choice point. When the rule contains a
sequence of matching conditions, failing to satisfy the i-th condition causes a
backtracking to the previous one.

Associative Commutative functions Associative and commutative (AC for
short) functions introduce an intrinsic non-determinism. Since an AC matching
problem can have several solutions, one may want to get all solutions of an AC
matching problem and build all possible results of rewriting with these different
matching substitutions.

When an ELAN rule has a left-hand side [ or a pattern p that contains AC
function symbols, AC matching is called and can return several solutions. This
provides an additional potentiality of backtracking.

As a consequence of these features, the language allows different program-
ming styles. Functional programs are naturally expressed with confluent and
terminating rules, while the backtracking mechanism used to handle several re-
sults gives a flavor of logic programming and allows to program non-deterministic
computations. The main originality is surely the capability of strategy program-
ming for expressing the control of programs in a declarative way.

Adding objects oriented features to ELAN amounts to enrich the language
with OModules and rules on objects, described below.

2.2 General syntax of OModules

To each class definition corresponds a specific OModule. In order to differentiate
these modules from ELAN standard ones, a particular syntax for OModules is
introduced, quite similar to object languages like Smalltalk-80 or OCaml [RV98].



In an OModule, the following items are successively defined: the attributes
composing each object of this class, the methods associated to the class, the
imported modules and the inherited classes.

Attributes. Each object is characterized by its attributes. To each attribute
is associated a type (or sort) defining the set of values that it can take. An initial
value is also specified for each attribute which is used when a new object of the
class is created.

Example 1 Let us consider the class Point defining points in a bidimen-
tionnal space. Two attributes are declared in this class: the first one, called X,
defines the abscissa of any point and the second one, called Y, for the ordinate.
This class is declared in the following object module:

class Point
attributes X:int =
Y:int

no
o O

End

Any object of this class is created with an abscissa and an ordinate initialized
to 0.

Methods. A method is a function that can be applied to a given object called
target object. This method can modify the target object. Calling a method m on
an object o is denoted by o.m. This is what is usually called message passing.
We distinguish here two kinds of methods.

First, the generic methods are those that are automatically defined by the
system. These methods deal with the modification and the access to the value
of an attribute and also with the creation of an object of a given class.

Let us consider a class C' where an attribute A of sort t4 is defined. Two
methods, GetA and SetA, are associated to this class and to this attribute.

— The message o0.GetA calls the method GetA on the object o. The result of
this method call is of sort t4 and is the value associated to the attribute A
of the object o.

— The message 0.SetA(V) calls the method SetA on the object o with the
parameter V of sort t4. The result is the object o updated by replacing the
value of the attribute A by the given value V.

In each class, a specific method called new is defined which constructs a new
initial object of the class, whose attributes are initialized with default values.
This object has access to all methods defined in the class. Any new object of this
class is created as a copy (a clone) of the initial object and can of course be mod-
ified later on. This technique is used in actor languages like Scheme [ADH198]
or Common Lisp [Ste90].



The second kind of methods are those defined by the user: the user methods.
A user method is given by its name, a list of arguments if necessary, the sort of
the result, possibly local variables and its body.

In the method definition, local variables must be declared before being used
in the body in local assignments.

A method can have parameters defined by a formal name and a sort. The
object designed by the method call is a particular implicit parameter: it can be
referred to by the keyword self in the body of the method. This parameter does
not have to be declared in the list of arguments.

Method bodies are composed of different instructions: the method call, the
concatenation of several instructions, boolean tests and local assignments. These
instructions are illustrated in the next example.

Example 2 Let us consider the class PointTranslation with two attributes
X and Y of sort int initialized to 0 and which defines two methods: a first one,
TranslateX, modifies the value of the attribute X by adding the value of a pa-
rameter N to the old value assigned to X. The second one, Translate, calls the
translation over X only if a condition on the values of X and Y is checked. If this
is the case, a value for the local variable N is computed to allow the method call
of Translate parameterized by N.

class PointTranslation

attributes X:int = 0
Y:int = 0

method TranslateX(N:int) for PointTranslation
<self.SetX(self.GetX + N)>

method Translate for PointTranslation N:int
<if self.GetX > self.GetY ;
N := self.GetX - self.GetY ;
self.TranslateX(N)>

End

Importation of modules. Each object module can import others modules
which are not object modules but standard ELAN modules where sorts, oper-
ators, rules and strategies are defined. An object module may use a library of
standard ELAN modules, but is not allowed to import another object module.
In this way, these importations are different from the inheritance mechanism of
object languages presented below.

