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Rule-based programming and proving:
the ELAN experience outcomes

Claude Kirchner and Hélene Kirchner

LORIA, CNRS & INRIA
615 rue du Jardin Botanique 54602 Villers-les-Nancy, France
First.Last@loria.fr

All mgus are equal, but some mgus are more equal than others
Jean-Louis Lassez, Michael Maher and Kim Marriott [28]

Abstract. Together with the Protheo team in Nancy, we have devel-
oped in the last ten years the ELAN rule-based programming language
and environment. This paper presents the context and outcomes of this
research effort.

1 Introduction

Unification problems and their one-sided version matching are at the heart of
schematic programming languages. These languages rely on pattern matching
where patterns may be as different as first-order term or higher-order graphs
or matrices; matching may be syntactic, equational or higher-order, and may
identify the pattern and the subject using various forms of substitutions.

Because they offer a very high level of abstraction, many such languages have
been designed and implemented to allow for high-level decision-making. We in-
deed assist currently to a main surge of interest in these languages from different
point of views. First, in general purpose languages, matching capabilities are
available for instance in ML or Haskell, while Prolog uses unification. Second,
production systems and now business rule languages are fully based on pattern
matching. They are prominent languages for higher-level decision-making and
are central in expert systems and in companies prospective analysis. Third, the
raising of XML, in particular as a general term-based syntax for the Web, allows
the emergence of rewrite based languages like XSLT as well as for the so-called
semantic web, where again languages like RuleML now emerge.

Indeed matching-based and more specifically rule-based languages have
been prominent in algebraic specifications since at least twenty years. Several
specification languages or programming environments, such as LArRCH, OBJ,
ASF+SDF [27], Maude [13], ELAN, to cite a few, are using term rewriting as
their basic evaluation mechanism. From these experiences, we have inherited a
deep knowledge somehow summarized in the CASL language [1].

In all the above mentioned languages and environments, rewriting and match-
ing play an essential role, but few is done to give the user the possibility to control



the rewrite relation. Moreover, the semantics of some programming languages is
imprecise with regard to the way rewritings are applied. One of the main origi-
nality of the ELAN project that we are going to detail in this paper, is to have
pioneered strategic rewriting, i.e. strategy controlled rewriting.

This paper presents the main outcomes in terms of emerging concepts and
lessons of this ten years experience of development of the ELAN language and
practice. Several concepts presented in this paper are directly relevant to the
context of high-level decision-making.

One of them is the conceptual difference between computation and deduction
in a programming environment. Computations are described in the context of
rewriting with normalizers, while deductions needs control, expressed by strate-
gies. These two concepts are combined in ELAN to provide strategic rewriting.
Another related outcome is the definition of a declarative strategy language that
gives to the programmer the capability of precisely defining control.

Understanding and formalizing the concept of strategies in this context led
to higher-order functionalities and to the rewriting calculus [11] which provides
in particular a smooth integration of first-order rewriting and A-calculus.

Providing strategic rewriting capability in existing programming language is
a further step leading to pervasive rewriting and formal islands that are compiled
into the hosting programming language.

This paper is organized as follows. The next section summarizes the main
features of the ELAN language in a smooth way, explains and analyzes design
choices and mentions missing capabilities. Section 3 enlights the main theoreti-
cal concepts that have emerged: strategic rewriting, strategy language, rewriting
calculus, rewriting proof terms, pervasive rewriting. Then we share our experi-
ence on the practicality of strategic rewriting in Section 4. It illustrates by a
few examples related to decision processes, the power of the strategic rewriting
approach.

2 Main features of the language

The ELAN language is fully described in its user’s manual [4] and at url
elan.loria.fr. We can summarize its main characteristics by the “equation”:

ELAN= computation rules + (deduction rules + strategies)

The syntax of ELAN programs is given by a signature provided by the user
and written in mixfix syntax. The semantics of the programs is given by compu-
tation and deduction rewrite rules together with strategies to control application
of rules. ELAN programs are structured in modules, possibly parameterized and
importing other modules.

