archives-ouvertes

Using and Extending the ACG technology: Endowing
Categorial Grammars with an Underspecified Semantic
Representation
Sylvain Pogodalla

» To cite this version:

Sylvain Pogodalla. Using and Extending the ACG technology: Endowing Categorial Grammars with
an Underspecified Semantic Representation. Proceedings of the Categorial Grammars Conference,
Jun 2004, Montpellier, France. pp.197-209. inria-00108117

HAL Id: inria-00108117
https://hal.inria.fr /inria-00108117
Submitted on 13 Dec 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.inria.fr/inria-00108117
https://hal.archives-ouvertes.fr

Using and Extending ACG technology:
Endowing Categorial Grammars with an
Underspecified Semantic Representation

Sylvain Pogodalla

LORIA - Campus Scientifique
BP239
F-54602 Vandeuvre-lés-Nancy

Abstract

Underlining the computational properties of Abstract Categorial Grammars, we
show how to extend them while keeping some of their properties. In particular, we
show how to enable the modeling of non-linear languages. We give as an example
the encoding of an underspecified semantic representation language, and apply it
to categorial grammars. So that we can model ambiguities of quantifier scopes only
at the semantic level, and not at the syntactic level anymore.

Introduction

Instead of considering Abstract Categorial Grammars (ACGs) as a standard
grammatical formalism, de Groote (2001) presents them as a grammatical
framework in which other existing grammatical models may be encoded. This
allows to make the latter formalisms take benefit of the ACG features, hence
to have them communicate thanks to this common framework.

Different syntactical formalisms have been encoded into ACGs (Tree Ad-
joining Grammars (de Groote, 2002), m-Linear Context-Free Rewriting sys-
tems (de Groote and Pogodalla, 2003)), but ACGs basic definitions, based on
linear A-terms, may lack some expressive power, for instance to model semantic
representation languages.

The aim of this paper is to underline the computational properties of ACGs
(section 1) and draw from them some language extensions (section 2). Then in
section 3, as an example, we model an underspecified semantic representation
language (Bos, 1995; Blackburn and Bos, 2003) using the proposed extensions.

1 ACG Principles

ACGs generate two languages: an abstract language and an object language.
Whereas the abstract language may appear as a set of grammatical or parse
structures, the object language may appear as its realization, or the concrete
language it generates. The two generated languages are sets of linear \-terms.

An ACG ¥ defines:

e two sets of typed linear A-terms: A; (based on the typed constant set C)
and A, (based on the typed constant set Cy);

e a morphism .Z : A — Ag;

e a distinguished type S.

Then the abstract language A(¥) and the object languages O(¥) are defined
as follows:

AG)={teMt: S} O ={tehFuec AD)t=2u)}

Note that .Z binds the parse structures in A(%) to the concrete expressions
of O(¥). Depending on the choice of A;, Ay and £, it maps parse trees
to contex free languages, proofs (as A-terms) to strings like categorial gram-
mars (de Groote, 2001), derivation trees to derived trees for TAGs (de Groote,
2002) or derivation trees to m-linear context free languages (de Groote and
Pogodalla, 2003). Of course, this link between an abstract and a concrete struc-
ture concerns not only syntactical formalisms, but also semantic formalisms as
the link between proofs (as A-terms) and A-terms to get Montague’s semantics
for categorial grammars in (de Groote, 2001) shows.

When considering such a grammatical formalism, two major questions arise:
what is its expressive power and what is its computational complexity? Partial
answers to the first question have already been given, and the aim of this paper
is to complete this answer. But this has to rely on the answer to the second
question. Let us first describe how to use ACGs in grammatical analysis.

Let ¢ € Ay be an expression. It is a A-term modeling for instance a string
or a tree. To know if ¢ is an expression of the language O(¥), we have to
find u € A(¥Y) such that t = £(u). Assume we have such a u then, re-
placing any constant ¢; (we may have ¢; = ¢;) by x; to get v/, we have
that Z((Azy - zp.u)er -+ ¢,) = t, or, because £ is a morphism, we have
Azy 2. L (W)L (1) - L(c,) = t with o' (hence £ (u')) with no con-

stant in it.