Example 3 Let us consider the class Point defined in the example 1. Now,
we enrich it in order to define colored points. The colors of the points are defined
in a standard ELAN module that is called color.eln in which the sort color is
defined as the sort that enumerates all the possible color values. Let us consider
that Black is one of these values.

We introduce the new class of colored points ColoredPoint, where the at-
tribute denoting the color of each point is the attribute Color, of sort color



initialized with the value Black, we define the object module ColoredPoint as
follows:

class ColoredPoint

imports color

attributes X:int = 0
Y:int 0
Color:color = Black

End

Inheritance. An object module can inherit attributes and methods from an-
other class by using the keyword from followed by a class name. The inheritance
mechanism allows a given class B, inheriting a class A, to specialize the inherited
class: attributes and methods defined in A are available, but new attributes and
new methods can then be defined too. Methods can also be overridden in order
to specialize them. This kind of inheritance is called simple inheritance.

The inherited methods are overloaded with the definition of methods with
the same name but their sorts are different according to the associated class.
The overloading of methods can also be used to redefine a method. The sort and
the body of the method are then different between the two classes. This feature
also holds for attributes that can be overloaded by giving another initial value.

Example 4 Let us consider the example of the class Point defining basic
points given in Example 1 and the class ColoredPoint defining colored points
given in the Example 3. Instead of completely redefining the class ColoredPoint
as before, inheritance can be used to simply define the ColoredPoint class from
the Point class as follows:

class ColoredPoint

imports color

from Point

attributes Color:color = Black
End

The attributes X and Y from class Point are inherited, as well as the particular
methods GetX, GetY, SetX and SetY associated to the Point class. Thus, we only
have to define the attribute Color while the associated methods GetColor and
SetColor are then automatically associated.

The simple inheritance that is defined here can be compared to simple in-
heritance in Java but is less powerful than in Smalltalk-80 where inheritance is
multiple, which means that a class can inherit several other classes.

The complete syntax of OModules and more examples can be found in [Dub01].



2.3 Rules on objects

An object base represents the set of all objects that live at a given time in the
system. Rules are defined to delete, modify or add objects in this object base.
An informal presentation is given here.

Rules are of the form:

[lab] O1...0; = O;...0,, [if t| where []*

where O1,...,04,0},...,0,, are objects, t is a boolean term and [ a local as-
signment, that both may involve objects and method calls. This rule, as standard
ELAN rules previously presented, can be labelled. The O; objects of the left-hand
side represent the matching conditions of this rule. The rule is applied only if
these objects can be found in the object base. Each rule mentions the relevant
information on the object base; the context is omitted. The order of objects O;
and 03 in both sides is not relevant since an AC operator is used for the objects
base construction. Each O; object of the left-hand side has one of two possible
forms: the first one, O; : ClassName; :: [Att; (Valuer) , ..., Att,(Value,)],
corresponds to an object of a given class ClassName; where few attributes Att;
are specified and the second form, O; : ClassName;, corresponds to an object
for which only the class ClassName; is specified.

In general, the application of a rule on the data base of objects may return
several results, for instance when several objects or multisets of objects match
its left-hand side. This introduces some non-determinism and the need to control
rule application. This is why the concept of strategy is introduced. Strategies
are used to control the application of rules on objects: strategies provide the
capability to define a sequential application of rules; to make choices between
several rules that can be applied; to iterate rules; etc.

Including objects in rules controlled by strategies is now possible in the de-
fined formalism of rules working on an object base. Planification or scheduling
problems are easily expressed as shown in [DK0Ob] where the formalism of rules
presented in this paper is enriched in order to also control a constraint base.
Strategies are used in both cases to control the application of the rules. Other
examples of applications can be found in [Dub01].

3 An algebraic encoding of objects

Our purpose now is to show how the definition of classes in the object modules
can be implemented in a first-order algebraic language such as ELAN. We choose
here an approach where objects and classes are represented as objects like in
the class-based language Smalltalk-80 where the unique entity is the object. This
implementation has been guided by a few choices.

There is a distinction between attributes and methods. In many applications,
using objects essentially consists in reading or modifying the values of attributes.
Thus, we have to define a structure where the values of attributes are quickly
accessible. The difference between attributes and methods is a good way to



distinguish what represents the state of an object at a given time (the attributes
and their associated values) and the functions that can be applied to this object
(the methods). However, we do not want to separate an object with its attributes
from the set of methods that can be applied to the object. We thus have to define
a structure where each object includes the methods associated to it.

