
HAL Id: inria-00107872
https://hal.inria.fr/inria-00107872

Submitted on 19 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formalizing UML Behavioral Diagrams with B
Hung Ledang, Jeanine Souquières

To cite this version:
Hung Ledang, Jeanine Souquières. Formalizing UML Behavioral Diagrams with B. Tenth OOPSLA
Workshop on Behavioral Semantics: Back to Basics, Oct 2001, Tampa Bay, Florida, USA, 12 p.
�inria-00107872�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50420147?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00107872
https://hal.archives-ouvertes.fr


Formalizing UML Behavioral Diagrams with B

Hung LEDANG and Jeanine SOUQUIÈRES

LORIA - Université Nancy 2 - UMR 7503
Campus scientifique, BP 239

54506 Vandœuvre-lès-Nancy Cedex - France
Email: {ledang,souquier}@loria.fr

Abstract. An appropriate approach for translating UML to B formal specifica-
tions allows one to use UML and B jointly in an unified, practical and rigorous
software development. We formally analyze UML specifications via their cor-
responding B formal specifications. This point is significant because B support
tools like AtelierB are available. We can also use UML specifications as a tool
for building B specifications, so the development of B specifications become eas-
ier.
This paper reports our recent results on formalizing UML behavioral diagrams in
B notations. We are planning to present automatic derivation schemes from UML
behavioral diagrams to B specifications. Our proposal together with the formal-
ization in B of UML structure specifications provide a complete frameworks to
translate UML specifications into B. We discuss also the perspectives for analyz-
ing UML behavioral specifications via the derived B specifications.

Keywords: UML, class operation, event, use case, B method, B abstract machine
(BAM), B operation.

1 Introduction

The Unified Modeling Language (UML)[25] has become a de-facto standard notation
for describing analysis and design models of object-oriented software systems. The
graphical description of models is easily accessible. Developers and their customers
intuitively grasp the general structure of a model and thus have a good basis for dis-
cussing system requirements and their possible implementation. However, the fact that
UML lacks a precise semantics is a serious drawback of UML-based techniques.

On the other hand, B[1] is a formal software development method that covers soft-
ware process from the abstract specification to the executable implementation. A strong
point of B (over other formal methods) is support tools like AtelierB [28], B-Toolkit [2].
Most theoretical aspects of the method, such as the formulation of proof obligations,
are carried out automatically. The automatic and interactive provers are also designed
to help specifiers to discharge the generated proof obligations. All of these points make
B adapted for large scale industrial projects [3]. However, as a formal method, B is still
difficult to learn and use.

As cited many times in the literature [14, 22, 24, 27, 4], an appropriate combina-
tion of object-oriented techniques and formal methods can give rise a practical and
rigorous software development. For this objective, we advocate the integration of UML

1



and B specification techniques. Our approach is to propose derivation schemes from
UML into B specifications. This UML-B integration has the following advantages: (i)
the construction of UML specifications is rigorously controlled by analyzing derived B
specifications; (ii) the construction of B specifications becomes easier thanks to UML
specifications. From the informal description of requirements, we successively build
the object models with different degrees of abstraction. These models cover from con-
ceptual models through logical design models to the implementation models of the
software. This also means that the developed models are successively refined. We ver-
ify the consistency of each object model by analyzing the derived B specification. We
verify the conformance between object models by analyzing the refinement dependency
among them that is formally expressed in B.

In this paper, we present our recent results on formalizing in B the UML behavioral
diagrams, which has been so far an open issue. We emphasize on the automatic transla-
tion from UML behavioral diagrams into B specifications. Our work combined with the
previous works on formalization in B of class diagrams provide a complete frameworks
to derive B specifications from UML specifications. Hence, a rigorous analysis on UML
specifications via the derived B formal specifications could be realized.

Section 2 gives a brief introduction to the B method. In Section 3 related work on
UML-B integration is presented; we also justify why the previous work cannot apply to
formalize in B the UML behavioral diagrams. Sections 4-6 detail the principles for for-
malizing in B the UML behavioral concepts. The possibilities of automatic translation
from UML behavioral diagrams to B specifications are also discussed. In Section 7 we
discuss the perspectives to analyze UML specifications using the derived B specifica-
tions. Finally, some concluding remarks in Section 8 complete our presentation.