Conversely, let v’ € A; such that u' has no constant and that the relation
Azy -z, L (W)L (1) - - - L (cn) = tholds, thenifu = (Azy - - - z,.u)ey -+ - ¢y,

we have .Z(u) = t. Since if v’ has no constant ' = .Z(u') (only the type may
change), the problem of checking whether ¢ is in O(¥) reduces to solving the
equation

Ay« 2, L (W)L (er) - ZL(en) =1

that is solving a higher-order matching problem. So parsing with ACGs, that
is going from the object language to the abstract language, is related to the
complexity of higher-order matching.

This justifies how careful one must be when trying to extend the expressive
power of the object language, hence catching more A-terms. Indeed, if higher-
order matching is decidable until the fourth order case (Huet, 1976; Dowek,
1994; Padovani, 1996), from the sixth-order case, higher-order matching mod-
ulo 3 is undecidable (Loader, 2003) whereas matching modulo 87 is still open.
The definition of ACGs by de Groote (2001) relies on the decidability and
NP-completeness of higher-order linear matching (de Groote, 2000) to ensure
parsing with ACG feasibility.

On the other hand, going from the abstract language to the object language
(generation with ACGs) is just morphism application. As far as .Z is defined
on the constants of C}, the computation of the image of any term of A; is
straightforward. Figure 1 shows an example where both parsing and genera-
tion with ACGs could be usefull, if two ACGs have the same abstract language.
Note that both parsing and generation are required to cope with traditional
parsing (if Ay models strings and A}, models any semantic representation lan-
guage for instance) or generation.

Abstract language
A
generation generation
Object language Object language
As Al

Fig. 1. Moving from an object language to another

Coping both with expressivity and computational complexity while using ACG
technologies, we see that there are different (non-exclusive) options:

e doing ACG parsing, we have to remain in a fragment where higher-order
matching is decidable;
e doing ACG generation is always easy.

In the following we propose an ACG using non-linear A-terms, under restric-
tions we explain. It allows us to model the hole semantics language so that
both parsing and generation are available. Then we plug it together with a

string language which model categorial grammars, so that the latter is en-
dowed with an underspecified semantic representation.

2 A Non-Linear Extension

In this section, we extend the definitions of ACGs of de Groote (2001) in
order to allow some kind of non linearity in A-terms, while preserving the
computational properties of ACGs. Basically, ACGs are built on intuitionnis-
tic implicative linear logic with the linear implicative type —o. To reach the
intuitionnistic implicative logic, we need the exponential connective ! of linear
logic to translate the classical arrow A — B into (!4) — B (Girard, 1987;
Danos and Cosmo, 1992).

Definition 1 (Implicative Types). Let A be a set of atomic types. The set
T (A) of linear implicative types is defined by the following grammar:

The set 7 (A) of implicative types is defined by the following grammar:
T(A) == A|\T(A)| T (A) — T(A)

Using the usual right associativity, we note « — 3 —o y —o § for (o —o (8 —o

(y —9)))

Definition 2 (Higher-Order Signature). ¥ = (A, C, 1) is a higher-order
signature (resp. higher-order linear signature), where:

e A is a finite set of atomic types;

e (' is a finite set of constants;

e 7:C — J(A) (resp. 7 : C — J¢(A)) assigns an implicative type to each
constant.

Definition 3 (Typed Terms). Let X be an infinite countable set of A-
variables. The set A(X) of A-terms built upon a higher-order signature 3 =
(A, C,) is inductively defined as follows:

e if c € C then c¢: 7(c) € A(X);

o if zr € X and o € J(A) then z: a € A(X);

o if z :la € A(X),t : B € A(X) and z occurs free at least once in ¢ then
Azt :la— e AX);

o ifz:aeAX),afld,t: € A(X) and z occurs free exactly once in ¢ then
Ar.t:a— e AX);

o ift:a— f,u:a € A(X) and if a#!a’ or there is no free linear variable in
u, then (tu) € A(X).