Programming in ELAN is very easy when just computation is needed and
can be quite elaborated when this is combined with powerful deduction and
associated strategies. To program in ELAN, one should at least have an intuitive
understanding of the two fundamental concepts of computation and deduction.



The important difference between them has been formally identified since one
century by Henri Poincaré. Both concepts play a central role in today’s proof
theory as well as in semantics of programming languages. In proof theory, the
status of what we search for and what needs to be computed should be identified
and treated appropriately, in order to get proofs where only useful (and often
difficult) parts are described. This is typical of Deduction Modulo as developed
in [17]. In semantics because of its close relationship with computation as well
as solving, in particular prominent in declarative programming languages.

Computation and deduction steps are defined in ELAN thanks to unlabeled
and labeled rules respectively.

2.1 Computation

What is a computation? Here we call computation the normalization by a set of
confluent and innermost terminating set of unlabeled rewrite rules.

The simplest kind of rewrite rule used in ELAN is an ordered pair of terms
denoted [] { — r such that [, are terms (we denote 7 (F, X) the set of terms
build over the signature F and the set of variables X) and satisfying the usual
restriction of their respective set of variables: Var(r) C Var(l). The empty square
brackets [] is important here, as it denotes the fact that this rule has no name.

A typical example of simple computation rules is the definition of addition
on Peano numbers build using zero, denoted 0 and successor, denoted succ. The
computation rules are

DEF(+)={[] z+0—=x [ x4+ succ(y) — suce(x +y)}

They define, in particular in this simple example, a confluent and terminat-
ing rewrite system for which normal forms are the computation results in the
tradition of algebraic specifications [2].

These rewrite rules define a congruence on the set of terms, therefore they are
potentially applied everywhere in a term: at the root as well as at any occurrence.
The built-in strategy used in ELAN to implement the normalization process by
these simple rewrite rules is left-most inner-most and the ELAN compiler is able
to apply more than 15 millions of such rewrite steps per second. These “simple”
rules are already extremely powerful since a single left-linear and even regular
rewrite rule is enough to be Turing complete (but of course in this case non-
terminating!) [15].

The behavior of these rewrite rules is simple as their application is decided
locally, independently of their application context, and could implicitly involve
an equality check when they are non-linear. Such rule are at the heart of many
algebraic languages like OBJ [21], ASF [34] or LPG [3]. When one wants to
add the possibility to specify contextual information, condition are added to
simple rules, and they are denoted in ELAN: [] | — r if ¢, where ¢ is a boolean
expression.

The next extension of the conditional rewrite rule provided by ELAN, consists
in adding the capability to control not only the application context, but also the



way computation are done. This is provided through different features. First,
ELAN provides the capability to share some results. This is done by generalized
conditional rewrite rules of the form [| | — r where p; := ¢4, ..., where p, :=
¢n, whose behavior consists of (1) searching in the term ¢ to be evaluated a
subterm at occurrence w that matches | with a substitution o (i.e. o(l) = t),),
then (2) finding a match oy from p; to o(c1) (i.e. o1(p1) = o(c)),. .., then (n+1)
find a match o, from p, to op_1...010(c1) (i.e. op(pp) = op—1...010(c)) and
finally replace ¢\, by opon_1...010(r).

This more technical explanation can be easily understood using the following
example. Consider an operation double flat on lists, that takes a list (for instance
((1.2).(3.4))) and builds the concatenation of its flattened form with the reverse
of its flattened form (in this case (1.2.3.4.4.3.2.1)) can be defined by the rule
with two matching conditions:

[] doubleflat(l) — append(z,y) where z := flatten(l
where y := reverse(x)

The interest of this form with respect to the classical rule
[] doubleflat(l) — append(flatten(l), reverse(flatten(l)))

is indeed to factorise the expression of flatten(l) giving to the programmer the
possibility to avoid computing twice the flattened form of [.

Using unlabeled rewrite rules, ELAN provides the programmer with the abil-
ity to define normalizers i.e. functions that return the unique normal form. This
is quite powerful but sometimes surprising for the programmer as well as the
end-user: in the above example on Peano arithmetic, the term suce(0) + suce(0)
will never be accessible, only the term succ(suce(0)) will be visible.