The application of a method is defined with rewrite rules. This imposes some
(quite reasonable) restrictions on the definition of methods and is compatible
with the distinction between attributes and methods in the following way: to an
attribute is associated a value which can be modified during the evaluation, but
no rewrite rule. An attribute is mutable by rewriting, and complex expressions
may be considered as values of attributes. On the contrary, methods are defined
by rewrite rules and are non-mutable, i.e. once rewrite rules associated to meth-
ods have been defined, one cannot delete or even change them. Thus, an object is
composed of mutable attributes, whose values can be changed during evaluation,
and of references to non-mutable methods. The reference to any method can be
hidden or revealed during the execution and thus, the ability for an object to
execute a method can change.

3.1 A representation based on operators and rules

Each object composed of attributes and methods which the object has access
to is represented by a term; methods are represented by functions defined by
rewriting rules.

— In order to represent the attributes and their corresponding values, the object
structure involves a set of pairs (attribute,value). Each attribute is denoted
by a constant and each value by a term with the same sort.

— The object structure also involves a set of constants denoting methods. To
each of them, an operator is associated that has the same name. To each
method body corresponds a rewrite rule right-hand side, with, possibly, local
assignments and boolean tests.

This object representation is schematized in Figure 1.

Definition of operators and rules associated to the object representation are
detailed in Section 3.2 and in Section 3.3. Operators and rules associated to user
methods are detailed in Section 3.4.

3.2 Operators associated to the representation

The signature of operators that are defined to build the representation of objects
is as follows:

[[] : Methods — Object
— - : Methods x Methods — Methods  (AC)
- : Method > Methods

() : MName x MBody + Method
-t MName > Method
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Representation of an object
The set of rules

Fig. 1. Object representation

The notation used is the following: each operator takes arguments that are
denoted by _. The sort of these arguments are given in the left part of the profile
while the right part is the sort of the result. An operator is mixfix, that is to say
that an argument can appear anywhere in the operator definition. For instance,
_(2) has two arguments of respective sorts M Name and M Body and gives a
result of sort Method. This is a mixfix operators that builds the association
(attribute,value): the name of the attribute (of sort M Name) appears in the
first place and the corresponding value (of sort M Body) between the brackets.

[_] is the constructor of objects. Each object o has the form [LM] where
LM, of sort Methods is a set composed of pairs attribute(value) and of refer-
ences to methods. This set is built with the operator _,_ which is associative
and commutative; this is indicated by annotation (AC). Each element, of sort
Method, is thus either a pair (attribute,value), or a reference to a method (the
last _ operator) also of sort M Name.

To these declarations and definitions, we also add rules that correspond to
the manipulation of objects: to add an attribute, to modify its value, to access a
method and to create a new object. These rules are defined in Section 3.3. But,
before defining the rules, we have to present the corresponding operators:

add(-,-) :Object x Method > Object
kill(-,-)  : Object x M Name — Object
access(-, -) : Object x M Name — M Body
new(-) : Object — Object

These four basic operators are defined and used to construct and decom-
pose objects: the add(_,_) operator is used to add a new element to the set of
attributes and methods; the kill(_,_) operator is used to remove an element
given in the parameters from the set of pairs and references that compose the
object; the access(_,_) operator is used to have access to the value associated
to an attribute given as parameter; the last new operator is used to create a new
object from the object representing the class.

In the set of methods, the two particular methods Get and Set take as
arguments the attribute they deal with.



Get(_,-) : Object x M Name — M Body
Set(_, -, -) : Object x M Name x M Body — Object

3.3 Rules associated to the representation

We now define a system R of rewriting rules that are used to evaluate objects.
This system is based on the above representation of objects and inspired from the
object p-calculus [CKLO1]. The whole rewrite system R can be found in Figure 2.
R is composed of rules related to the object definition and manipulation. We

have proved in [Dub01] that the system R is confluent and terminating.

Add a component add([LM], me) —x [LM,me]
Remove a component-1 kill([M(B), LM],M) —x [LM)]
Remove a component-2 kill(([M,LM], M) —x [LM]

Access to an attribute value access([M(B),LM],M) —z B
Access to a value by Get Get(o, M) —x access(o, M)

Modification of a value by Set Set(o, M, B) —x add(kill(o, M), M(B))

Creation of a new object new(o) —r [a1(vi1),. .., an(Vin), M1, .., Mm]
The operator Geta Getqa(0) —r Get(o,a)

The operator Seta Seta(o,v) —r Set(o,a,v)

Method call for Geta [LM,Get,].Get, —r Geto ([LM,Gety])

Method call for Seta [LM, Set,].Seta(v) —r Seto([LM, Sety],v)
Method call for new [LM,new].new —x new([LM,new))

Method call for a method m  [LM,m].m(p1,...,pm) —=r m([LM,m],p1,...,Pm)

Fig. 2. The system R

3.4 Operators and rules associated to user’s methods

For each user methods, we associate:

— a constant of sort M Name representing the name of the method;

— an operator declaration which profile is based on the profile of the user’s
method: to each parameter of the method corresponds an argument of the
operator. We also add to the corresponding operator a first argument which

represents the object itself (the self);
— a set of rules defining this operator.