Aterm t: o € A(X) is linear if o € Ty(A).

We now define the extensio of ACGs with linear abstract terms but with
general (with no empty abstraction) A-terms as object terms.

Definition 4 (Lexicon). Let ¥; = (A;,C}, 1) be a higher-order linear sig-
nature, and Xy = (Ay, Cy, 7») be a higher-order signature. A lezicon £ from
¥, to Xy is a pair £ = (F, G) such that:

e FF: Ay — Z(Ay) is a function interpreting the atomic types of ¥; as
implicative types built upon As. We also call F' its homomorphic extension
over Ty (A;);

e G :C, — A(X,) is a function interpreting the constant of ¥; as A-terms
built upon 3, compatible with the typing relation: for any ¢ € Cy, G(c) :
F(r1(c)) € A(X2). We also call G its homomorphic extension over A(X;).

Depending on the context, we note .Z(a) either for F'(a) or G(a).

Definition 5 (Abstract Categorial Grammar). An abstract Categorial
Grammar is a quadruple & = (3;,3%,, %, S) where:

e >, called the abstract vocabulary, is a higher-order linear signature, and
Yo, called the object vocabulary, is a higher-order signature;

e ¥ : X — Y, is a lexicon from the abstract vocabulary to the object
vocabulary;

e S A is called the distinguished type of the grammar.

An abstract categorial grammar & = (3, %,,.Z, S) is lezicalized whenever for
any c € Cy, there is ¢ € Cy such that ¢ is a subterm of .Z(c).

Definition 6 (Abstract and Object Languages). Let 4 = (¥, %,,.Z, 5)
be an abstract categorial grammar. The abstract language A(¥) and the object
language O(¥) generated by ¢ are defined as follows:

AG)={teMt: S} O ={tehofFuec At = L)}

Theorem. Let ¢ be a lexicalized abstract grammar as defined above. Then
the parsing problem is decidable.

Proof. As we noted in section 1, the parsing problem is equivalent to solving
the equation
Ay 2,. L)L) - ZL(en) =u

for any w in A(X,).

Since there is no empty A-abstraction in A(()X;) and A(Xs) (every abstraction
binds at least a free variable), there is no empty A-abstraction in .Z(t) nor
in any .Z(c;). Since nothing disappear, any constant ¢ on the right hand
side of the equation must appear at least once on the left hand side, and at
most the number of times it appears on the right hand side. Moreover, every
Z(¢;) contributes with at least one constant (¥ is lexicalized). Thus, the set
of possible combinations for .Z(cy),...,-Z(¢y,), hence for ¢y, ..., c,, is finite.

Moreover, t is a linear A-term, so the problem can be seen as a proof-search
problem (with additional constraints) in the multiplicative fragment of linear

logic: with ¢; : o, we have o; € T (A1) and it reduces to solve z; : aq,- -+ , T,
oy, Ft: S which is decidable. Pogodalla (2001), in another context, describes
an algorithm to solve such problems. O

This extension may appear as a small extension of basic ACGs. Nevertheless,
it’s worth noting that :

e it preserves the computational properties of ACGs;

e it now allows to relate linear signatures (for instance for syntax) and non-
linear signatures (for instance for semantics);

e it gives for free both parsing and generation (in the usual sense) decidability;

e since the abstract signature is linear, and the object one not necessarily lin-
ear, we lose some compositional properties of ACGs: the object vocabulary
cannot appear as an abstract one in another ACG, but it can still appear
as an object one in another ACG.

We are now in position of using these properties with an underspecified se-
mantic representation language.

