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GRAS: A RESEARCH & DEVELOPMENT FRAMEWORK FOR
GRID AND P2P INFRASTRUCTURES

Martin Quinson (Martin.Quinson@loria.fr)
Nancy University / LORIA*

ABSTRACT

Distributed service architectures are mandatory
to handle the platform scale and dynamicity hindering
the development of grid and P2P applications. These
large-scaled distributed applications are difficult to
design, develop and tune because of both theoretical
and practical issues.

This paper presents the GRAS framework that
allows developers to first implement and experiment
with such an infrastructure in simulation, benefiting
from a controlled environment. The infrastructure can
then be deployed in situ without code modification.

We detail our design goals, and contrast them
with the state of the art. We study the exchange of a
message (from the Pastry protocol) using either GRAS
or several other solutions. We quantify both the code
complexity and the performance and find that GRAS
performs better according to both metrics.

KEY WORDS
Distributed application development, grid simulation.

1 Introduction

Large scale distributed computing platforms such
as grids and peer-to-peer (P2P) systems are very
challenging to use because of their scale, dynamicity
and heterogeneity (in terms of hardware capacities
and software environment). That is why every
application developers have to rely on distributed
services infrastructures such as the Globus MDS and
GIS [7] for resource and data discovery, the NWS
([13]) for resource monitoring, NETSOLVE [1] for
application deployment. These infrastructures are in
turn challenging to develop and to tune. Furthermore,
the underlying distributed algorithms are generally
extremely complex and difficult to study.

None of the classical standards of parallel
computing is suited to the development of distributed
service infrastructures. Most of the currently deployed
infrastructures thus rely on lightweight communication
libraries. For instance, NWS and NETSOLVE use
specific communication libraries specifically fitted to
their use and hence difficult to reuse in other contexts.

Another difficulty raised by large scale platforms
is their dynamicity that prevent reliable reproduction
of experiments and hinder faithful algorithm
comparisons. As a result, developers typically spend
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inordinate amount of time to establish evaluation
environments. Moreover, due to the changing nature
of the platforms, two subsequent executions of the
same code will necessary face different conditions,
possibly triggering different application behaviors.
Simulation constitutes a solution to these problems,
but the resulting implementations are typically
confined to proof-of-concept prototypes. They would
need a complete rewrite to be useable in situ.

This paper introduces the Grid Reality And
Simulation (GRAS) framework, which aims at
easing the development of distributed event-oriented
applications. It constitutes at the same time a
convenient development framework and an efficient
distributed runtime environment, allowing the same
unmodified code to run both on top of a simulator
and on real distributed platforms (using two specific
implementations of its API). This solution combines
the better of both worlds: developers benefit from the
ease-of-use and control of the simulator during most
stages of development cycle while seamlessly producing
efficient real-life-enabled code. While GRAS does not
pretend to address all issues pertaining to large scale
computing, we believe that its combined simulation/in
situ approach is the key to the rapid and easy
development of effective adapted infrastructures.

The remainder of this article is organized as
follows: §2 presents the state of the art. §3 details the
goals of GRAS. §4 provides some experimental results,
both in term of performance and code complexity. §5
concludes the paper and presents some future work.

2 Related Work

Our work integrates in a unified framework the
development, the simulation, and the execution of
distributed applications. Related work thus falls in
these three categories, as highlighted below.

2.1 Distributed application development

Solutions such as Vampir [10] allow the programmer
to explore graphically the communication patterns of



MPI applications and identify e.g. the performance
bottlenecks. The main advantage of GRAS in this
context stands in the use of a simulator, allowing
to reproduce the experiments under controlled
conditions. Dimemas [2] is the performance predictor
associated with VAMPIR.  Given the application
trace recorded by VAMPIR, it interpolates what the
application execution would be on another platform.
This gives some hints about the code scalability, but
does not help to develop and debug the application.
Macedon [11] aims at providing a unified
framework to compare large-scale overlay algorithms.
They can be specified in a domain-specific language,
and run either in live setting or on top of
a simulator. The project’s goal is to enable
fair comparisons of algorithmic merits rather than
artifacts of implementations. Therefore, even though
algorithms encoded within MACEDON lead to working
implementations, they remain prototypes whose
efficiency is arguable. Lastly, computation times are
not taken into account by the simulator, limiting this
approach to communication bound applications.
GRAS can be considered as an evolution of the
Direct Execution Simulators such as LAPSE [5].
They allows to evaluate and tune in a simulated
environment parallel programs using MPI. The
sequential code sections are timed by direct execution
and their effect is then reported into the simulator.
GRAS extends this work to heterogeneous platforms.