2.2 Strategic rewriting

As already said, rewrite rules are natural to express computation but also deduc-
tion, i.e. rewrite systems that are neither necessarily confluent nor terminating.

While keeping the control over the evaluation of confluent and terminating
rewrite rules is not essential (even through it could be useful for describing an ef-
ficient way to reach the normal form), it is mandatory for either non-terminating
or non-confluent systems.

To provide the control on the execution order of a rewrite rule system, we
use in ELAN a non empty rule label. These labels have indeed two purposes:
first they signal that the rule is a deduction rule, second they provide a name
that will be useful when describing elaborated strategies. A simple labeled rule
is therefore of the form [¢/] [ — r where ¢ is a non-empty label, [ and r are
terms which variables satisfy as usual Var(r) C Var(l). Typical simple examples
of such labeled rewrite rules are (assuming z, y to be variables and @ a constant)
[id] # — =z or [constant-a] x — a or [sum| = + succ(y) — succ(z + y)
or [proji] z +y — =z or [proj2] z +y — y. Notice that an equational
interpretation of such rules is in general useless.



To make a clear cut between the normalizers that implicitly embed a traver-
sal strategy  and the deduction rules, the application of a labeled rewrite rule
is performed only at the top most occurrence of the term on which it is ap-
plied and this application consumes the rewrite rule. This is totally similar to
a function application in functional programming. For example, the application
of id to any term ¢ returns in one step ¢, and the application of constant-a
to t terminates and returns in one step a. But, the application of sum fails on
0 + (0 4 suce(0)), since the redex is not at the top occurrence.

At the current state of our description, we can define a primal strategy as
a labeled rewrite rule. Applying such a strategy S on a term ¢ is denoted S(t).
When [ matches ¢ (i.e. 3o, s.t. o(l) = t), the application result is o(r) and we say
that the strategy succeeds. When [ does not match ¢, we say that the strategy
fails and the application result is the empty set (). Indeed we will see below that
in general the application of a strategy to a term, when it terminates, is a finite
(ordered) multiset of terms (i.e. a flat list).

Two strategies can be concatenated by the symbol “;” i.e. the second strategy
is applied on all results of the first one. S1; So denotes the sequential composition
of the two strategies. It fails if either S; fails or Sy fails on all results of S; and
in this case the application result is (). Otherwise, its results are all results of S1
on which S5 is successfully applied.

The next natural strategy combinator used in ELAN is dk. It takes a list of
strategies and dk(S1,...,Sy) applies all strategies and for each of them returns
all its results. Its application result is the union of all the application results
of the individual strategies S;. It may be empty, in which case we say that the
strategy fails.

Together with the non-determinism capability provided by the dk operator,
the analog of a cut operation is provided par the first_one strategy constructor.
first_one(Si, ..., Sp) chooses the first strategy S; in the list that does not fail,
and returns one of its first results. This strategy returns at most one result or
fails if all sub-strategies fail.

Tterators are also provided: for example, repeat*(S) applies repeatedly the
strategy S until it fails and returns the results of the last unfailing application.
This strategy can never fail (zero application of S is always possible) and may
return more than one result.

The full description of strategy combinators available in ELAN can be found
in [6,5]. This simple language allows us to build more elaborated strategies and
a rewrite rule is a natural way to give a name to such an expression like in
[] simpleStrat — dk(id, constant-a). But notice that here, we are not only
rewriting terms but strategy expressions.

We are ready to define the general form of an ELAN rewrite rule: A labeled
rewrite rule with general matching conditions is denoted

[¢] | —r where p; :=S1(u1), ..., where p, := S, (un)

and [, r,p;,u; € T(F,X), the S; are strategy expressions and a variable is used
somewhere only if it is “well defined”, a natural technical condition detailed in



the user’s manual. The relation induced on terms by these rules is called strategic
rewriting.

The application result of such a rule on a term ¢ is defined as follows: (1)
match [ against ¢ using a substitution o, then (2) match p; against all the results
of the application of S; on o(uy). Let of be such a match, (3) match py against
oto(uz), ...and finally the result consists of the multiset of all the instances of
r computed in the where part.