3 Example: Using the Hole Semantics

3.1 a Higher-Order Signature for the Hole Semantics

Bos (1995) proposes the hole semantics as a general framework to cope with
underspecified representations. Given a logical language, it provides a syntax
and a semantics to express underspecification, that is formulas expressing
constraints over the formulas of the logical language. It uses the predicate
logic “unplugged” as logical language as example of this approach. Its syntax
is basically the same as predicate logic, except that, if atomic formulas remain
the same, formulas are built from holes and labels, the latter being used as
palce holder for logical formulas in the underspecified representation language.

So that there are two languages: a semantic representation language (SRL),
and an underspecified representation language (URL) (Blackburn and Bos,
2003). The latter using formulas of the former in its A-term representation (Black-
burn and Bos, 2003), and both being first order languages, we use boldface
symbols (e.g, All, And, Imp, etc.) for the usual symbols in SRL, whereas we
exactly use the usual logical symbols (3, A), an infix predicate > to specify
the constraints and an infix operateur : for URL. The symbol & > [somehow
imposes the constraint for a formula that is associated to [to be a subformula
of the one associated to h. [: p indicates that a predicate p of SRL is labelled
in URL by [. But let us have an example.

To the sentence every man loves some woman is associated the formula of
URL

Hhohlh2l1l2l3l4l5l6l7$y(l1 : A"(.’E, lg) A l2 : Imp(lg, hl) A l3 : man(x)
A l4 : Some(y, l5) A l5 : And(ls, hg) A l6 : woman(y)
/\h:love(w,y) /\h1Zl7/\h22[7/\h02l1/\h02l4)

As suggested by Blackburn and Bos (2003), it can preferably be drawn as in
figure 2, representing the > relation with dashed lines. We can state the con-
straints it represents as: love(z, y) must be a subformula of /5 in All(z, [3), but
also a subformula of I5 in Some(y, [5). It represents two formulas of SRL that
both satisfy the constraints. In the first formula, l5 (hence l4) is a subfornula
of I, too. In the second one, Iy (hence [;) is a subformula of 3:

All(z, Imp(man(z), Some(y, And(woman(y), love(z,v))))) (1)
Some(y, And(woman(y), All(z, Imp(man(z), love(z,y))))) (2)

or, expressed in the usual predicate logic language:

Vz(man(z) = Jy(woman(y) A love(z,y))) (1)
Jy(woman(y) A Vz(man(z) = love(z, y))) (2)’

We want to underline the difference between URL and SRL because our con-
cern in this paper is not to build and manage SRL formulas, but only URL
formulas, that is underspecified representations. So, the object language of the
ACG we are designing is URL. Let us now define the higher-order signature
Zurl = <Aurla Curla 7—url>:

o Ay ={e, h,l,p,t} where e stands for entities, h for holes, [for labels, p for
predicate of the logical language and ¢ for truth values;

e Cun ={>,:,31, 3, 3n, A, Imp, And, Some, All} U P where P is set set of the
predicate symbols of the logical language (in the examples, we use P =
{man,woman, love. . .});

ho
il Toes
l1 l4
I : All(z,12) ls : Some(y,ls)
I : |mp(l3,h1) 5 : And(le,hz)
I3 : man(z) N wom/an'(g//)
2
l7

l7 : love(z,y)

(a) Underspecified rep-
resentation

1 : All(z, 1)

Iy : Imp(l3;h1)

\

l3 : man(z) \
la

1y : Some(y,I5)

15 And(ls, h2)

lg : womg:r(g})

-
-

e
Ir

l7 : love(z,y)

(b) First
model

lg: Some(y, ls)
s : And(lg, h2)

lg : woman(y) \\l
1

I : All(z, 12)
lo : Imp(l3, h1)

I3 : man(z) \

l7 : love(z, y)

(c) Second model

Fig. 2. Semantic representation of every man loves some woman

® Ty is defined in table 1.

Note we have three existential quantifiers 3;, 9, and ., but we usually note
them only 4. Moreover, to keep the usual logical notation we write dz P instead
of 3(Az.P) where z is a free variable of P.

We are now in position to use this higher-order signature in an ACG.