2.2 Simulation and emulation tools

With these tools, one can conduct tests on platform
they do not have access to. For instance, they allow to
quantify how the application behaves when a process is
placed on an host with a slower CPU than the others.

One of the classical emulation solutions is
MicroGrid [14]. It allows to run applications on
a virtual platform by trapping every network-related
call and mediating them. The computing resources
are simulated by a local scheduler, which allocates
CPU time slices to each process according to a
predetermined rate. Communications are mediated
according to the results of an ad-hoc simulator.

The SimGrid [4] toolkit provides core functio-
nalities for the simulation of distributed applications
in heterogeneous distributed environments. It is built
upon an efficient trace-based discrete event simulation
kernel. Thanks to the rather simple models used,
SIMGRID can simulate thousands of processes on a
single workstation and is several orders of magnitudes
faster than complete simulators or emulators.

2.3 Execution and communication
layers for distributed applications

The classical message passing libraries such as
PVM or MPI were designed for cluster computing.
They are thus particularly adapted to applications

presenting a regular communication and execution
patterns. On the opposite, GRAS is designed for
loosely coupled applications with potentially highly
irregular patterns. Moreover, GRAS aims at offering
efficient communication of structured data while PVM
or heterogeneous implementations of MPI (such as
MPICH on Linux, see §4) use XDR for data encoding,
impacting badly the performance.

The AMPiIC library! constitutes a simple
solution to exchange messages between loosely coupled
applications and attach callbacks to their arrival
in processes. It can convey fixed C structures
using sockets, secure connexions, MPI or Globus
communication libraries. It only lacked an efficient
wire protocol to become an appealing grounding layer
for the GRAS runtime environment (cf. §3.3).

The main goal of the CORBA standard is the
interoperability between software environments while
we aim at performance and interoperability of a given
software environment across hardware settings. The
target of CORBA is thus different from ours.

Nowadays, XML constitutes the de facto
standard for interoperability. It is used in technologies
such as SOAP[3], used in turn in OGSA [8]. Being a
human-readable protocol, it allows for easy debugging
and parsing. However, performance greatly suffers
from the required data conversion to and from a
textual representation. This is why we preferred an
efficient binary representation to XML (c.f. §4).

3 The GRAS project

GRAS is designed to build well-tested distributed
infrastructures offering a specific service to large-
scale distributed applications and middlewares. For
instance, one could use GRAS to build grid
computational servers comparable to NETSOLVE [1],
platform monitoring sensors like the NWS ones [13]
or Distributed Hash Tables like Pastry [12]. Such
infrastructures are constituted of several entities
dispatched on the various hosts of the platform and
collaborating with each other using some specific
application-level protocol. The primarily targeted
application class is thus the class of loosely coupled
collections of communicating processes using an
application-level protocol.

3.1 Offered interface

The targeted applications are more easily described
using an event-driven model than with a SPMD
model. The GRAS framework relies on the active
message paradigm and provides a high level message
passing interface. The main concepts are thus:

Agents. They are the individual processes taking part
to the distributed application.

Sockets. These communication end-points are very
similar to the semantic of the BSD sockets.
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Messages. They represent what gets exchanged
between the agents. The type of each message gives
semantic informations about the application. The
actual payload format must be precisely described to
allow GRAS to convert it to another representation
automatically on need. Any messages of the same type
must share the same payload format.

Any wvalid C type can be used as payload,
including structures and pointers. The datatype
format can be parsed directly from the C structure
definition automatically in most cases.

Callbacks. These are user-defined functions attached
to a given message type. They get run automatically
to handle any incoming message of the matching type.

It is still possible to explicitly wait for a message
matching some criteria (right message type, or right
expediter, etc.). Messages received in the meanwhile
will be queued for future use. GRAS also allows RPC-
like messages, where the receiver is supposed to return
an answer through a second message. Failures on the
RPC receiver are automatically reported to the caller.

GRAS offers several additional features such as
classical data containers (dynamic arrays, hash tables),
a distributed logging service, a unit testing framework
and an exception mechanism, all in C ANSI.

3.2 Development Framework for
Distributed Applications

Typical distibuted programming issues.
Concurrent algorithms introduce specific difficulties
like race conditions and deadlocks. Moreover, usual
development techniques do not apply because the
application is split in several entities interchanging
messages. This process multiplication makes it
very difficult to conduct step-by-step execution in a
debugger to understand why the program does not
behave as expected. To alleviate these problems,
the main idea of GRAS is to allow simulator-
assisted development of distributed application.
The simulator constitutes a fast and controlled
environment for developers, who produce seamlessly
efficient real-life-enabled code.