Let us now present how the rules associated to user’s methods are built.

This is performed by defining a transformation mechanism that deduces rewrite
rules for each user method. The operator build — rule(-) (cf. Figure 3) takes as
argument the definition of a method in the formalism described in Section 2.2
and returns the associated rewrite rule in the ELAN syntax.

build — rule( method name (args) for t vars body) =
rules for ¢
S : class-name;
var — decl(vars, args, body)
[l name(S, get — args(args)) => build — rhs(body,list_vars) end
end
build — rule( method name (args) for t body) =
rules for ¢
S : class-name;
var — decl(args, body)
[] name(S, get — args(args)) => build — rhs(body,list_vars) end
end
build — rule( method name for t vars body) =
rules for ¢
S : class-name;
var — decl(vars, body)
[] name(S) => build — rhs(body, list_vars) end
end
build — rule( method name for t body) =
rules for ¢
S : class_-name;
var — decl(body)
[l name(S) => build — rhs(body, list_vars) end
end

Fig. 3. Definition of function build — rule

In the definition of build — rule, we handle the four possibilities that can

appear and which depend on having or not arguments (args) and local variable
declarations (vars). The rules are built in the ELAN syntax.

The operator build — rhs(_,_) takes a body and a list of variables which is

built step by step. Each new variable added to this list corresponds to a local
variable used when an object is modified. This list memorizes this information.
When initialized, this variable list is only composed of the variable S.

Example 5 Let us consider the Translate method presented in Exemple 2.

The rule corresponding to this method is defined by build — rule and the result

18!

rules for PointTranslation

N
S

: int;
: PointTranslation;

01 : PointTranslation;

]

Translate(S) => 01
if GetX(S) > GetY(S)
where N := () GetX(S) - GetY(S)



where 01 := () TranslateX(S,N)

More details can be found in [Dub01].

The system R presented in Section 3.3 is thus enriched with the rules defining
the user methods to give a set R'. For the time being, the system does not check
that R’ is confluent and terminating and this is under the user’s responsibility.
Indeed, we aimed at a complete proof environment that would automatically
check these properties.

4 An operational semantics based on the p-calculus

Our goal is now to give a formal semantics to this object-oriented extension
of ELAN. Several calculus as the Object Lambda Calculus defined by K. Fish-
er, F. Honsell and J.C. Mitchell [FHM94] and the Object Calculus of M. Abadi
and L. Cardelli [AC96] are candidates to provide object languages with a formal
semantics. Our choice is to base the semantics on another calculus called the
Rewriting Calculus, or p-calculus defined by H. Cirstea and C. Kirchner [CK99]
that encompasses in particular both A-calculus and term rewriting. In this calcu-
lus, terms, rewriting rules and application of a rule on a term can be represented.

This choice was done for two reasons: first, the p-calculus already provides
an operational semantics for ELAN and second, it is general enough to represent
both the Object Lambda Calculus and the Object Calculus as shown in [CKLO01],
where an extension of the p-calculus, called the object p-calculus has been de-
fined.

In order to prove that the p-calculus gives an operational semantics to the
object extension of ELAN, we establish a close correspondence between reduction
of an object term in the algebraic theory of objects given in Section 3 and
reduction of the corresponding p-term in the p-calculus.

In the algebraic theory of objects, an object is represented as a term of sort
Object. We have proved that the set of rules R is terminating and confluent
and we can consider a confluent and terminating extended set R' with rewriting
rules corresponding to user-defined methods. So each term ¢ of sort Object has
a normal form denoted by NFg:(t), or NF(t) for short.

In Figure 4, we illustrate that each reduction (noted --+) of a term ¢ of sort
Object to its normal form NF(t) corresponds to a reduction (noted —) in the
p-calculus from a p-term to to another one tj,, where to and ¢{, are the respective
translations of ¢t and NF(t) considering a translation 7. Definition of 7, results
and proofs can be found in [Dub01].

Once object terms have been translated to p-terms, a data base of objects is
translated to a p-term built with an AC-operator on top (a set of p-terms). Rules
on objects also correspond to p-terms [CK99] and application of these rules to
the data base is application of p-calculus.



Object term p-term

NE, () ——— T(NF,(0)

Fig. 4. Correspondence between object rewriting and p-term evaluation

5 Conclusion

The purpose of this paper was to show that objects, rewriting rules and strategies
can be integrated in a same formalism with an operational semantics defined by
the p-calculus.