3.2 Example: An ACG that endowes Categorial Grammars with an Under-

specified Semantics

We need first to define the abstract vocabulary. We rely on the example de Groote
(2001) gives to accomodate categorial grammars with ACGs. First is the ab-
stract vocabulary ¥¢; = (Acg, Cog, Teg):

e A, = {N,NP,S};

L4 ch = {CJohn: Clovesy Cclaimsy Cmans Cwomany Csomes Cevery) Cseems};

v

th—=1—t specifies the underspecification constraints
l—>p—ot labels the logical predicates
AN t—ot—ot conjunct of descriptions
3, : (Il —>1t) —t | existential quantifier on labels
Jn (I = 1t) —t | existential quantifier on holes
Jde : (e —t) —ot | existential quantifier on entities
And,Imp :/ — h — p | conjonction and implication in the embedded logical language
man, woman :e —p predicates in the embedded logical language
claims :e—p predicate in the embedded logical language
john : (e —t) — ¢ | predicate in the embedded logical language
loves :e—e—p | predicate in the embedded logical language

F,. S :h—p predicates in the embedded logical language

Table 1
Definition of 7y

® Tep !

Cjohn - NP Cioves . NP — NP — §
Cevery : N —o NP Coome - N— N
Celaims - O — NP — § Cman - N
Cwoman - N Cseems - (NP — S) — NP — §

Cand - NP — NP — NP Cusualty : (NP — S) —o (NP —o 5)
Then, on the syntactical side, we have the following signature:

Yotr = ({str}, {¢, /John/, [loves/, +, ...}, Tstr)

with 7g(4+) = str —o str the concatenation operation on strings and e the
empty string, and for any other constant ¢, 7y.(c) = str, and the expected
following lexicon:

ZLeyn(John) = [John/ ZLiyn(loves) = Azy.y + [loves/ + x

Liyn(every) = \x./every/ + z Liyn(some) = Az./some/ + x

Lgn(claims) = Axy.y + /claims/ + x ZLegn(man) = /man/

) =
) =
)
) =

— N’ N SN

ZLiyn(woman) = woman/ Liyn(seems) = Arx.x + /seems/ + 1/, €

As in the figure 1, we have defined a first ACG to deal with the syntactic
analysis. For instance, we have

ZLeyn (Cloves(CsomeCwoman) (CeveryCman)) = (/ every/+/man/)+/loves/+(/some/+/woman/)

SO t = Cioves(CsomeCwoman) (CeveryCman) 1S the abstract term corresponding to the
expression every man loves some woman.

But let us now keep drawing the figure adding another ACG to deal with the
semantic side.

We can define Zem : X — Lyn with the following:

Ziem(NP)=(e > h—=1l—-t) > (h—=1—1t) Lem(S)=h—o1-t
Zim(N)=e—>h—1—t

Zsem(Cjonn) = AP.P john
ZLsem (Cloves) = Aos.s(Az.o(Ayhl.h > I A1 : loves(z,y)))
Lrem (Cevery) = Azyhl.3hylylalzvy (b > Iy Aly - All(v, I3) Als : Imp(ly, hy)
Aht >1IANzvihl /\yvlhl)
Lrem(Csome) = Aeyhl IR LI (B > 1) AL, : Some(w),15) AL, : And(l}, b))
ARY >INz R Ayl k)
ZLsem (Cman) = Avhl.h > 1AL : man(v)
Ziem (Cwoman) = Avhl.h > I Al : woman(v)
Ziem(Cand) = APQAThI.PrhlANQrhl

Let eem = (Eegs Zurly Leem; 5). We have that

Lsem(CsomeCwoman) = Ayhl IR 1151501 (b > 15 A1) : Some(v],15) Al : And(l},)
AR >1TAR>1 AL : woman(v)) Ay hi)
Lrem (CeveryCman) = Myhl.3halilolzvr (h > Iy Aly : All(y, 1) Als : Imp(iy, hy)
Ahy>1Ah>11 Aly : man(vy) Aywvy hl)
Zsem (Cloves(CsomeCwoman)) = As-s(Azhl. IR\ 151501 (h > 15 AL, - Some(v,15) Al : And(l}, b))
ARy >IAR > Al - woman(v)) AR > 1AL :loves(z,v'1)))

