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Abstract— This paper presents a new hybrid learning algo-
rithm for unsupervised classification tasks. We combined Fuzzy
c-means learning and the supervised version of Minimerror to
develop a hybrid incremental strategy allowing unsupervised
classifications. We applied this new approach to a real-world
database in order to know if the information contained in
unlabeled signals of a Geographic Information System (GIS),
allow to well classify it. Finally, we compared our results to a
classical classification obtained by a multilayer perceptron.
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I. SUPERVISED AND UNSUPERVISED LEARNINGS

For a classification task, the learning is supervised if the
labels of the classes of the input patterns are given a priori by
a professor. A cost function calculates the difference between
desired and real outputs produced by a network, then, this
difference is minimized modifying the network’s weights by
a learning rule. A supervised learning set

�
is constitued

by � couples ��������
	�����
��������������� � , where ���� is the input
pattern

�
and

	��������
its class. ���� is a � -dimension vector,

with numeric or categoric values. If labels
	��

are not present
in

�
, it may be used as unsupervised learning. Learning

is unsupervised when the object’s class is not known in
advance. This learning is performed by extraction of intrinsic
regularities of patterns presented to the network. The number
of neurons of the output layer corresponds to the desired
number of categories. Therefore, the network develops its
own representation of input patterns, retaining the statistically
redundant traits.

II. SUPERVISED MINIMERROR

Minimerror algorithm [1] performs correctly in binary prob-
lems of high dimensionality [3], [4], [10]. The supervised
version of Minimerror performs a binary classification using
the minimization of the cost function:� � ��  !�#"%$�& ' 	�� �(*) ������+-, �/. (1)

with & �10 �2�3�547698�:�; �10 � (2)

Temperature
+

defines an effective window width on both
sides of the separating hyperplane defined by �( . The derivative<=?>�@BA<9@ is vanishingly small outside this window. Therefore, if
the minimum cost (1) is searched through a gradient descent,
only the patterns

�
at aC DE�ECGF C �(*) ���� C, � H ��+ (3)

distance will contribute significantly to learning [1], [2].
Minimerror algorithm implements this minimization starting at
high temperature. The weights are initialized with Hebb’s rule,
which is the minimum of (1) in the high temperature limit.
Then,

+
is slowly decreased upon the successive iterations of

the gradient descent by a deterministic annealing, so that only
the patterns within the narrowing window of width 2T are
effectively taken into account for calculating the correctionI �( �34KJML �L �( (4)

at each time step, where
J

is the learning rate. Thus, the search
of the hyperplane becomes more and more local as the number
of iterations increases. In practical implementations, it was
found that convergence is considerably speeded-up if patterns
already learned are considered at a lower temperature

+ON
than

the not learned ones,
+PN H + . Minimerror algorithm has three

free parameters: the learning rate
J

of the gradient descent, the
temperature ratio

+ NPQ +
, and the annealing rate

I +
at which

temperature is decreased. At convergence, a last minimization
with

+ N � +
is performed. This algorithm has been coupled

with a incremental heuristics, NetLS [2,5], which adds neurons
in one hidden layer as learning function. Several results [2],
[3], [4] show that NetLS is very powerful and gives small
generalization errors comparable to other methods.

III. UNSUPERVISED MINIMERROR

A variation of Minimerror, Minimerror-S [2], [3], allows to
obtain spherical separations on input’s space. The spherical
separation used the same cost function (1), but a spherical
stability

D�R
is defined by:DSR � C�C �( 4 �� C�C 4UTWV (5)



where
T

is a hyperspherical’s radius centered on �( . The
pattern’s class is

	 � 4 �
inside the sphere and

	 � �
elsewhere. Spherical separations make it possible to consider
unsupervised learning using the Minimerror’s separating qual-
ities. Thus, a strategy of unsupervised growing was developed
in Loria. The algorithm starts by obtaining the distances
between the patterns. The Euclidean distance can be used to
calculate them. Once the established distances, we started to
find the pair

�
and � of patterns with the smallest distanceT

. This creates the first incremental kernel. We located the
hypersphere’s center �(�� at the middle of patterns

�
et � :�( � � �������� ����G�� (6)

The initial radius is fixed T � �	� T� (7)

to make enter a certain number of patterns in growing kernel.
Then, patterns are labeled

	���4 �
if they are inside or in

the border of the initial sphere, and
	 � �

if elsewhere.
Minimerror-S finds the hypersphere 
 T�� � �( �� that better sep-
arates patterns. The internal representations are � � 4 �

if4 �
����� ; V � D � � H ��

else � � �
. This makes it possible to check if there are

patterns with
	 � �

outside but sufficiently close to the
sphere (

T��$ � �( �$ ). In this case, then it makes
	M� 4 �

for these
patterns and it learns them again, repeating the procedure for
all patterns of