When the label of the above rule is empty, the application process is per-
formed everywhere in the term ¢ as for simple unlabeled rules.

From the basic strategy combinators provided by the language, the user can
define his own ones, such as in the following strategy expression used in Colette [9]
to describe and solve CSP:

[l FLAChoicePointSplitLastToFirstAll =>
dk (LocalConsistencyForECandDC) ;
repeat* (
dk (first one (SplitDomainSecondMiddle),
first one (SplitDomainFirstMiddle));
first one (first one (ExtractConstraintsOnEqualityVar);
first one (Elimination, id);
LocalConsistencyForEC
first one (ExtractConstraintsOnDomainVar);
LocalConsistencyForEC
id)
);
first one (GetSolutionCSP)

2.3 Summing up the main language design choices

In ELAN, computation and deduction are modeled using unlabeled and labeled
rules respectively. The control over labeled rules is performed using strategies
described by a simple strategy language where iterators and non-determinism
operators are available.

The matching process underlying all operations in ELAN has been designed
to be first-order, therefore we do not allow higher-order variables in rewrite rules.
This is a strong design decision relying on the facts that, if needed, higher-order
can be encoded at the first-order level (see for example [16]) and second, that
first-order interpretation and compilation techniques are much better understood
than for higher-order (where indeed at order five, matching decidability is still
an open problem for beta-eta conversion [29]).

Since the strategy language allows non-determinism, the implementation
choices have been between returning explicit multisets of results or enumer-
ating these results using backtracking. Even though extensions of the language
support the “set-of” capability for returning multisets of results, the basic eval-
uation mechanism relies on backtracking.



2.4 Added and missing capabilities

The design of a programming language is a subtil blend of conceptual choices
about its main characteristics with several additional non essential but useful
capabilities, altogether carefully and smartly implemented. We give here our
view of the goodies and missing of the current ELAN language.

Goodies Indeed, ELAN comes with many goodies that make it more attractive
and usable as a practical programming language.

Pre-processing Since higher-order matching (and in particular second-order) is
not directly available, a pre-processor is quite convenient to overcome this lim-
itation. A typical example is for syntactic unification, where the decomposition
rule which indeed depends on the signature, could be expressed as follows:

FOR EACH SS:pair[identifier,int]; F:identifier; N:int
SUCH THAT SS:=(listExtract) elem(Fss)
AND F:=()first(SS) AND N:=()second(SS) :{
rules for unifPb

s 1,...,s_N:term; t_1,...,t_N:term;
local
[decompose] P ~ F(s_1,...,s_N)=F(t_1,...,t_N) => P { ~ s_I=t_I }_I=1...N
end
end }

If the signature contains two symbols, g of arity 1 and f of arity 2, then the
pre-processor will generate the two rules:

[decompose] P ~ g(s1)=g(tl) => P ~ si t1l end
[decompose] P ~ £(s1,s2)=f(t1,t2) => P ~ sl = t1l ~ s2 = t2 end

Earley parsing In the tradition of several algebraic programming languages like
OBJ, ELAN provides the user with the capability to define its own mixfix syntax
in a very liberal way. It is then analyzed using Earley’s algorithm. This is quite
convenient to adapt the syntax to the user’s description of the problem, at the
price of a cubic parsing process, in the worst case.

Modularity and parameterization A serious programming language cannot come
without modularization capabilities. ELAN provides the possibility to define local
and non-local operators and rules, to import modules and to defined parameter-
ized modules.

Rewriting modulo AC An important improvement in the rewriting agility is the
capability to take into account, at run time, properties of operators like associa-
tivity and commutativity. This frees the programmer of tediously describing all
the possible variations in rule application when one of its symbol is associative
and commutative (AC for short) but AC matching is not available. The code



reduces significantly at the price of a matching algorithm running in exponen-
tial time in the worst case. A clever compiler have been designed to keep this
drawback as much under control as possible [26].

Missing A language cannot contain every fashionable features. We have made
some design choices but some goodies could have been retrospectively usefully
introduced. This section sums up our current views.