Then, with the previous definition of ¢

D%em(t) =)\hl.ahllllglg’m(h >y ANls e A"(’U1,l3) Alg: Imp(ll, hl)
Ah1>IANR>11 AL :man(vl)
A FR L0 (R > 15 AL - Some(vy, 15) Ay : And(1], R))
AR, >IANR > AL woman(v)) Ah > 1AL : loves(vy,v'1)))

The latter formula correspond to the one expected and represented in fig-
ure 2(a) (modulo variable renaming). So the abstract term ¢ can be send on

every man loves some woman on the syntactic side, thanks to %y, and on the
representation above on the semantic side, thanks to Zem. Moreover, with this
approach, the semantical requirement of type raising do not interact anymore
with the syntactic role of determiners.

It remains true with conjonction.For instance we can compute:

Liem (CandCionn(CsomeCman)) = APQAThI.Prhi AN Q1 hl)(AP.P j)(Ayhl.

S, (B > 1 AL - Some(v), 15 AL : And(}, b))
AR, > 1IAR > AL man(vy) Ayvl hl))

= (AQArhl.r j RIAQrhi)(Ayhl.
AR, 151501 (h > 15 Al - Some(v), 15) Aly - And(l}, b))
ARy >1ANR > ANl - man(v]) Ayvyhl))

= Arhlr j hi A IR0 (R > 1 Ay : Some(v], 13)
Aly: And(l,) AR > UAR > 1) AL man(vy) Ar ol)

Then

Liem (ClovesCMary(CandC1onn(CsomeCman))) = ARLR > j AL : loves(j, m) A IRi 1 L1501 (h > 1
Al : Some(vy, l3) Al - And(l3, A7)
ARy >IANR>1; AL :man(v)) AR >1
Al : loves(v'l,m)))

We can also extend the lexicon to deal with control and raising verbs:

%em(cclaims) = ATS.S()\ZL'hl.Elllhl (h, > ll N ll . ClaimS(ZE, hl) AN ’f’hll))
Liem (Cseems) = Ars.s(Azhl.3hili(rxhiANh > 1 Aly : seems(hy) A hy > 1)
Liem (Ciries) = Ars.s(Axhl.3hily(rahl ANh > 13 Al : tries(xz, hy) A hy > 1)

Or intersective or non subsective adjectives:

Liem (Cotack) = AnAzhlnz hl Al : black(z)
D%em(cformer) = /\’ﬂ)\.ThlElhlll(h > ll N ll : former(hl) ANz hl l)

More interesting is the case of adverbs. They also can create ambiguities, such
as in John usually loves some woman,depending on the scope of usually and
the scope of some woman. It is the same in John alledgedly usually loves some
woman, except that alledgedly always scopes over usually.

Liem (Cusuatty) = A.8.ARL. 3Rl (R > U AL usually(hy) Ay > 1l AT shly)
Lrewn(Cattedgedty) = A5 ML3hly (b > LA L: alledgedly(hy) A hy > 1y AT shly)
ZLiem (Cintentionally) = Ar.8.ARL.3hli(h > 13 Al : intentionally(hy) A hy > I AT shl)

We have for instance:

Zsem (Cusuatiy(Cloves (CsomeCwoman)) = AShL.3hqly(h > I Al : usually(hi) A hy > |4
A s(Azhl. 3R LI, (h > 1) AL - Some(v), IL)
AAnd(l},) AR > 1A R > 1] Al - woman(v))
Ah>1AL:loves(y,v})))hiy)

It appears that loves has to be both a subformula of usually and a subformula
of Some. This will remain, even if the [label to usually imposes that another
adverb, such as alledgedly, to make it a subformula. So that the ambiguities
with the existential quantifier are preserved, but usually always remains in
the scope of any other adverb.