�
. At this time, it passes to another growing

kernel which will form a second class �( V , calculating with
Minimerror-S (

T��V � �( �V ), and repeating the procedure until there
is no more patterns to classify. Finally it obtains K classes.
A pruning procedure can avoid having too many classes by
eliminating those with few elements (less than one number
fixed in advance). It is possible to introduce conditions at
the border, which are restrictions that prevent locating the
hypersphere center outside of the input’s space. For certain
problems this strategy can be interesting. These restrictions
are however optional: if it makes too many learning errors, the
algorithm decides to neglect them and the center and radius
of separating spheres can diverge.

IV. THE UNSUPERVISED ALGORITHM FUZZY C-MEANS

This algorithm [6], [7] allows us to obtain a clusterisation
of patterns with a fuzzy approach. Fuzzy c-means minimizes
the sum of the squared errors with the following conditions:

�!
� " $ ��� � � �����!

� " $ ��� ���! � �"� �$#% �B� (8)

& �3��� � �B���B� �(')�+*�� �G� � ���B��� �+,
(9)

The objective function is defined by

- � �!
� " $ �!

� "%$ �%.� �0/ V � � � �1, � � (10)

where
'

is the number of patterns,
,

is the desired number of
classes,

, � is the centroid vector of class K, �� � is a pattern
&

and / V � � � �1, � � is the square of the distance between patterns� � and
, � , in agreement with a definition of unspecified

distance, which to simplify, we will indicate by / V � � � �1, � � .2
is a fuzzy parameter, a value in 3 � �54 � , which determines

the fuzzyfication of the final solution, i.e., it controls the
overlapping between the classes. If

2 � �
, the solution is

a hard partition. If
276 4

the solution approaches the
maximum of fuzzyfication and all the classes are likely to
merge in only one. The minimization of the objective function-

provides the solution for the membership function (6):

� � � � / V+8 .�9 $� �
: �; " $ / V+8 .�9 $� ;

� & �3�����B����1')�+* �3�������B��1,0�
(11)

where:

, � � : �� " $ �%.� � 0 �: �� "%$ �%.� � �+* � �G���B����+,
(12)

The fuzzy c-means algorithm is:

1) Let the class number
*

, with
� H * H ' .

2) Let a value of fuzzy parameter < , with < � � .
3) To choix a suitable distance definition in input’s space.

That may be euclidean distance and then / V � 0 � �1, � �-�C�C 0 � 4=, � C�C V .
4) To choix a value for stop criterium

J
(
J �  �  � � is a

suitable convergence).
5) Let > � > �  � , for pattern with random values or with

values from a hard partition of k-means.
6) In iteration

&@? � �G� � � � ������� (re) calculate A � A � &@? �
using 12 and > � &@? 4 � � .

7) Re-calculate > � > � &@? � using equation 10 and A � &@? � .
8) To compare > � &@? � and > � &B? 4 � � with a suitable matrix

norme. If
C�C > � &@? � 4 > � &@? 4 � � C�C H J

then stop else go
to 6.

V. A HYBRID STRATEGY

In spite of the supervised Minimerror’s simplicity, the
number of classes obtained is sometimes too high. Thus,
we chose a combined strategy: a first unsupervised hidden
layer calculates the centroids with Fuzzy c-means algorithm.
As input we have � unlabeled patterns of learning set

�
.

Then Supervised Minimerror finds spherical separations well
adapted to maximize the stability of the patterns. The input is
the same

�
set, but labeled by Fuzzy c-means. In this way,

the number of classes can be selected in advance.

VI. DEPOSIT PROSPECTION EXPERIMENT

The mineral resources division of the French geological
survey (BRGM [8]) develops continent-scale Geographic In-
formation System (GIS), which support metallogenic research.
This difficult real-world problem constitutes a tool for decision
making. The understanding of the formation of metals such as
gold, copper or silver is not good enough and a lot of patterns



describing a site are available including the size of the deposit
for various metals. In this study, we will focus on a GIS which
covers all the Andes and two classes : deposit and barren. A
deposit is an economically exploitable mineral concentration
[9]. The concentration factor corresponds to the rate of enrich-
ment in a chemical element, i.e. to the relationship between
its average content of exploitation and its abundance in the
earth’s crust. Geologists oppose to the concept of deposit the
one of barren. Actually, for the interpretation of the results of
generalization, it is necessary to enter the number of sites well
classified in each category to be able to answer the question:
Is this a deposit or a barren ? In our study, a deposit will
be defined as a site (represented by a pattern) that contains
at least one metal and a barren by a site without any metal.
Then, the classes deposit and barren will be used from now
on. The database we used contains 641 patterns, 398 examples
of deposits and 343 examples of barrens.