We have proposed a language to define objects in the “programming by
rewrite rules and strategies” paradigm offered by the ELAN system. This con-
sists in adding OModules to the standard modules where operators, rules and
strategies are defined in ELAN; in OModules, classes with attributes and meth-
ods are declared. Mixing OModules with standard modules allows the developer
to define applications where special rules that manage objects can be defined.
Furthermore, we have shown that objects can also be represented in the p-
calculus that already gives an operational semantics to ELAN. The purpose of
this work was to provide object features in ELAN in a semantically coherent way,
without pretending to design a new powerful object oriented language. On the
other hand, thanks to the operational semantics based on the rewriting calcu-
lus, one can develop verification tools that often lack in classical object oriented
languages.

Developing objects in a rewriting context is also useful for rewriting itself.
Indeed, when considering only a part of the object base in an object rule, this
allows a better structure of the knowledge and this also allows a kind of global
variable represented by the object base. This is very useful in a rewriting context
where the possibility to use global variables often lacks.

In [DKOODb], a formalism where rules may also be extended with constraints
is presented. This leads to a general framework where rewriting rules and strate-
gies can manage simultaneously an object base and a constraint base. As the
constraint solver used in the applications definition is also based on the rewrite
system ELAN, and, thus, on the p-calculus semantics, this complete framework
is also based on the p-calculus semantics [Dub01].

Some applications of ELAN extended with objects have been developed. A
first one consists in defining a multi-elevator controller [DK00a]. A second one
consists in defining a print controller [DKO0Ob]; in this case, rules are extended



with objects and also with constraints. Planification and scheduling problems
are then very easily defined in this formalism.

In such applications, strategies to control the applications of rules on objects
have been proved useful. A further interesting direction is to use strategies to
define methods, especially non deterministic ones, inside OModules. Although
this is not a problem at the semantical level, this would need to implement in
ELAN an explicit application operator.

Adding new components to the standard ELAN system such that OModules
and new kind of rewrite rules was made possible by using a transformation pro-
cess of OModules into ELAN modules, which relies on the algebraic theory of
objects presented in this paper. The extended language has been prototyped in
ELAN in this way, and more details can be found in [DK00a,Dub01]. Although
this first experiment was a good approach to explore the power of the framework,
in order to get an efficient programming language, one needs to go further. A
more promising approach, currently explored, is to translate object programs in-
to an internal term structure directly executable by the ELAN compiler, avoiding
in this way to produce new ELAN modules.
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A An example

In order to illustrate now the use of objects in the extended language, let us
consider a program whose purpose is to automate and control an elevator system
for buildings with multiple elevators.



Several implementations of a multi-elevator controller exist in the literature,
for instance based on constraint nets [ZM93], on temporal logic [Bar85] or on
the Abstract State Machine [Abr96]. Although not original, this example nicely
illustrates the use of ours formalism based on rules, objects and strategies. Com-
pared to other approaches, ours is uniform, the rules are clear and the ability for
the user to develop easily strategies to express control is very appealing. More-
over, verification techniques available in rule formalism can be adapted to prove
properties such as termination, confluence, completeness of the specification.

To formalize the multi-elevator controller, we first define two classes: a class
MLift for elevators and a class Call for the controller. Then, we present the
rules defined to design the multi-elevator controller and, finally, the strategies
before a short presentation of an execution.

A.1 The class MLift

This class describes elevators. Each elevator is an object of this class, character-
ized by:

— its current floor denoted by the attribute CF -current floor- represented by
an integer,

— its state: is it going up?, down?, or is it waiting for a call? This is defined by
the attribute State of sort LiftState,

— its list of floors where it has to stop with the attribute LStop which is a list
of integers.

The sort describing the state of an elevator is called LiftState. This sort is
defined with two operators: a constant Wait of sort LiftState and an operator
Move () which takes a term of sort Direction as argument (Up and Down are of
sort Direction) and returns an element of sort LiftState. This is defined in a
standard ELAN module by:

operators global

Up : Sense;

Down . Sense;

Move (Q) : (Sense) LiftState;
Wait : LiftState;

end
Three other attributes are also defined:

— Zone that indicates the zone where this elevator is. Indeed, each building is
divided in several zones, each one composed by consecutive floors, and there
is as many zones as elevators. For instance, considering a building with 4
elevators and with 27 floors, four zones will be considered: the first one from
floor 0 to 6, then, a second one (floor 7 to 13), a third one (floor 14 to 20)
and a last fourth one form floor 21 to 27. This attribute is useful if we want
to guarantee that when dividing the number of floors into a number of zones,



each zone does not have more than two elevators working at any moment.
This guarantees a better quality of service for the access to an elevator in
the building.