2 The B method

B [1] is a formal software development method that covers a software process from
specification to implementation. The B notation is based on set theory, the language of
generalized substitutions and first order logic. Specifications are composed of B compo-
nents. A B component, which is a B abstract machine (BAM), a refinement component
or an implementation component of a BAM, is similar to modules or classes. A BAM
(Figure 1 right) consists of a set of variables, invariance properties relating to those
variables and operations. The variable values are only modifiable by operations which
must preserve the invariant (Figure 1 left).

Generalized substitutions are used to express the post-conditions of B operations. We
can use generalized substitutions to specify the non-determinism (at the abstract spec-
ification level) and also the determinism (at the implementation specification level).
This point is a notable difference1 with respect to Z and VDM, which use only logic
expressions. Generalized substitutions provide a more familiar frame to specifiers by in-
tegrating the essential methodological aspects like invariant and refinement. Refinement
can be seen as an implementation technique but also as a specification technique to pro-
gressively augment a specification with more details. At every stage of the specification,

1 This is seen as a strong point of B over Z and VDM.

2



OP1

OP4

OP5

DATA OP6

OP3

OP2
OPn

INIT

INVARIANT
MACHINE ...
...
/ � DATA is declared in SETS, CONSTANTS

and VARIABLES clauses � /

SETS ...
CONSTANTS ...
VARIABLES ...
INVARIANT INVARIANT predicates
INITIALISATION INIT substitutions
OPERATIONS

OP1 = ...
...
OPn = ...

END

Fig. 1. Intuitive view of a BAM

proof obligations ensure that operations preserve the system invariant. A set of proof
obligations that is sufficient for the correctness must be discharged when a refinement
is postulated between two B components. Hence, by supporting proved refinement, B
allows to go progressively from an abstract specification (non deterministic) to a deter-
ministic specification that can be translated into a programming language (ADA, C and
C++).

Another characteristic of the B method is that it was designed to be automated eas-
ily. The generation of proof obligations (of the invariant preservation and the refinement
correctness) obeys the simple rules that can be easily implemented in a piece of soft-
ware. Furthermore, support tools like AtelierB and B-Toolkit provide utilities to dis-
charge automatically and interactively the generated proof obligations. Analyzing the
non-discharged proof obligations with the B support tools is an efficient and practical
way to detect errors encountered during the specification development.

Finally, beside the refinement, B provides structuring mechanisms like “IMPORTS”,
“INCLUDES”, “USES”, “SEES” so that B components can be composed by various
ways. Thus, large systems can be specified in a modular way, possibly reusing parts of
other specifications.

3 Formalization of UML specifications in B: state of the art

Meyer [22] and Nguyen [24], based on the previous work of Lano [12], have proposed
a set of precise and implementable rules for modeling in B almost the concepts of the
class diagrams. Given a class

���������
(Figure 2 left) a BAM Class (Figure 2 right) is

created by the followed manner: a B deferred set CLASS, which models the set of pos-
sible instances (instance space) of the class

���������
, is declared. The set of the effective

instances of the class
���������

is modeled by a B variable class constrained to be a subset
of CLASS. For each attribute

�
	�	��
, a B variable attr is created and defined in the IN-

VARIANT clause as a binary relation between the B set class and a B set Type modeling
the type ��
���� of

��	�	��
. This binary relation may be refined in a more sophisticated re-

lation, such as a function (as in the current example), a bijection, etc, according to the
additional features of

�
	�	��
. It is to be noticed that Type is declared in a special BAM

3



called Types linked with Class by the SEES clause. The reason is that we can reuse Type
in the other BAMs which also model data of type ��
���� . In addition, in the INVARIANT
clause, apart from typing predicates there are often predicates modeling the additional
constrains of the class and its attributes (the class invariant [21]).

attr : Type

Class

...