Enriched signatures The current system is based on many-sorted signatures.
The agility of the language could have been enhanced by using order-sorted
or membership constraints [33]. But the implementation becomes much more
intricated, in particular since the sort of a term may in this case change at run
time. Secondly, the interaction of the matching theories and the extended sort
capabilities can be quite subtle, even for experienced programmers. Therefore
we did not provide this feature as it is indeed done in Maude [13].

Traversals ELAN provides elaborated strategies as we have seen before, but term
traversals are not provided. This is due to the fact that the concept emerged
after the main design of the language was achieved [35]. Traversals are useful
and completely in line with the language design. Even if some early versions of
the language prototyped them, they are not provided in the current distribution
and could have been a useful extension.

Matching theories The debate on which matching theories are useful and could
be usefully implemented has been (and is still!) long-standing in the ELAN team.
On one side, one can say that the more the better, on the other hand, the
more theory the most complex the implementation becomes. Moreover, when
combining several theories, completeness of matching becomes a real difficulty,
in particular on the complexity side. Therefore ELAN provides only syntactic
and AC matching and their combination. Adding associativity is natural and
useful: it is indeed the first theory available in TOM (see Section 3.4).

Deduction modulo relies on the ability to embed potentially complex theories
in the modulo part, and therefore in the matching process. It would be useful
to give the possibility to match modulo user-defined theories: a capability far
beyond the currently available knowledge and rewrite technology if we want to
keep the system efficient.

Deep inference The design decision to have unlabeled rules applied everywhere
(acting as normalizers) and labeled ones to be applied only on top of term
(acting as deduction rules), comes from the usual view of deduction rule applied
at the top level of formulas as in the calculus of sequent or in natural deduction.
Recent works on deep inference [8] show all the interest to have inference rules
also applied inside terms or formulas. ELAN is not designed this way, but this is
certainly a challenging capability to have deep inference available, for example
via a clever combination of labeled rule with traversals.



3 Emerging concepts

The general setup, design and implementation of the system leaded the ELAN
team to elaborate or refine several main ideas and results. We review here the
main emerging concepts.

3.1 Semantics of strategic rewriting

One of the main originality and useful feature of ELAN is the ability to define
and efficiently execute rewriting strategies.

The concern of giving to the programmer some control on the normalization
process is already present in OBJ with the so-called local strategies. Further
extension of this idea is also related to the control of concurrent evaluation [22].
On the proof side, strategies are called tactics or plans and are mandatory in
proof assistants.

What ELAN brings first here is that term rewriting is used for both compu-
tation (and therefore normalization) and deduction. This means that rewriting
is used to model both equality and transition. As a consequence strategies are
not only a (useful) addition but a mandatory one.

However in order to understand the semantics of strategic rewriting, one
needs to understand the concept of strategy. It is indeed very simple and natural
to define a strategy as a set of proof terms of a rewrite theory as proposed in [25,
306] using the rewriting logic [30] framework.

3.2 Strategy language

Clearly, an arbitrary set of proof terms may be very elaborated or irregular
from the computational point of view, it could be in particular non-recursive.
This is why languages describing special subclasses of strategies are needed. The
ELAN strategy constructors described in Section 2.2 contribute to define such a
subclass.

However this is not expressive enough to allow recursive and parameterized
strategies. This is why the more general notion of defined strategies has been
introduced [5, 6]. Their definition is given by a strategy operator with a rank, and
a set of labeled rewrite rules. The example of a map functor on lists illustrates
this.

Let map be of rank map : ({s — s)) (list[s] — list[s]) where (s — s) and
(list[s] +— list[s]) are strategy sorts. The argument of map must be a strategy
S that applies to a term of sort s and returns results of sort s. The strategy
map(S) applies to a term of sort list[s] and returns results of sort list[s]. It is
defined by the rewrite rule:

[] map(S) — first(nil, S - map(S5)) (1)

where S is a variable of sort (s — s). The right-hand side of this definition means
that whenever the strategy map(S) is applied to a term ¢, either ¢ is nil, or the



strategy S is applied to the head of ¢ (i.e. ¢ should be a non-empty list) and
map(S) is further applied to the tail of ¢.