— F (standing for Flag) whose value is either 0 or 1 indicates that an elevator
is performing an instruction (F to 1) or waiting for a new instruction (F to
0).

— I, standing for Interruption, is an integer which can take value in {0,1}. If
I= 0, then the elevator has no interruption and is available; if I= 1, then,
the elevator is out of service.

Several methods are defined for the class MLift:

— a method WhichSense () takes an integer representing the new floor that
the elevator has to reach from its current one. It returns the direction that
the elevator has to adopt: either it will go up or down.

— the method UpdateZone computes, after the elevator has moved, in which
zone it is.

— amethod AddLStop(_) takes a list of integers L representing a list of different
floors and returns the object representing the elevator whose attribute LStop
(list of floors) has been updated with L. The new list LStop is sorted.

— the last method, RemoveLStop(.), deletes from the list of stops LStop the
floor given as parameter of this method.

These definitions and declarations of methods and attributes are grouped
together in the definition of the OModule for the class MLift:

class MLift
imports ToolsMLift

attributes CF:int = 0
State:LiftState
LStop:list[int]
Zone:int = 0
F:int = 0
I:int = 0

Wait
nil

method WhichSense(N:int) for MLift
S : Sense;
<S:=ChooseSense(self.GetCF,N) ; self.SetState(Move(S))>

method UpdateZone for MLift
<self.SetZone (NewZone (self.GetCF))>

method AddLStop(L:list[int]) for MLift
<self.SetLStop(AddAndSort (self.GetLStop,L))>

method RemoveLStop(N:int) for MLift
<self.SetLStop(RemoveList (self.GetLStop,N))>
End



A.2 The class Call

This class describes the central memory for the multi-elevator controller. When
people enter the elevator, they select floors where they want to go out. This is
formalized by an attribute LCall composed of a list of integers: the requested
floor. These are floors that have to be served to load people.

To distinguish calls that are processed from those that are waiting, a second
attribute AssignedCall is composed of calls that have been assigned to an
elevator and which are to be processed.

Different methods are defined in the object module describing the class Call:

— a method AddAssignedCall () takes an integer that represents a floor and
adds it in the list of calls that are processed.

— a method RemoveAssignedCall(.) takes an integer that represents a floor
and removes it from the list of calls that are currently processed.

— alast method called RemoveLCall(.) takes an integer that represents a floor
and removes it from the list of calls that are waiting to be processed.

The class Call is defined in the following OModule:

class Call
imports Tools

attributes LCall:list[int] = nil
AssignedCall:list[int] = nil

method AddAssignedCall(N:int) for Call
<self.SetAssignedCall (AddList(self.GetAssignedCall,N))>

method RemoveAssignedCall(N:int) for Call
<self.SetAssignedCall (Removelist (self.GetAssignedCall,N))>

method RemovelLCall(N:int) for Call
<self.SetLCall(RemovelList (self.GetLCall,N))>

End

A.3 The rules

The rules that define the actions on elevators can now be described.

The two main rules are the rule Up and the rule Down. An elevator going
upward or downward can continue if the current floor is not a floor occurring in
its list of stops or in the list of calls. If the elevator can continue, the current
floor and the zone are updated. A condition to apply these rules is that the value
of the flag is 0; this value is updated to 1 after application.



[Up] 01:MLift::[State(Move(Up)) , F(0) , I(0)]
02:LCall
=>
01(CF<-01.CF+1) .UpdateZone (F<-1)
02
if not(in(01.CF,01.Stop))
if not(in(01.CF,02.LCall))

[Down] O01:MLift::[State(Move(Down)) , F(0) , I(0)]
02:LCall
=>
01(CF<-01.CF-1) .UpdateZone (F<-1)
02
if not(in(01.CF,01.Stop))
if not(in(01.CF,02.LCall))

Each elevator can change its moving direction in two cases: either it has
reached the top level (or the bottom level), or its current floor is greater (resp.
lower) than the maximum (resp. the minimum) level where it has to stop. This
is represented by these two rules ChangeToDown and ChangeToUp:

[ChangeToDown]
01:MLift:: [State(Move(Up)) , F(0) , I(0)]
=>
01(State<-Move (Down) ,F<-1)
if 01.CF > Max(01.LStop) or 01.CF == MaxLevel

[ChangeToUp]
01:MLift::[State(Move(Down)) , F(0) , I(0)]
=>
01(State<-Move (Up) ,F<-1)
if 01.CF < Min(01.LStop) or 01.CF == MinlLevel

Each elevator has to stop for different reasons. An elevator stops when its
current floor is in its list of requested stops (rule OpenDoorsStop) or when it is
in the list of calls (rule OpenDoorsCall). These rules can be applied in the two
moving directions; this corresponds to the variable S for the attribute State.