MACHINE Class
SEES Types
SETS

CLASS
VARIABLES

class, attr
INVARIANT

class � CLASS �
attr � class � Type

...
END

Fig. 2. Formalization in B of class diagrams

An association
�����

between two classes
� ���������

and
�����������

is identified by couples
of instances. It is naturally expressed in B as a variable ass of the type of the binary
relation (maybe a more sophisticated relation as noticed earlier) between B variables
class1 and class2. If

�����
is a non-fixed association2 then

�����
gives rise to a BAM,

otherwise the B variable ass is attached to one of the BAMs Class1 or Class2. Currently,
only the inheritance relationship between domain class has been treated. The B variable
of a subclass in a specialization hierarchy is a subset of the B variable of its superclass.
The BAM of a subclass “USES” the BAM of its superclass. For reason of space, we
omit examples of formalization in B of association and inheritance.

The important idea in the work of Meyer and Nguyen in the formalization of class
diagrams is that a BAM is created for each class: the attributes are modeled as the data
in the BAM; the class operations become B operations in the BAM. At first glance,
this seems evident, however, at a closer inspection, the concept of class and the concept
of BAM do not coincide with each other. A class operation can affect the data from
different classes but a B operation affects only data declared in the same BAM. For this
reason, only simple class operations like constructor, destructor or operations that set or
query the value of each attributes (selector and mutator), which are local to classes, can
be actually modeled. We could not model non basic class operations involving several
classes. Consequently, with the current UML-B derivation schemes, we cannot translate
interaction diagrams like sequence and collaboration to B. In addition, the attempts in
[22, 24, 12, 26] to translate state-chart diagrams into B have two shortcomings: (i)
these approaches could not deal with transition having multiple actions; (ii) (cf. the
self-evaluation of Meyer [22]), it was difficult and even impossible to automate these
rules in a piece of software due to the ambiguity of the translation rule. For this reason,
the problem of formalization of UML behavioral diagrams has been so far an open
issue.

2 The association between two classes whose instances are independently created/deleted in
comparison with the instances of related classes.

4



4 Formalizing class operations in B

4.1 General idea

To overcome the shortcoming of Meyer and Nguyen on specifying in B pre-/post con-
ditions of non-basic class operations, we propose to group the class operation and its
concerned data in the same BAM. Given an UML specification shown in Figure 3. The
class operation ��� � � is modeled in a BAM (Figure 4) whose data are derived from both
classes

��������� �
and

���
�������
.

:Class2
op24(...)

c2:Class2
1. op21(...)

op11(c2,...)

c1:Class1

2. op22(...)

3. op13(...)
1.1. op23(...)

1.2. op12(...)

attr23: Type23

+ op21(...)
+ op22(...)
+ op23(...)
+ op24(...)

+ op11(Class2,...)

attr12: Type12

+ op12(...)
+ op13(...)

Class2Class1

attr11: Type11 attr21: Type21

attr22: Type22

Fig. 3. An UML specification

MACHINE MachineA
SEES Types
SETS

CLASS1; CLASS2
VARIABLES

class1,attr11,attr12,class2,attr21,attr22,attr23
INVARIANT

class1 � CLASS1 � class2 � CLASS2 �
attr11 � class1 � Type11 � attr12 � class1 � Type12 � ...

...
OPERATIONS

...
op11 � cc1,cc2,...���
pre

cc1 � class1 � cc2 � class2 � ...
then

/ � modeling the effect of the non-basic operation ���	�
� , this time, is

similar to modeling the effect of the basic operation �����

 � /

end
END

Fig. 4. Formalization in B of the class operation �������

5



In order to conserve the modularity of B specifications we consider the calling-called
dependency3 amongst class operations. This relationship is used to arrange class opera-
tions in different BAMs. For each calling-called class operation pair, the B operation of
the called operation participates in the implementation of the B operation which model
the calling operation4. That means that: (i) the BAM for the called operation is imported
in the implementation of the BAM for the calling operation and (ii) we use the B im-
plementation operation to model the realization of non basic class operations. Figure 5
shows an example of formalization of the calling-called dependency between ��� � � and
� � � � , ��� � � and � � ��� .

IMPLEMENTATION MachineA_imp
REFINES MachineA
SEES Types
/ � We implement the data in MachineA by the data in MachineB.

But these two data sets are identical. That is why MachineB is renamed. � /

IMPORTS im.MachineB
INVARIANT

class1 � im.class1 � class2 � im.class2 �
attr11 � im.attr11 � ...