Allowing the description of a strategy by a set of rewrite rules, as above,
strongly increases the expressive power of ELAN: strategies may be recursive,
parameterized and typed as well. But this also leads to understand a strategy
as a function, or later on as a functional. Also adding an explicit application
operator leads to the formalization of higher-order objects. This gave rise to the
rewriting calculus which provides both a language to express strategies and an
operational semantics for the constructions of ELAN.

3.3 The rewriting calculus

The rewriting calculus, whose initial design is detailed in [11], is also called p-
calculus. It is a natural but prominent outcome of the ELAN design, implementa-
tion and usage. As we have seen in the previous sections, rewriting strategies are
central in ELAN and this leaded to the simple idea that the simplest strategy is
indeed just a rule (i.e. I — r) and that applying this strategy on a term ¢ is just
(explicitly) applying this rule, i.e. (I — r t). Pushing this remark further leaded
to the first main idea of the calculus, that is to provide a uniform combination
of term rewriting and lambda-calculus. This is in particular fully adapted to the
description of computation and deduction transitions.

The second main idea of the calculus is to make all basic ingredients of rewrit-
ing explicit objects, in particular the notions of rule formation, application and
result. Terms, rules, rule application and therefore rule application strategies are
all treated as first class objects. To make this more explicit, the rule construc-
tor “—" uses a different arrow symbol in all this Section. For example, using a
syntax close those of lambda-calculus, application of the rule 2 — s(s(0)), to a
term, e.g. the constant 2, is explicitly represented as the object (2 — s(s(0)) 2)
which evaluates to s(s(0)).

The third important concept in the p-calculus is that rules are fired modulo
some theory e.g. associativity and commutativity. For example, provided the
commutativity of +, the p-term (x +0 — = 04 1) reduces to 1. The fact that
results are explicit allows us to give a precise meaning to the reduction of the
p-term (z+y — x a+b) as the structure a 1b that may be informal understood
as a set of results.

Since the beginning, we wanted to integrate explicit substitutions [10] but the
link with matching constraints has been done later [12] and a combined version
is presented in [23]. Indeed to represent explicitly substitution is useful not only
from the foundational point of view, but also for representing proof term, as we
will see later.

As usual, for a calculus with binder, we work modulo the a-conversion and
adopt Barendregt’s hygiene-convention i.e. free and bound variables have differ-
ent names. The syntax is the following:

P = T Patterns
T = X|IK|\P—-T|T T|[PKT|IT|T'T Terms

10



1. A — B denotes a rule abstraction with pattern A and body B; the free
variables of A are bound in B.

2. (A B) denotes the application of A to B.

3. [P < A]B denotes a delayed matching constraint with pattern P, body B
and argument A; the free variables of P are bound in B but not in A.

To obtain good properties for the calculus (e.g. confluence) the form of patterns
has to be restricted to particular classes of p-terms. The operator [- < _|. can
be decorated by (matching) theory T and become [_<_]_ if this is not implicit
when working in a given context. The set of solutions of the matching constraint
[P<1BJA is denoted Sol(P=<1B).

The small step semantics of the p-calculus is given by the following rules:

o] (P—-A B) —, [P<rB]A
0] [P<tB]A — Aby,...,A0, with {61,...,0,} = Sol(P=<B)
0] (A1B C) — (A O)(B O)

For example, the -redex (Ax.t u) is nothing else than the p-redex (z — ¢ u)
(i.e., the application of the rewrite rule  — ¢ to the term u) which reduces to
[z < u]t and then to {a/u}t (i.e., the application of the higher-order substitution
{z/u} to the term t).

The small-step semantics can then be customized, via the rule [o], in order
to consider non-unitary and even infinitary theories [12].

These p-calculus principles, that can also be understood as a kind of con-
strained rewriting, emerged from the ELAN design: they soon attracted a lot of
attention and have been studied for themselves (see the latest developments at
url rho.loria.fr). For example, a version of the rewriting calculus with explicit
substitutions has been used to represent rewriting derivations modulo AC [32]
for the Coq proof assistant.

3.4 TOM and formal islands

Since the beginning of the ELAN project, we have been strongly concerned
with the feasability of strategic rewriting as a practical programming paradigm.
Therefore, the development of efficient compilation concepts and techniques took
an important place in the language support design. The results presented in [26]
leaded to a quite efficient implementation and thus demonstrated the practicality
of the paradigm.