If the rule OpenDoorsStopis applied, the current floor is removed from the list
of stops. If the rule OpenDoorsCall is applied, the current floor is also removed
from the list of calls and then, the new stops requested by people entering the
elevator are added to the list of stops.

[OpenDoorsStop]
01:MLift::[F(0) , I(0)]
=>

01.RemoveLStop(01.CF) (F<-1)
if 01.State != Wait
if in(01.CF,01.LStop)



[OpenDoorsCall]
01:MLift::[F(0) , I(0)]
02:Call
=>
01.AddLStop(L1) (F<-1)
02.RemoveLCall(01.CF)
if 01.State != Wait
if in(01.CF,02.LCall)
where L1 := () ObtainNewStops(01.CF)

If the current floor of an elevator is in the list of calls and in the list of stops,
instead of applying consecutively the two previous rules, we just apply one rule
labelled OpenDoorsStopAndCall.

[OpenDoorsStopAndCalll
01:MLift::[F(0) , I(0)]
02:Call
=>
01.AddLStop(L1) .RemoveLStop(01.CF) (F<-1)
02.RemoveLCall(01.CF)
if 01.State !'= Wait
if in(01.CF,01.LStop)
if in(01.CF,02.LCall)
where L1 := () ObtainNewStops(01.CF)

A feature of this multi-elevator controller is that priority is given to a call,
and once it has been served, other requested stops are served.

A call is assigned to an elevator whose State value is Wait. This is done by
the rule AssignACall. When an elevator can be selected (i.e. there is at least a
floor calling an elevator), we compute which floor is selected (this is the nearest
one and we call it NextFloor) by the function ChooseNextFloor. Then, the two
objects are updated by removing NextFloor from the list of calls, by adding it
to the list of assigned calls in the central memory and to the list of stops, and
by choosing the good direction to go for the selected elevator.

[AssignACall]
01:MLift::[State(Wait) , F(0) , I(0)]
02:Call
=>
01.WhichSense (NextFloor) .AddLStop(NextFloor.nil) (F<-1)
02.AddAssignedCall (NextFloor) .RemoveLCall (NextFloor)
if 02.LCall !'= nil
where NextFloor := () ChooseNextFloor(01.CF,02.LCall)

When the elevator reaches a floor, we test if this floor is assigned to it, we
apply the rule OpenDoorsAssignedCall, that updates the list of stops and the
list of assigned calls. It also uses the function ObtainNewStops that asks people
inside the elevator which floors they want to go to.



[OpenDoorsAssignedCalll
01:MLift::[F(0) , I(0)]
02:Call
=>
01.AddLStop(L1) .RemoveLStop(01.CF) (F<-1)
02.RemoveAssignedCall(01.CF)
if 01.State != Wait
if in(01.CF,02.AssignedCall)
where L1 := () ObtainNewStops(01.CF)

A condition to assign a call to an elevator is that at least one elevator has
the attribute State to Wait. This is possible only when its list of stops is empty
as shown in the rule Wait:

[Wait] 01:MLift::[F(0) , I(0)]
=>
01(State<-Wait)
if 01.State != Wait
if 01.LStop = mnil

A.4 Strategies

In general, the application of a rule on the data base of objects may return
several results, for instance when several objects or multisets of objects match
its left-hand side. This introduces some non-determinism and the need to control
rule application. This is why the concept of strategy is introduced. Strategies
are used to control the application of rules on objects: strategies provide the
capability to define a sequential application of rules; to make choices between
several rules that can be applied; to iterate rules; etc.

For the previous example, we define a few strategies to guide the application
of the rules on the data base of objects.

The first one is ONELIFT which tries to assign a call to a waiting lift; then, it
tries to open the doors of the elevator at current floor if, 1- the floor corresponds
to an assigned call, 2- it corresponds to a stop and a call, 3- it corresponds
only to a call or 4- only to a stop. If the current floor is not a floor where a
stop is required, it checks if the direction of the elevator has to be changed and,
otherwise, it continues to go upward or downward.

[1 ONELIFT => first( AssignACall ,
OpenDoorsAssignedall ,
OpenDoorsStopAndCall ,
OpenDoorsCall ,
OpenDoorsStop ,
ChangeSenseToDown ,
ChangeSenseToUp ,
Up ,
Down)

end



This strategy is applied as long as there is an elevator whose flag is not set
at 1. To work on a set of elevators, we define the strategy ALLLIFTS:

[1 ALLLIFTS => repeat*(Wait) ;
repeat* (ONELIFT) ;
repeat* (RemoveFlag)

end

The rule RemoveFlag removes all flags at 1 and put them at 0. To go from
an initial situation to a situation where all floors are served and where nobody
is waiting inside an elevator, we define a main strategy MAIN that repeats the
rule Main until the data base of elevators does not change.

