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Abstract

While most parallel task graphs scheduling research
has been done in the context of single homogeneous clus-
ters, heterogeneous platforms have become prevalent and
are extremely attractive for deploying applications at un-
precedented scales. In this paper we address the need for
scheduling techniques for parallel task applications for het-
erogeneous clusters of clusters by proposing a method to
adapt existing parallel task graphs scheduling heuristics
that have proved to be efficient on homogeneous environ-
ments. The contributions of this paper are: (i) a novel
”virtual” cluster methodology for handling platform het-
erogeneity; (ii) a novel task placement step, designed to
determine whether the placement step of heuristics for ho-
mogeneous platforms is adapted to the heterogeneous case;
(iii) an empirical evaluation in a wide range of platform
and application scenarios. This study shows that the pro-
posed heuristics achieve better performance than the origi-
nal when platform are heterogeneous and we discuss a num-
ber of trends apparent in our results.

1 Introduction

To face the increasing computation and memory de-

mands of parallel scientific applications, a recent approach

has been to aggregate multiple homogeneous compute clus-

ters either within or across institutions. Typically, clus-

ters of various sizes are used, and different clusters con-

tain nodes with different capabilities depending on the tech-

nology available at the time each cluster was assembled.

Therefore, the computing environment is at the same time

attractive because of the large computing power, and chal-

lenging because of its heterogeneous nature.

∗This work is partially supported by the ARC INRIA OTaPHe, the Con-

seil Régional de Lorraine and the Government of Côte d’Ivoire.
†UMR 7503 CNRS - INPL - INRIA - Nancy 2 - UHP, Nancy 1.

One way to exploit this computing power is to maxi-

mize the degree of parallelism of a given application by

combining two kinds of parallelism, data and task paral-

lelism. The former consists in applying the same opera-

tion in parallel on different elements of a data set, while the

latter corresponds to concurrent computations on different

data sets. Several data-parallel computations can then be

executed concurrently in a task-parallel way. In this context

scheduling a parallel application consists in scheduling a

parallel tasks graph. Informally a parallel task is a compu-

tation made of elementary operations that exhibits enough

parallelism to be executed efficiently on more than one pro-

cessor. In this paper, we only consider a sub-class of parallel

tasks: the moldable tasks [10]. The number of processors on

which a moldable task is to be executed is not fixed a priori
but determined before the execution. However, this number

of processors can not be modified once the task is started.

Then we consider task-parallel applications described as a

graph in which each task (i.e., node) is itself moldable.

The problem of scheduling applications represented by

such graphs is to find the number of processors and the

cluster on which to execute each task of the graph while

satisfying resource constraints and task dependencies. The

objectives are to minimize the completion time of the appli-

cation while keeping a ”good” balance between execution

time and resource consumption.

Most parallel task graphs scheduling research has been

done in the context of homogeneous platforms [6, 7, 8, 9].

However, as explained above, heterogeneous platforms

have become prevalent and are extremely attractive for

deploying applications at unprecedented scales. Conse-

quently, there is a need for scheduling techniques for par-

allel task applications in the heterogeneous case. Two ap-

proaches can be considered. The first is to take an exist-

ing sequential task scheduling algorithm for heterogeneous

platforms and to develop a new algorithms for parallel task

scheduling on heterogeneous platforms. An heuristic fol-
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lowing this first approach has been proposed in [1]. This

paper focuses on a second approach: modifying existing

parallel task graphs scheduling heuristics [7, 8] designed for

homogeneous platforms in order to handle resource hetero-

geneity. We constrain the allocation of a given parallel task

onto processors of a single cluster in order to remain effec-

tive and be able to use models designed for homogeneous

platforms. The contributions of this paper are: (i) a novel

”virtual” cluster methodology for handling platform hetero-

geneity; (ii) a novel task placement step based on the suffer-
age idea [2], designed to determine whether the placement

step of heuristics for homogeneous platforms is adapted to

the heterogeneous case; (iii) an empirical evaluation in a

wide range of platform and application scenarios.

This paper is organized as follows. Section 2 presents the

platform and application models used in this paper. Sec-

tion 3 discusses related work and formalizes the problem

we address. Section 4 presents how we adapt the CPA

algorithm to target heterogeneous platforms. Section 5

presents our evaluation methodology and Section 6 presents

our evaluation results. Section 7 concludes the paper with a

summary of our contributions and future work.