But even if ELAN is a nice language cleverly and efficiently implemented, it
requires an existing application to be totaly rewritten in ELAN to benefit from
its capabilities. Strategic rewriting is therefore available but hardly usable in the
large.

This is the main concern that leaded to the emergence of the idea of for-
mal island, a general way to make formal methods, and in particular matching
and rewriting available in virtualy any existing environment. TOM [31] is an

11



implementation of this idea. In its Java instance, TOM provides matching and
rewriting primitives that are added to the Java language. These specific instruc-
tions are then compiled to the host language (e.g. Java), using similar techniques
as those used for compiling ELAN. The good things are that one can then use
the normal forms provided by rewriting to get conciseness and expressiveness
in Java programs, but moreover one can prove that these sets of rewrite rules
have useful properties like termination or confluence. Once the programmer has
used rewriting to specify functionalities and to prove properties, the compiled
dissolves this formal island in the existing code just by compilation. The use
of rewriting and TOM therefore induces no dependence: once compiled, a TOM
program contains no more trace of the rewriting and matching statements that
were used to build it.

TOM and its Eclipse environment are available at url tom.loria.fr: they
provide an efficient way to integrate rewriting in Java as well as to perform easy
and formaly safe XML rewriting.

4 Applications to high-level decision making

How does this research contribute to high-level decision making? The interested
reader may consult the ELAN web page to get an exhaustive idea of developped
applications, but we choose here to select four of them to illustrate how ELAN
and strategic programming can be used to model different kinds of processes,
namely solving, computing and proving.

4.1 Constraint solving

One of the first concern of the ELAN project was to model constraint solving,
from unification problems to complex Constraint Satisfaction Problems (CSP).
Research has been very active on CSP since the seventies and often in rela-
tionship with traditional Operational Research techniques and Constraint Logic
Programming, in particular with the seminal works on Prolog [14] and CLP [24].
Our concern on this topics was to express in a simple and clear way the under-
lying concepts used to solve CSP, formalized as a deduction process. The ELAN
language is especially well-suited, thanks to the explicit definition of deduction
rules and control. Actions are associated with rewrite rules and control with
strategies that establish the order of applications of deductions. Expressing the
algorithms developed for solving CSP as rewrite rules driven by strategies leads
to a better understanding, easy combination and potentially to improvements
and proof of correctness. Colette [9] is a CSP solving environment implemented
in ELAN to validate this approach. Various searching techniques for clever ex-
ploration of the solutions space, problem reduction techniques that transform a
CSP into an equivalent problem by reducing the values that the variables can
take, as well as various forms of consistency algorithms are described by ELAN
strategies.
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4.2 Chemical computations

Rule-based systems and strategies have been used for modelling a complex prob-
lem of chemical kinetic: the automated generation of reaction mechanisms. The
generation of detailed kinetic mechanisms for the combustion of a mixture of or-
ganic compounds in a large temperature field requires to consider several hundred
chemical species and several thousands of elementary reactions. An automated
procedure is the only convenient and rigorous way to write such large mecha-
nisms. Flexibility is often absent or limited to menu systems, whereas the actual
use of these systems, during validation of generated mechanisms by chemists,
as well as during their final use for conception of industrial chemical processes,
requires modifications, activations or deactivations of involved rules according
to new experimental data, reactor conditions, or chemist expertise. The purpose
of an automated generator of detailed kinetic mechanisms is to take as input
one or more hydrocarbon molecules and the reaction conditions and to give
as output the list of elementary reactions applied and the corresponding ther-
modynamic and kinetic data. The GasEl[7] system has been designed in ELAN
for that purpose. The representation of the chemical species uses the notion of
molecular graphs, encoded by a term structure called GasEl terms. The chemical
reactions are expressed by rewrite rules on molecular graphs, encoded by a set
of conditional rewrite rules on GasEl terms. ELAN’s strategy language is quite
appropriate to express the reactions chaining in the mechanism generator. The
required flexibility is provided by the high-level specification of the declarative
strategy language, that can reflect the chemist’s decisions.