[1 MAIN => first one (repeat*(Main))
end

The labelled rule Main is defined as:

[Main] ST => ST1
where ST1 := (ALLLIFTS) ST
if ST1 != ST

A.5 The execution
Let us consider an initial situation described as:

0(1) :MLift:: [CF(14) , State(Wait) , Zome(1) , LStop(nil) , F(0) , I(0)]
0(2) :MLift::[CF(11) , State(Wait) , Zome(1) , LStop(nil) , F(0) , I(0)]
0(3) :MLift::[CF(2) , State(Wait) , Zone(0) , LStop(nil) , F(0) , I(0)]
0(4):Call::[AssignedCall(nil) , LCall(3.9.17.24.nil)]

Let us assume that the ground floor is floor 0 and the top level is the level
25. In this initial situation, we have three lifts 0(1), 0(2) and 0(3). The first
one is waiting at floor 2, the second at floor 11 and the last one at level 14. Four
levels are calling an elevator: the 3rd, 9th, 17th and 24th ones.

Applying the MAIN strategy to this initial term leads to the following execu-
tion:

0(1) :MLift:: [CF(14) , State(Move(Up)) , Zone(1) , LStop(17.mnil) , F(0) ,
0(2) :MLift::[CF(11) , State(Move(Down)) , Zone(1) , LStop(9.mnil) , F(0) ,
0(3) :MLift:: [CF(2) , State(Move(Up)) , Zone(0) , LStop(3.nil) , F(0) ,
0(4):Call::[AssignedCall(3.9.17.nil) , LCall(24.nil)]

0(1) :MLift::[CF(15) , State(Move(Up)) , Zone(1) , LStop(17.nil) , F(0) ,
0(2) :MLift:: [CF(10) , State(Move(Down)) , Zome(1) , LStop(9.nil) , F(0) ,
0(3) :MLift:: [CF(3) , State(Move(Up)) , Zone(0) , LStop(3.mnil) , F(0) ,
0(4):Call::[AssignedCall(3.9.17.nil) , LCall(24.nil)]

An elevator is stopped at level 3, please enter the desired stops
as a list of sorted integers separated by . and terminated by end:

1(0)]
1(0)]
1(0)]

1(0)]
I(0)]
1(0)]



After the user has entered different stops that will be considered by the
elevator controller, several execution steps occur and lead, finally, to the two
last steps below:

0(1) :MLift:: [CF(17) , State(Wait) , Zone(1) , LStop(nil) , F(0) , I(0)]
0(2) :MLift:: [CF(10) , State(Wait) , Zone(1) , LStop(nil) , F(0) , I(0)]
0(3):MLift::[CF(24) , State(Move(Up)) , Zone(2) , LStop(nil) , F(0) , I(0)]
0(4):Call::[AssignedCall(nil) , LCall(nil)]

0(1) :MLift:: [CF(24) , State(Wait) , Zomne(2) , LStop(nil) , F(0) , I(0)]
0(2):MLift::[CF(17) , State(Wait) , Zome(1) , LStop(nil) , F(0) , I(0)]
0(3) :MLift:: [CF(10) , State(Wait) , Zome(1) , LStop(nil) , F(0) , I(0)]
0(4):Call::[AssignedCall(nil) , LCall(nil)]

During this execution, we observe the evolution of the set of elevators step
by step:

1. At 1st step, three calls are assigned (these three calls are put in the attribute
AssignedCall of object 0(4)), one to elevator 0(1) (the 17th floor), one to
the elevator 0(2) (the 9th floor) and one to the elevator 0(3) (the 3rd floor).
One call has not yet been assigned. This assignment step of calls also selects
a direction for each elevator (two go up and one down).

2. The 2nd step does not change a lot of attributes. Each elevator goes on up or

down. We can notice that one elevator, the one called 0(3), has reached the

requested 3rd floor. Then, the operation ObtainNewStops can be performed
and it consists in asking user new stops for this elevator. This uses the
inputs/outputs of the ELAN system.

This process continues for a few steps...

4. The last but one step has no more call. Two elevators are waiting (0(1) and
0(2)) and the 0(3) elevator is going down, it is at floor 24 without any floor
to serve.

5. The last step makes the previous elevator waiting at floor 24. This step
cannot be reduced anymore, this is the result term.

@