2 Platform and Application Models

Our heterogeneous platform model consists of a clus-

ter of clusters, i.e., a heterogeneous collection of homoge-

neous clusters connected through a high bandwidth back-

bone as shown in Figure 1. Such platforms are representa-

tive of a certain class of currently available Grid platforms

as they typically consist of clusters located at different insti-

tutions, and institutions typically build homogeneous clus-

ters. Hence we have C clusters, where each cluster Ci, for

i = 1, . . . , C, contains Pi identical processors for a total

of P processors in the platform. Processor speed and LAN

bandwidth within clusters are not necessarily the same be-

tween two different clusters. Each processor executes tasks

one after the other in a space-sharing model.

Inside each cluster processors are connected by a switch

and can access to the backbone through a gateway that lim-

its the number of processors that can simultaneously send

data over the backbone. Figure 1 shows our platform model

and the fixed TCP routes connecting two processors either

in two separate clusters (processors A and B) or within the

same cluster (processors a and b).

A parallel application can be modeled by a Directed

Acyclic Graph (DAG) G = (N , E), where N = {ti : i =
1, · · · , N} is a set of N nodes (or tasks) and E = {Ei,j :
i, j = 1, · · · , N} is a set of E edges. Each task has a com-

putation cost, e.g., a number of flops, which leads to dif-

ferent computation times on different processors. An edge

in the DAG corresponds to a task dependency (communi-

cation and precedence constraint.) To each edge Ei,j is as-
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Figure 1. Platform model with routes between
two processors A and B located in two sep-
arate clusters and between two processors a
and b of the same cluster.

sociated Dij , the amount of data in bytes that task ti sends

to task tj . Each such transfer incurs a communication cost

that depends on network capabilities. It is assumed that if

two tasks are assigned to the same processor set there is no

communication cost but a just a task dependency. Moreover

we assume that several communications may be performed

at the same time, possibly leading to network contention.

A task without any input edge is called an entry task

while a task with no output edge is called an exit task. A

task is said ready when all its predecessors have completed.

In a homogeneous processor system, the execution time

of a parallel computation can be expressed by classical

speed-up models. In this paper we use the Amdahl’s law

to model the parallel execution of a given task ti:

Tω(ti, Np(ti)) =
(

α +
1 − α

Np(ti)

)
· Tω(ti, 1)

where Np(ti) is the number of processors allocated to

task ti, Tω(ti, 1) is the execution time of this task on a sin-

gle processor of this cluster Ci and α the part of the task

that cannot be parallelized. Tω(ti, Np(ti)) then denotes the

execution time of a particular task on a given number of

processors.

We assume that a parallel task only uses processors

within a single cluster. Deploying a task on several geo-

graphically distant clusters would lead to an important over-

head. Furthermore a convenient way to ensure that we can

use that model is to always map parallel tasks within a sin-

gle cluster.

In the case of sequential tasks an inter-task communica-

tion simply implies a point-to-point data transfer. But in the

case of parallel tasks it involves a potentially complex data

redistribution, since source and destination data items are

themselves distributed among multiple processors.

Finally we define Tb(ti) as the bottom level of a task ti,
i.e., the cost of the longest path, in terms of execution time,

from ti, including it, to any exit task.
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3 Related Work

The task scheduling problem being NP-hard in the strong

sense even for sequential tasks and when an infinite num-

ber of processors are available, several heuristics have been

designed to schedule parallel tasks. In [4] an approxima-

tion algorithm for scheduling a set of tree precedence con-

strained moldable tasks for the minimization of the paral-

lel execution time on several multi-processors is described.

In [1], the authors proposed one of the few parallel task

scheduling heuristics specifically designed for heteroge-

neous platforms. They adapted an existing scheduling algo-

rithm for task-parallel applications on heterogeneous plat-

forms to the case of applications consisting of a DAG of

parallel tasks. In that paper a limitation of sequential task

scheduling heuristics designed for heterogeneous platforms

is also shown as the maximal number of processors that can

be used simultaneously is determined by the width of the

task graph. But when considering parallel tasks, more of

the available resources can be used. In the present work we

take the complementary approach: adapting an existing al-

gorithm for such applications on homogeneous platforms,

so that it is applicable to heterogeneous platforms.