4.3 Proving

Several proof tools have been designed in ELAN, ranging from a predicate logic
prover, or a completion procedure, to various model checkers. In the context of
rule-based programming, termination is a key property that warrants the exis-
tence of a result for every evaluation of a program. CARIBOO is a termination
proof tool for rewrite programs, given by sets of rewrite rules. Its foundation
is a termination proof method based on an explicit induction mechanism on
the termination property. CARIBOO is able to deal with different term traversal
strategies, corresponding to call-by-value (innermost strategy [19]), call-by-name
(outermost strategy [20]), or more local calls (local strategies on the opera-
tors [18]). Such proof tools might be later used in proof environments able to
combine them in order to guarantee safety of programs. The interesting point
here is that the proof procedure is described in each case by deduction rules and
a control specification, which are directly reflected in the ELAN implementation.

4.4 Combining computation and deduction

The rewriting calculus is quite useful in combining rewriting-based automated
theorem proving and user-guided proof development, with the strong constraint
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of safe cooperation of both. We addressed this problem in practice in combining
the Coq proof assistant and the ELAN rewriting based system.

The approach followed for equational proofs relies on a normalization tactic
in associative and commutative theories written in ELAN. It generates a proof
term in the rewriting calculus, which is then translated into a proof term written
in the calculus of constructions syntax that can finally be checked by Coq to get
the proof of the normalization process [32]. The advantages of this approach are
to take benefit from the efficient (conditional AC) rewriting performed by the
ELAN compiler, and to ease the size reducing transformations of the proof terms
before sending them to Coq. For that, the ELAN compiler has been extended by
a proof term producer that builds the rewriting proof term, and by a proof term
translator that transforms this formal trace of ELAN into the corresponding Coq
proof term for checking. In this cooperation scheme, ELAN can be seen as a
computing server and Coq proof sessions as its clients.

Actually this work goes beyond the specific use of Coq and ELAN. It raises the
general problem of incorporating decision procedures in proof assistants based
on type theory, in a reliable and efficient way. Reliability is handled here through
the concept of proof term, that contains all information about the proof and is
exchanged between the two systems. Built by ELAN during the rewriting proof
construction, it is then checked by Coq or by any proof assistant.

4.5 When is ELAN not appropriate?

While rules and strategies are really natural in defining normalizers or when
having to model deductive or transition systems, some applications are not easy
to program in the current version of ELAN.

In a first place, since ELAN is a term rewrite rule language, data structures
such as graphs or matrices, are not easy to deal with. When working with such
structures, encodings, sometimes clever like in the chemistry application reported
above, are necessary to take benefit of the language features.

We did not develop any elaborated numerical computations and types nor
fancy input/output and graphical libraries. This means that connecting ELAN
programs with the outside world is possible but not easy. Any application heavily
relying on such characteristics is not currently appropriate to develop in the
language.

In the context of ambitious applications, it is fundamental to interface ELAN
or its fundamental concepts of rules and strategies with other programming
languages. This is the place where TOM comes into play and is already quite
promising.

5 Conclusion

One picture is better than hundred explanations: this popular sentence summa-
rizes the interest to deal with modeling environments making a fundamental use
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of patterns. The research community in informatics is rich in such languages
where Prolog, CLP, and rule-based programming play a central role.

Our researches on these topics for the last ten years has been very fruitful,
both in practical terms as well as in fundamental research advances: among
them, the demonstration that rewrite-based languages could be as efficient as
functional ones, the emergence of the rewriting calculus as a unified environment
for strategic rewriting and functional evaluation, and the explicitation of the
computation and deduction concepts as a consistent programming paradigm.

Because of the pattern matching capability of the language, the applications
developped in the ELAN language have shown that programming an algorithm,
solving a constraint or searching for a proof are of the very same essence and,
indeed, are in general collaborative tasks for which rule-based programming is
very well adapted.

As the programming activity is abstracting more and more to allow for
higher-level decision-making, rule-based programming offers a clever and use-
ful paradigm that becomes more and more attractive. We hope that the ELAN
experience outcomes will contribute to make it more useful and popular .
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