Large scale distribution. The scale of the
target platforms can range from a dozen of hosts to
several hundreds for grids, or even millions for P2P
systems. The platforms are then naturally highly
heterogeneous. Since the resources are often shared
between «grid usersy and «local users» owning it, the
characteristics usually vary with time. On the other
hand, increasing the number of hosts dramatically
increases the probability that at least one host is
unavailable at a given time. Also, the processes
are usually distributed over several sites introducing
different hardware and administrative orientations.
Thus, the programing environment is likely to be
different on each site, and getting the processes

compiled on each site taking the library location and
compiler settings into account can become difficult.

These technical difficulties often distract the
developers from the algorithmic challenges raised by
grid and P2P applications, making the development
even more challenging. We expect users to run their
applications quite frequently during the debugging
cycle to test them in a representative set of scenarios
and platforms. This need for a very fast evaluation
scheme leads us to base our work on the SIMGRID
simulator, which is the fastest solution to our
knowledge.

Simulation/in-situ dual approach. To allow the
same code to run both on top of a real platform and
in simulation mode, GRAS virtualizes the operating
system and provides explicit system call wrappers.
Indeed, time calls should return the current simulated
time rather than the current real time on the machine
running the simulation, which is meaningless within
the simulation.

Moreover, the computation durations have to be
reported into the simulator. When the user code needs
W Mflop, the corresponding simulated process has to
be blocked for W/p virtual seconds if its virtual host
delivers p Mflop/s. GRAS provides a mechanism to
automatically benchmark W.

3.3 Distributed Runtime Environments

Performance concerns. As our goal is to allow
the development of real programs, not only simple
algorithmic prototypes, the associated runtime
environment has to be suitably optimized. Since
GRAS does not interfere with the computation
and storage facilities and because of the
distributed settings of the targeted applications,
the communication layer deserves a lot of attention.

The Native Data Representation (NDR)
constitutes an efficient data representation first
demonstrated by PBIO [6] and used in GRAS. Data
structures are sent as they are represented in memory
on the sender side. If the receiver architecture
matches the sender one, the data can be placed in
memory without any analysis, completely avoiding
the encoding costs. When architectures do not match,
the receiver converts the remote data representation
to the local one.

Portability. The operating system and hardware
heterogeneity issue has to be addressed. In this view,
the system call virtualization mechanism discussed
above is used as a portability layer over the different
operating systems, ensuring that any user code built
on top of GRAS remains portable.

The framework itself is ported to Linux (x86,
AMDG4, 1A64, ALPHA, SPARC, HPPA and PPC); Mac
OS X; Solaris (SPARC and x86); IRIX and AIX.GRAS
have no external dependency to ensure its usability
everywhere.



typedef struct { /* message payload */
int id, row_count;
double time_sent;
row_t *rows; /* array, size=8 */
int leaves[MAX_LEAFSET];
} welcome_msg_t;
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typedef struct { /* helper structure */
int which_row;
int row[COLS] [MAX_ROUTESET];

} row_t;
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Figure 1. C definition of the exchanged message.

4 Experimental Evaluation

This section evaluates quantitatively the GRAS
framework, according to code complexity and
execution performance. In the GRAS context, the
simulator is seen as a development tool. We thus
do not consider simulation performance here and refer
the reader to [4] for further information on the used
simulator.

For these experiments, we implemented a simple
example using several communication libraries. The
code simplicity was then measured using classical
metrics and the performance was compared in different
settings. The chosen message is involved in the Pastry
application protocol [12]. Figure 1 presents the C
definition of this data type, which is 5236 bytes long.

In this experiments, we compare GRAS to
the following solutions: the MPICH implementation
(version 1.2.5.3) of the MPI standard; the OmniORB
implementation (version 4.0.5) of the CORBA
standard; PBIO (presented in §2.3) and a hand-
rolled solution using the expat XML parser. To our
knowledge each of these implementations are amongst
the best solutions in their categories.

4.1 User code complexity

In this section, we compare the complexity of the code
that the user has to write to exchange this message.
This comparison, presented in Table 1, uses two classic
code complexity metrics: The McCabe Cyclomatic
Complexity metric shown on the first line assesses the
code complexity and its maintenance difficulty [9]. The
second line reports the number of lines of code (not
counting blank lines nor comments).

GRAS | MPI | PBIO | CORBA | XML
McCabe 8 10 10 12 35
Lines 48 65 84 92 150

Table 1. Comparision of code complexities and sizes.