3.1 Scheduling on homogeneous platforms

If some theoretical work exist [6], most of parallel task

scheduling algorithms [7, 8, 9] proceed in two steps and

have been designed to target homogeneous platforms. Their

first step aims at finding an optimal allocation for each task,

that is the number of processors on which the execution

time of a task is minimal. Depending on the parallel task

model, a minimal execution does not necessarily imply the

largest number of processors as the cost function may not

be monotonous. Their second step determines a placement
for the allocated tasks, that is the actual processor set where

execute each task that minimizes the total completion time

of the application.

In [8], authors extract DAGs from C, Fortran or Mat-

lab codes on which is applied their scheduling algorithm,

TSAS (Two Step Allocation and Scheduling). This heuris-

tic is based on convex programming, allowed by posyno-

mial properties of chosen cost models, and some properties

of their structure. Authors of [9] limit their study to graphs

built by serial and/or parallel compositions. Tasks are al-

located either in the whole set of processors or an optimal

number of subsets, determined by a greedy algorithm. The

optimality criterion is the reduction of completion time.

3.2 CPA

For the work described in this paper we focused on [7]

which describes a parallel task scheduling algorithms for

homogeneous environments named CPA (Critical Path and
Area-based scheduling). This algorithms aims at finding the

best compromise between the length of the critical path,

i.e., the path in the application task graph on which the sum

of the edge and node weights is maximal, and the average
area which measures the mean processor-time area required

by the application. We chose CPA as the start point of our

work because it is the most efficient of the different two-

steps algorithms cited above. In their allocation procedure

Rădulescu et al. consider that the execution time of an ap-

plication can be approximated by T e
p = max{TCP , TA},

where TCP is the execution time of the application critical

path and TA the average area of the application, defined as:

TCP = max
ti∈N

Tb(ti), and (1)

TA =
1
P

N∑
i=0

(Tω (ti, Np(ti)) × Np(ti)) . (2)

The goal of CPA is to minimize T e
p during the alloca-

tion step. Knowing that TCP decreases whereas TA in-

creases when more processors are allocated to a task, the

initial allocation leads to a maximal value for TCP . Only

one processor is then allocated to each task. Then each

iteration allocates one more processor to the most critical

task while TCP > TA. This selected task is the task be-

longing to the critical path that benefits the most of the

addition of a processor, i.e., the task ti for which the ra-

tio Tω(ti, Np(ti))/Np(ti) decreases the most significantly

when Np(ti) is incremented.

When verified, the stopping condition (TCP ≤ TA)

implies that T e
p will be very close to its minimal value

(T e
p ≈ TCP ≈ TA) after a good placement.

During the placement step, the ready task with the high-

est bottom level is considered at each iteration. This step

includes data redistribution costs to determine the start date

(Ts(ti)) and the end date (Tf (ti)) of each scheduled task ti.
The time complexity of CPA is dominated by the alloca-

tion step and is O(N(N + E)P ) in the worst case.

4 Adapting CPA to Heterogeneous Platforms

Our heterogeneous target platform comprising C homo-

geneous clusters, our idea is to determine for each task a

reference allocation standing for C potential allocations,

one for each cluster. The allocation step will thus consist

in determining this reference allocation and designing the

function to deduce the number of processors to allocate to

a task on each cluster. In the placement step we will select

for each task the allocation minimizing its completion time.

As we now have many potential allocations for a given

task, we have to redefine formally the execution time of the

critical path (TCP ) and the average area (TA) given by equa-

tion 2, as they define the stopping condition of the allocation
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step of CPA (TCP ≤ TA). To do so we introduce the con-

cept of a reference cluster. This virtual homogeneous clus-

ter has a cumulated computing power equivalent to that of

the whole heterogeneous platform. Its processors have the

same speed as those of the slowest processors of the real

platform. The number of reference processors composing

that virtual cluster is then: Pref =
⌈∑C−1

i=0
Pi

ri

⌉
, where ri

is the ratio between the speed of a reference processor and

that of a processor of Ci.

Using such a virtual homogeneous platform during the

allocation step allows us to keep a low complexity as we

have only one allocation to determine for each task and not

C. We denote as Nref
p (ti) the reference allocation for task

ti, i.e., the number of processors allocated on the reference

cluster. Hence we can translate this virtual processors of

the reference cluster into real processors to determine the

allocation of each ti on any given cluster Cj so that the

resulting execution is very close to T ref
ω

(
ti, N

ref
p (ti)

)
, i.e.,

the execution time of the task on the reference cluster. The

execution time of the application critical path can then be

redefined as:

TCP = max
ti∈N

T ref
b (ti), (3)

where T ref
b (ti) is the bottom level of ti using the reference

allocations for the other tasks. The average area is now:

TA =
1

Pref

N∑
i=0

(
T ref

ω

(
ti, N

ref
p (ti)

) × Nref
p (ti)

)
. (4)

In the next two sections we describe the two steps of our

algorithms according to these new definitions.