...
OPERATIONS

...
op11 � cc1,cc2,...���
begin

/ � Each method invocation in collaboration diagrams

is modeled as a B operation invocation. � /

im.op21(...) �
im.op22(...) �
im.op13(...) �

end
END

MACHINE MachineB
SEES Types
...
/ � Data of MachineB are identical to data of MachineA

because they are derived from the same class diagram. � /

SETS
CLASS1;CLASS2

VARIABLES
class1,class2,attr11,...

INVARIANT
class1 � CLASS1 � ...

OPERATIONS
op21 � ... � � ...
op22 � ... � � ...
op13 � ... � � ...

END

Fig. 5. Formalization in B of the calling-called dependency amongst class operations

From the description above, it is to be noticed that the data of each class could be
duplicated in several BAMs where are modeled some operations of the class. The basic
class operations are modeled in the BAMs for classes and non-fixed associations. Each
non basic class operation ��� is modeled in two stages: (i) modeling the effect of ��� by a
B abstract operation op; (ii) implementing the B operation op in the first step by calling
B operations of class operations appearing in the realization of ��� .

4.2 Integrating class and interaction diagrams in the same B specification

Our proposal has been applied to derive automatically B specifications from class and
interaction diagrams which realize certain class operations5: we use interaction dia-

3 A calling-called pair relates a class operation - the calling operation - to one of its realization
class operations - the called operation.

4 Recently, we discovered that the BAM of the “realized” operation can be also refined by in-
cluding the BAM of the “realizing” operations. In general, two possibilities are equal and here
afterward we only speak of the implementation/importation dual.

5 We can also model the activity-based part in the state-chart and activity diagrams.

6



grams to establish the calling-called dependency amongst class operations. If there is
no cyclic calling-called dependency6 amongst class operations, we are able to arrange
class operations into layers (using two procedures: “division” and “dummy-promoting”
[16, 15]) such that:

(i) there is no calling-called dependency amongst operations in the same layer;
(ii) the basic operations, which do not have any called operation, are in the bottom
layer;
(iii) the system operations, which do not have any calling operation, are in the top
layer;
(iv) the operations in a layer differing from the bottom layer only have called oper-
ations in the next lower layer. For this purpose, certain operations are duplicated in
several layers thanks to the “dummy-promoting” procedure.

Figure 6 represents the layer arrangement of class operations in Figure 3. Each ar-
rowed line represents a calling-called pair or a duplicating-duplicated pair of class op-
erations and the arrow is at the called or duplicated end. After the arrangement, each
layer gives rise to a BAM in which model the class operations in the associated layer7.
A BAM that does not belong to the bottom layer, is implemented by importing the BAM
for the next lower layer. Finally, we can decompose the BAM for the bottom layer into
BAMs for classes and their non-fixed associations (if any). From layer arrangement in
Figure 6, we create three BAMs corresponding to three layers. For reasons of space, we
do not show here the derived B code.

op22

op13

op13 op21

op11

op12 op23

op24

op24

op22 op24

Fig. 6. Layers of class operations

From the description above, the architecture, data and operation skeleton of B spec-
ifications are automatically generated. It remains to fill up the body of B operations. In
Section 6 we will discuss the way to generate automatically this content. Moreover, we
have not yet considered the formalization in B of asynchronous messages. This problem
will be briefly mentioned in Section 5 and had been detailed in [17].

6 This is still an open issue due to technical restrictions of the B language.
7 Remember that, data in each BAM are derived from the whole class diagram.

7



4.3 Extension to use cases

Our approach for formalizing class operations can also be extended to deal with use
cases as described in [13]. Each use case is also modeled as a B operation. The data in
BAMs for use cases are derived from classes related to use cases8. We treat “includes”
stereotype between use cases as the calling-called dependency between class opera-
tions. Due to technical restrictions of the B language, we propose to model a use case
and its possible “extends” use cases as distinct B operations in the same BAM.

5 Formalizing events in B

The proposal of Meyer [23, 22] and Sekerinski [26] for modeling in B the events only
works in cases without multiple actions related to a single transition. To overcome this
shortcoming, we have proposed a two-stages approach [17] for modeling events: (i)
modeling the effect of each event as a B abstract operation; (ii) implementing the B op-
eration in the first step by calling B operations for the triggered transition and associated
actions.