On the other hand, an adverb such as intentionnaly would preserve all the
combinations, not specifying that it has to be a subformula of any other ad-
verb: its label [; is specified in the lexical entry.

Conclusion

We have presented the different parameters that give ACGs their computa-
tional properties. We have seen that we can manage expressivity and reversibil-
ity, depending on the aim we have. For instance, since lexicon application is
always easy, an object language from which no parsing has to be made can
be very broad. On the other hand, whenever we want to keep parsing from
the object language to the abstract language, we have to be careful with the
language we use.

It helped us to define an extension that keeps the reversibility property of
ACGs. This extension is very important when dealing with semantic repre-
sentation languages, because it can manage non-linearity of terms. As an il-
lustration, we described an ACG that can endow catagorial grammars with an
underspecified semantic representation: the semantic ambiguities are not any-
more modeled at the syntactic level, but at the semantic one. On the other
hand, because the abstract and the object vocabularies now differ, we lose
some kind of compositionality of ACGs.

Finally, because of the compositional aspects of ACGs, this extension can be
used with other syntactical formalisms that have been encoded with ACGs,
in order to provide them with an explicit compositional semantics, as done
in (Pogodalla, 2004) for TAGs. Of course, it is not limited to underspecified
semantics, and other semantic representation languages could be encoded since
we now provide non-linearity.

References

Blackburn, P.; Bos, J., 2003. Computational semantics for natural language.
http://www.iccs.informatics.ed.ac.uk/ jbos/comsem/bookl.html,
course Notes for NASSLLI 2003.

Bos, J., 1995. Predicate logic unplugged. In: Proceedings of the Tenth Ams-
terdam Colloquium.

Danos, V., Cosmo, R. D., 1992. The linear logic primer.
http://www.pps.jussieu.fr/ dicosmo/CourseNotes/LinLog/, an
introductory course on Linear Logic.

de Groote, P., 2000. Linear higher-order matching is np-complete. In: Bach-
mair, L. (Ed.), Rewriting Techniques and Applications, RTA’00. Vol. 1833
of LNCS. Springer, pp. 127-140.

de Groote, P., 2001. Towards abstract categorial grammars. In: Association
for Computational Linguistics, 39th Annual Meeting and 10th Conference
of the European Chapter, Proceedings of the Conference. pp. 148-155.

de Groote, P., 2002. Tree-adjoining grammars as abstract categorial gram-
mars. In: TAG+6, Proceedings of the sixth International Workshop on Tree
Adjoining Grammars and Related Frameworks. Universita di Venezia, pp.
145-150.

de Groote, P., Pogodalla, S., 2003. m-linear context-free rewriting systems as
abstract categorial grammars. In: Oehrle, R., Rogers, J. (Eds.), MOL 8,
proceedings of the eighth Mathematics of Language Conference.

Dowek, G., 1994. Third order matching is decidable. Annals of Pure and Ap-
plied Logic 69 (2-3), 135-155.

Girard, J.-Y., 1987. Linear logic. Theoretical Computer Science 50, 1-102.

Huet, G. P., 1976. Résolution d’équations dans les langages d’ordre 1, 2, ...,
w. Ph.D. thesis, Université Paris, 7.

Loader, R., 2003. Higher order S matching is undecidable. Logic Journal of
the IGPL 11 (1), 51-68.

Padovani, V., 1996. Filtrage d’ordre supérieur. Ph.D. thesis, Université de
Paris 7.

Pogodalla, S., 2001. Réseaux de preuve et génération pour les grammaires
de types logiques. Ph.D. thesis, Institut National Polytechnique de Lorraine.
URLhttp://www.loria.fr/publications/2001/A01-T-422/A01-T-422.ps

Pogodalla, S., May 2004. Computing semantic representation: Towards ACG
abstract terms as derivation trees. In: Proceedings of the Seventh Inter-
national Workshop on Tree Adjoining Grammar and Related Formalisms
(TAGHT).