4.1 Task Allocation

In this first step, we do not take inter-task data redistribu-

tion costs into account. As the processor set on which a task

will execute is not yet determined, including these costs re-

quires consideration of all possible combinations of source

and destination processor sets, which dramatically increases

the computational complexity of the allocation step. The

data redistribution costs will be taken into account in the

second step to determine the start and end date of each task.

At each iteration of the allocation procedure, one supple-

mentary processor will be allocated to a task depending on

how much this task will benefit of this new allocation and

how critical this task is with regard to the completion of the

application. It should be noted that assigning processors to

a task may cause its execution time to drop enough for the

task to no longer be on the critical path.

To determine the number of processors to allocate to a

task on a given cluster from the reference allocation we use

Amdahl’s law. The following equality:

T i
ω(tj , N i

p(tj)) = T ref
ω (tj , Nref

p (tj))

leads to:

f(Nref
p (tj), tj , i) =

(1 − α) · T i
ω(tj , 1)

T ref
ω (tj , N

ref
p (tj)) − α · T i

ω(tj , 1))

f(Nref
p (tj), tj , i) will allow us to determine the number

of processor to allocate on each cluster Ci to each task tj of

the real platform depending on its reference allocation:

N i
p(tj) = min{Pi, �f(Nref

p (tj), tj , i)�} (5)

To avoid an infinite loop in this procedure, we introduce

the concept of saturated critical path. The application crit-

ical path will be saturated if the reference allocations of its

tasks are such that it is not possible to add a processor to

any of them, or:

∀t ∈ critical path, � i s.t. Pi > �N i
p(t)�. (6)

In such a case, the number of processors allocated to any

task of the critical path on each cluster Ci is the total num-

ber of processors of that cluster. Therefore we cannot fur-

ther reduce the execution times of these tasks. TCP is then

minimal and we can stop the allocation step.

Algorithm 1 is the modified heterogeneous version of the

allocation procedure of CPA. Lines 1 to 6 set the initial allo-

cations of each tasks at one processor on each cluster. Line

7 shows the two stopping conditions of this procedure men-

tioned above. Line 8 and 9 select the task of the critical

path that benefits the most of the addition of a processor to

its reference allocation. At line 10 we modify the allocation

of that task while at line 11 we recompute the bottom level

of the different tasks affected by this modification.

Algorithm 1 Processor Allocation

1: for all ti ∈ N do
2: Nref

p (ti) ← 1;

3: N j
p(ti) ← 1, ∀j ∈ [0, C − 1];

4: end for
5: while TCP > TA and not-saturated critical path do
6: ti ← critical path task s.t.

7: (∃j s.t.
˚
f(Nref

p (ti), ti, j)
ˇ

< Pj) and

8:

„
T ref

ω (ti,Nref
p (ti))

N
ref
p (ti)

− T ref
ω (ti,Nref

p (ti)+1)

N
ref
p (ti)+1

«
is maximum;

9: Nref
p (ti) ← Nref

p (ti) + 1;

10: update T ref
b ;

11: end while

Let K = max(i,t)

⌈
f−1 (Pi, t, i)

⌉
be the maximal num-

ber of processors that we could allocate to a task on the

reference cluster. In the worst case we may perform K it-

erations of the allocation procedure for each task, leading

to a total of K × N iterations. The inner loop complexity

(critical path determination, computation of TCP , TA, and

each task bottom level) is of O((N + E) C). The complex-

ity of the allocation step is then of O (N (N + E) C K) in

the worst case.
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4.2 Task Placement

The placement step now consists in giving to each ready

task ti its allocation with the earliest finish time. Remind

that the reference allocation of a task stands for C potential

allocations where C is the number of clusters.

As said before, data redistribution costs are taken into

account during this step. We denote as T k
r (ti, tj) the time

needed to redistribute data from a task ti already scheduled

on a processor set and a task tj potentially allocated on clus-

ter Ck. This data redistribution time depends on several fac-

tors such as network features, data amount and the number

of source and destination processors.