Given a set of classes and their state-chart diagrams, an integration procedure [17]
has been proposed to derive the corresponding B specification:

(i) creating a System BAM to model all events in state-chart diagrams. Data in System
are derived from classes and states; this once again (cf. Section 4) allows us to ex-
press easily the pre- and post specification of events;
(ii) creating a Basic BAM to model all transitions, actions, state-checking and guard
conditions; the data in Basic are also derived from classes and states;
(iii) decomposing Basic into BAMs for classes and associations;
(iv) implementing System by importing Basic.
To deal with asynchronous messages amongst state-chart diagrams, a B data struc-

ture modeling the signal type and an additional B operation modeling the sending of
signal are supplemented for each type of signal. Details are described in [17].

6 Generating automatically the content of B operations

According to Sections 4-5, at present we can only automatically derive the architecture
of B specifications from UML specifications. The data, the skeleton of B operations in
the B specification are also automatically derived. In order to complete B specifications,
we must fill up the body of B operations. For the purpose of a complete automation of
transformation, we propose to attach to each element like use cases, events, actions,
guard condition and class operations, an OCL-based pre/-post specification. Hence, the
abstract content of B operations can be derived by using OCL-B rules of Marcano [19].
The implementation content of B operations for use cases, events and non-basic class
operations can be derived from corresponding diagrams (use case diagrams for use
cases; collaboration or activity diagrams for class operations; state-chart diagrams for
events). The precise rules will be proposed at a later stage.

8 According to Kilov et al.[11] and Glinz [10], use case and class are complementary views of a
requirements specification.

8



7 Analyzing UML specifications via B specifications

Our experience shows that many defects inside UML specifications can be detected
even during the formalization step. For instance a class operation has appeared in the
interaction diagrams but was not declared in the class diagrams or there is a mismatch
between an operation call in interaction diagrams regarding its declaration in class dia-
grams. A list of those defects and an automatic support tool for certain defects can be
found in the Egyed’s dissertation [7]. However, this section presents the perspectives of
the using the derived B specifications to detect the more sophisticated semantic defects
inside UML specifications.

By using B support tools to analyze the proof obligations generated for initializa-
tion substitutions in the INITIALIZATION clause invariant predicates in the INVARIANT
clause, the defects involving object diagrams such as the object initialization can be
detected. In addition, the cardinality and class invariant of class diagrams could also be
analyzed at the same time. Then we can analyze the conformance of behavioral dia-
grams regarding the class diagram as described below.

Consider the class operation ��� � � in Figure 3, the consistency of ��� � � regarding
the classes

� ���������
and

� ���������
is expressed by the fact that the B operation op11

preserve the invariant on the data derived from both classes. This point can be analyzed
by considering B proof obligations related to the abstract content of op11. If any proof
obligations cannot be discharged (automatically and manually using B support tools
utilities) there would be something wrong in the description of the specification of ��� � �

(Assuming that the class invariant of
�����������

and
��������� �

is consistent).
The calling-called dependency amongst class operations is analyzed by considering

B proof obligations of the B implementation components. Consider the ��� � � - ��� � � pair
in Figure 3 in which ��� � � appears in the realization of ��� � � . We can analyze the con-
text (regarding � � � � ), in which ��� � � is called, by considering the B proof obligations
generated from the implementation of op11. If there are some non-discharged proof
obligations, there would be mismatch between ��� � � and ��� � � .

Similarly, the consistency of use cases with respect to their related classes is ex-
pressed by the fact that the B operations of use cases preserve the invariant on the data
derived from classes. The structuring of use cases into sub use cases can be analyzed
by considering the implementation of the B operation for super use cases.

Finally, concerning the state-charts. We can use B proof obligations of the B spec-
ification derived from state-charts to verify the “invariants de liaison” [20] : (i) if the
action sequence related to a transition can be executed when we are in its source state;
and (ii) if the effect of the transition bring us to its destination state.