The XML solution is by far the most complicated
solution. It may be due to the expat parser we
use, but this is the fastest XML parser. MPI is
quite simple, the main difficulty being that it requires
manual marshalling and unmarshalling of data. PBIO
exempts the user of these error-prone tasks, but
requires the declaration of data type description meta-

data. OmniORB requires the user to override several
methods of classes automatically generated from an
IDL file containing the data type description. GRAS
automatically marshals the data according to the
type description, which is automatically parsed from
the C structure declaration. This allows GRAS to
be the least demanding solution from the developer
perspective, according to both metrics.

4.2 Code performance

The GRAS  runtime only mediates the
communications, leaving the computational code
unchanged. We thus only evaluate communications.
For this, we conduct experiments involving
computers of different architectures (PPC, SPARC and
Xx86), and at different scales. On Figure 2, the first
part presents the timings measured when data are
exchanged between processes placed onto the same
host. The second part presents the timings measured
on a LAN. The sending architecture is indicated on the
row while the receiving architecture is shown by the
column (for instance, the most down left graphic was
obtained by exchanging data from a PPC machine to a
X86 one). The last part presents the timings measured
in an intercontinental setting: data is exchanged from
the previously used hosts located in California, to an
X86 host placed in France. The X86 machines are
2GHz XEONSs, the SPARC are UltraSparc II and the
ppC are PowerMac G4. The SPARC machines are
notably slower than the other ones while X86 and ppC
machines are comparable. All hosts run Linux. The
LAN is connected by a 100Mb ethernet network, and
both sites are connected to a T1 link. Each experiment
was run at least 100 times, for a total of more
than 130 000 runs. Moreover the different settings
were interleaved to be fair and equally distribute the
external condition changes over all the tested settings.

The first result of these experiments is the relative
portability of communication libraries. This version of
PBIO does not work on the PPC architecture while
MPICH fails to exchange data between little-endian
Linux architectures and big-endian ones. We were also
unable to use MPICH on the WAN.

The performance of the XML based solution is
worse than any other by one order of manitude. The
systematic data conversions from and to a textual
representation induce an extra computation load
while the verbosity of this representation stresses the
network. When MPICH is usable (half of the settings),
it is about twice as fast as the other solutions. It seems
that the apparent poor performance of our solution
comes from the extra analysis performed: we interpret
the data description at runtime to perform the data
exchange automatically while MPICH requires to write
the exchange code manually. This is a tradeoff between
code simplicity vs. speed. The solution we are
currently working on in order to alleviate this consists
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Figure 2. Performance comparison.

in analyzing the data description at compilation time
to generate automatically the exchange code and thus

bypass the analyze co

sts at runtime.

Finally, the

differences between solutions tend to be attenuated on

WAN since the latency masks any optimization.

These results are quite satisfying for us: beside of
MPICH, GRAS is the fastest solution in all settings,
but the LAN x86/x86 setting (where PBIO is faster
by 0.1ms — 4%) and the SPARC intra-machine setting
(where both OmniORB and PBIO are faster by 2.5ms
— 25%). This performance, added to the portability
of our solution and its simplicity of use shown above
constitute strong arguments for the quality of the

GRAS framework.

5 Conclusion

This paper introduces a new large scale distributed
programming framework allowing developers to
evaluate and tune their applications easily thanks to a
simulator. The resulting code can then be deployed
on the target platform without code modification.
We present the state of the art through a quick
survey and detail our design goals. We then compare
the complexity and performance of several codes
exchanging one message of Pastry over the network
using either GRAS, MPICH, OmniORB, PBIO or an
XML representation using the expat parser. We find
that GRAS is the least demanding solution to the user,
and is only outperformed by MPICH. On the other
hand, MPICH does not allow to exchange data over



the WAN neither between little- and big-endian Linux.

GRAS is thus an easy to use distributed
application development framework resulting in
efficient yet portable applications suited to a typical
grid and P2P platforms. It shortens the development
cycles by simplifying the user code and allowing
the debugging phase to take place on the simulator.
We think that this approach is the key to effective
distributed infrastructures.

The GRAS source code represents 15,000 lines of
C code. It was recently merged with the SIMGRID
project, which is freely available from its web page?
and comes with all relevant information as well as with
several example programs and tutorials.

GRAS currently enables to build a distributed
application on UNIX platforms. We are porting our
runtime to WINDOWS since it is used by most of
the end-users. This would increase our impact on
the P2P community and test their algorithms against
a much more realistic simulation model than the
ones that are generally used. At the same time, we
are implementing several grounding services (such as
platform monitoring or application deployment) using
GRAS. This will demonstrate the efficiency of our
tool while constituting building bricks for others. The
simulation / in situ dual approach demonstrated in
GRAS also makes it possible to validate the simulator
itself. The results obtained so far are encouraging,
and open the way to more work on adapted platform
models providing a good tradeoff between efficiency
and realism.
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