A. Study of the Attributes

The original databases have 25 attributes, 8 qualitative and
17 quantitative, such as the position of a deposit, the type and
age of the country rock hosting the deposit, the proximity of
the deposit to a fault zone distinguished by its orientation in
map view, density and focal depth of earthquakes immediately
below the deposit, proximity of active volcanoes, geometry of
the subduction zone etc. We made a statistical study to deter-
mine the importance of each variable. We calculated for each
attribute the average of deposit and barren patterns, in order
to determine which attributes were relevant for discriminating
the patterns (figure 1). There are some attributes (15, 16, 17
or 22, among others) that are not relevant. On the other hand,
the attributes 3, 5, 6 and 25 are rather discriminating. It is
interesting to know how the choice of attributes influences the
learning and specially the generalization tasks. Therefore, we
created 11 databases with different combinations of attributes.
Table 1 shows the number of qualitative and quantitative
attributes, and the dimension for each database used.
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Fig. 1. Mean squared differences of the average patterns.

B. Data Preprocessing and deposit/barren Approach

The range of the attributes is extremely broad. In order to
homogenize them, a standardization of quantitative attributes

Database Attributes Used Qual. Quant. N
I 1 to 25 8 17 25
II 1 to 8 8 0 8
III 9 to 25 0 17 17
IV 11,12,13,14 0 4 4
V 11,12,13,25 0 4 4
VI 3,5,6,7 4 0 4
VII 11,12,13,14,25 0 5 5
VIII 11,12,13,20,25 0 5 5
IX 3,5,6,7,11,12,13,25 4 4 8
X 11,12,13,14,18,19,20,21,23,24 0 10 10
XI 11,12,13,14,18,19,20,21,23,24,25 0 11 11

TABLE I

ANDES GIS LEARNING DATABASES USED.

is suitable. A data preprocessing is needed for the correct
functioning of the neural network. Thus, for each continuous
variable, the standardization calculates the average and stan-
dard deviation. Then, the variable was centered and the values
divided by the standard deviation. The qualitative attributes are
not modified. The standardized corpus was divided in learning
and test sets. The sets consist of randomly selected patterns
from the whole corpus. Learning sets of 10% (64 patterns) to
95% (577 patterns) of the original database (641 patterns) were
generated. The complement was selected as test set. There are� input neurons in the network, depending on the database
dimension. The unsupervised part of the network, Fuzzy c-
means, must find two classes: deposit and barren. Minimerror
will find the best hyperspherical separator for each class. In the
same condition, a multilayer perceptron with 10 neurons on a
single hidden layer obtains up to 77% of correct classification.

VII. RESULTS

Classification performance corresponded to the percent-
age of well classified situations. Learning and generalization
discrimination of deposit and barren were obtained for all
learning databases. Database VII (including only few quan-
titative attributes) had the best learning and generalization
performances in comparison to the other databases. When
using all the attributes, the performances fell. Figure 2 shows
some results of this behavior. Based on this information, we
kept this database to perform 100 random tests. The capacity
of discrimination between deposit and barren, according to
the percentage of learned patterns is shown in figure 3. The
deposit class detection is quite higher than the barren class.
We note that the detection of gold, argent and copper remain
quite precise, bet, that of the molybdenum is rather poor. This
can be explained according to the weak presence of this metal.

VIII. CONCLUSION

We developed a variation of Minimerror for unsupervised
classification with hyperspherical separations. The hybrid
combination of Minimerror and Fuzzy c-means proved to
be the most promising. This strategy applied to real-world
database, allowed us to predict in a rather satisfactory way
if a site could be identified or not as a deposit. The 75%
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Fig. 2. Generalization performances according to the learning set size
obtained by the hybrid model with various databases.
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Fig. 3. deposit/barren discrimination performances in generalization accord-
ing to the learning set size (100 tests) obtained by the hybrid model with the
database VII.

value obtained for the well classified patterns with this un-
supervised/supervised algorithm is comparable to the values
obtained with other classical supervised methods. This also
shows the discriminating capacity of the descriptive attributes
that we selected as the most suitable for this two-class prob-
lem. Finally, according to the figure 3, we should be able
to obtain a significant improvement of the performance just
increasing the number of examples. Additional studies must
be made to determine more accurately other relevant attributes,
as well as to perform hybrid learning multi-class tasks.
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