Related work about analyzing UML specifications via their derived formal speci-
fications. There has been a lot of work on integrating UML and Z specifications such
as the work by France et al. [8, 9] and by Dupuy [6]. Dupuy centered mainly on the
formalization in Z and Object-Z of the class diagram and state-chart diagrams of the
information systems, therefore, only the consistency inside class diagrams and between
state-chart and class diagrams have been attached. France et al. supplemented the for-
malization in Z of the interaction diagrams, however, only the consistency of class op-
erations regarding the class diagrams has been analyzed. They have not yet attached the

9



conformance between class operations as ours. In addition, the limit of Z tool supports
in generating and discharging the proof obligations imply the hand generation and anal-
ysis of the Z proof obligations for the consistency of UML specifications mentioned in
the work of France et al and Dupuy. This is error-prone and is a big drawback of using
Z with respect of B.

8 Concluding remarks and further work

Bruel [4] has pointed out three considerations of an approach for integrating between
informal and formal specifications techniques: (i) the preservation of the intuitive-held
interpretation of the informal specifications; (ii) the level of automated support for mov-
ing between formal and informal specifications and (iii) the degree of integration.

For the first consideration, our experiences shown that B notations are almost adapted
to express the semantics of UML specifications. For example, the object encapsulation
is naturally expressed in B. Other aspects of the object orientation like the polymor-
phism, the object interactions can be simulated. The concurrence can be implicitly ex-
pressed thanks to concepts of B operation and B system.

Regarding the second and the third considerations, our approach provide a complete
framework for deriving B specifications from UML structure and behavioral diagrams.
Hence, the conformance between two aspects (the structure and the behavior) of UML
specifications can be formally verified by analyzing the corresponding B specification.
Analyzing derived B specifications (thanks to B powerful support tools) is a practical
and rigorous way to improve initial UML specifications.

We have validated our formalization proposals by non trivial case studies. The for-
malization of use cases in B (Section 4.3) has been experimented with a case study on
a controlling system for accessibility of buildings [18]. The approach for formalizing
in B class operations has been tried with several case studies: the pump component of
a controlling system for petrol dispensing [5], the patterns like Client-Server, Broker.
The formalization in B of events has been applied for an elevator controller system.

Case studies for analyzing UML specifications will be envisaged. The support tools
for translating class diagrams to B [22] will be extended to take into account our trans-
lating rules for UML behavioral diagrams. In addition, the formalization in B of the
UML refinement dependency is also our study objectives [13, 14].

References

[1] J.R. Abrial. The B Book - Assigning Programs to Meanings. Cambridge University Press,
1996. ISBN 0-521-49619-5.

[2] B-Core(UK) Ltd, Oxford (UK). B-Toolkit User’s Manual, 1996. Release 3.2.
[3] P. Behm, P. Desforges, and J.-M. Meynadier. MÉTÉOR: An Industrial Success in Formal

Development, April 1998. An invited talk at the 2nd Int. B conference, LNCS 1939.
[4] J.M. Bruel. Integrating Formal and Informal Specification Techniques. Why? How?

In the 2nd IEEE Workshop on Industrial-Strength Formal Specification Techniques,
pages 50–57, Boca Raton, Floria (USA), 1998. Available at http://www.univ-
pau.fr/ bruel/publications.html.

10



[5] D. Coleman, P. Arnold, St. Bodoff, Ch. Dollin, H. Gilchrist, F. Hayes, and P. Jeremaes.
Object-Oriented Development : The Fusion Method. Prentice Hall, 1994.

[6] S. Dupuy. Couplage de notations semi-formelles et formelles pour la spécification des
systèmes d’information. PhD thesis, Université Joseph Fourier - Grenoble 1, Grenoble (F),
semtembre 2000.

[7] A.F. Egyed. Heterogenous View Integration and Its Automation. PhD thesis, University of
Southern California, USA, August 2000.

[8] R.B. France and J.M. Bruel. Rigorous analysis and design with the unified modeling lan-
guage. http://www.univ-pau.fr/ bruel/Tutorials/etapsTut.html, 2001. ETAPS 2001 Tutorial
Proposal.

[9] R.B. France, J.M. Bruel, M. Larrondo-Petrie, and E. Grant. Rigorous Object-Oriented
Modeling: Integrating Formal and Informal Notations. In 6th International AMAST Con-
ference, LNCS 1349, Sydney (A), December 1997. Springer-Verlag.

[10] M. Glinz. A Lightweight Approach to Consistency of Scenarios and Class Models. In the
4th International Conference on Requirements Engineering, Illinois (USA), June 10-23,
2000.

[11] H. Kilov, H. Mogill, and I. Simmonds. Invariants in the trenches. In H. Kilov and
W. Harvey, editors, Object-Oriented Behavioral Specifications, chapter 6, pages 77–100.
Kluwer Academic Publishers, 1996.

[12] K. Lano. The B Language and Method : A Guide to Practical Formal Development. FACIT.
Springer-Verlag, 1996. ISBN 3-540-76033-4.

[13] H. Ledang. Des cas d’utilisation à une spécification B. In Journées AFADL’2001 : Ap-
proches Formelles dans l’Assistance au Développement de Logiciels, Nancy (F), 11-13 juin,
2001.

[14] H. Ledang. Formal Techniques in the Object-Oriented Development: an Approach based
on the B method. In the 11th PhDOOS Workshop: PhD Students in Object-Oriented Sys-
tems, Budapest (Hu), http://www.st.informatik.tu-darmstadt.de/phdws/wstimetable.html,
June 18-19, 2001.

[15] H. Ledang and J. Souquières. Integrating UML and B Specification Techniques.
In the GI2001 Workshop: Integrating Diagrammatic and Formal Specification Tech-
niques, Universität Wien, Österreich, September 26, 2001. http://www.pst.informatik.uni-
muenchen.de/GI2001/index.html.

[16] H. Ledang and J. Souquières. Modeling class operations in B : a case study
on the pump component. Technical Report A01-R-011, Laboratoire Lorrain
de Recherche en Informatique et ses Applications, March 2001. Available at
http://www.loria.fr/ � ledang/publications/UML01.ps.Z.

[17] H. Ledang and J. Souquières. New Approach for Modeling State-Chart Diagrams in
B. Available at http://www.loria.fr/ � ledang/publications/state-chart-modeling.ps.gz, July
2001.

[18] Y. Ledru, G. Padiou, and J. Jaray. Étude de cas: Système de contrôle d’accès. http://www-
lsr.imag.fr/afadl2000/EtudeDeCas/, 2000.

[19] R. Marcano and N. Lévy. Transformation d’annotations OCL en expressions B. In Journées
AFADL’2001 : Approches Formelles dans l’Assistance au Développement de Logiciels,
Nancy (F), 11-13 juin, 2001.

[20] O. Maury, C. Oriat, and Y. Ledru. Invariants de liaison pour la cohérence de vues statiques
et dynamiques en UML. In Journées AFADL’2001: Approches Formelles dans L’Assistance
au Développement de Logiciels, 11-13 juin, 2001.

[21] B. Meyer. Reusable Software. Prentice Hall, 1994.
[22] E. Meyer. Développements formels par objets: utilisation conjointe de B et d’UML. PhD

thesis, LORIA - Université Nancy 2, Nancy (F), mars 2001.

11



[23] E. Meyer and J. Souquières. A systematic approach to transform OMT diagrams to a B
specification. In FM’99 : World Congress on Formal Methods in the Development of Com-
puting Systems, LNCS 1708, Toulouse (F), September 1999. Springer-Verlag.

[24] H.P. Nguyen. Dérivation de spécifications formelles B à partir de spécifications semi-
formelles. PhD thesis, Conservatoire National des Arts et Métiers - CEDRIC, Paris (F),
décembre 1998.

[25] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference Man-
ual. Addison-Wesley, 1998. ISBN 0-201-30998-X.

[26] E. Sekerinski. Graphical Design of Reactive Systems. In D. Bert, editor, B’98: Recent
Advances in the Development and Use of the B Method - 2nd International B Conference,
LNCS 1393, Montpellier (F), April 1998. Springer-Verlag.

[27] C. Snook and R. Harrison. Practitioners Views on the Use of Formal Methods: An Indus-
trial Survey by Structured Interview. Information and Software Technology March 2001,
43:275–283, 2001.

[28] STERIA - Technologies de l’Information, Aix-en-Provence (F). Atelier B, Manuel Utilisa-
teur, 1998. Version 3.5.

12