We define T j
m(ti) as the arrival date of the last data

needed by a task ti to be executed on cluster Cj :

T j
m(ti) = max

tk∈Pred(ti)
(Tf (tk) + T j

r (tk, ti)), (7)

where Pred(ti) is the set of the predecessors of ti. The date

at which a task ti can actually start on cluster Cj is then:

T j
s (ti) = max{avail(N j

p (ti)), T j
m(ti)} (8)

where avail(N j
p (ti)) is the date at which cluster Cj will

have N j
p (ti) available processors.

The allocation step having produced several potential al-

locations for each node of the task graph, we studied two

different policy to place tasks on clusters. In the next sec-

tion we adapt the list scheduling algorithm of CPA to the

case of multiple candidate allocations. However we keep

the same priority function, the bottom level, and placement

criterion, the earliest finish time, as in CPA. In section 4.2.2

we propose an alternative approach in which the task selec-

tion chooses the task that will suffer the most of not been

scheduled on its best allocation.

4.2.1 Bottom Level Based Placement

The bottom level is the priority criterion used in CPA.

Among the ready tasks, the task to be considered is the one

with the highest bottom level. Once a task has been selected

for allocation, the potential allocation that achieves the ear-

liest finish time is chosen. The end date of a task ti is then:

Tf (ti) = min
j

(T j
s (ti) + T j

ω(ti, N j
p (ti))) (9)

From this end date, we deduce the cluster, Cj , on which the

task will be scheduled, and its start date: Ts(ti) = T j
s (ti).

The combination of the allocation procedure and of this

placement algorithm leads to the HCPA (Heterogeneous

Critical Path and Area-based) heuristic. The complexity of

this placement step breaks down into three components: (i)

O(N + E) to compute bottom levels, (ii) O(N log N) to

sort the tasks, and (c) O(N C) to schedule tasks to proces-

sors (as we try the C candidate allocations, resulting in a

total time complexity of O(E + N log N + N C) which

can be neglected with regard to the allocation complexity.

4.2.2 Sufferage-Based Placement

The principle of the sufferage heuristic [2] is to consider the

task that will suffer the most if allocated on its second best

allocation, in terms of completion time, and not on its best

allocation. To determine what are the best and second best

allocations of a task t, we consider the finish time of t with

regard to the cluster Ci on which this task is executed as

defined by Equation 9. In a second step, we compute the

difference between the two best end dates to select which

task will suffer the most.

The combination of the allocation procedure and of this

placement algorithm leads to S-HCPA (Sufferage-based

Heterogeneous Critical Path and Area-based). In the worst

case for S-HCPA, we consider N − i ready tasks during the

ith iteration of the placement step. Before scheduling the

selected task, we estimate the execution time of that task on

its C potential allocations. It leads to a worst time complex-

ity of O(C N2) for this step.

The total worst time complexity of HCPA and S-HCPA

is then O(N (N + E) C K). Note that in the case of a ho-

mogeneous cluster (C = 1,K = P ) the complexity of our

heuristic is the same as the complexity of CPA.

5 Evaluation Methodology

We resort to simulation for evaluating our approach as it

allows us to perform a statistically significant number of ex-

periments and makes it possible to explore a wide range of

platform configurations. We use the SIMGRID toolkit [5] as

the foundation of our simulator. SIMGRID provides the re-

quired fundamental abstractions for the discrete-event sim-

ulation of parallel applications in distributed environments

and was specifically designed for the evaluation of schedul-

ing algorithms.

We consider platforms that consist of 1, 2, 4, or 8 clus-

ters. Each cluster contains a random number of processors

between 16 and 128. We keep the network characteristics

fixed and vary the processor speeds to experiment with a

range of platform communication/computation ratios.

The links connecting hosts to switches can be Fast Eth-

ernet (bandwidth = 100Mb/s and latency = 100μsec)

or Giga Ethernet (bandwidth = 1Gb/s and latency =
100μsec) and suffer of contention. Switches have the same

bandwidth and latency properties but there is no contention

on these links. Gateways have a bandwidth of 1Gb/s and a

latency of 100μsec and the backbone connecting the clus-

ters has a bandwidth of 2.5Gb/s and a latency of 50msec.
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In our platforms, half of the clusters are connected by Fast

Ethernet devices, the other half are connected through Giga

Ethernet devices.

Processor speed (in GFlop/sec) is homogeneous within

each cluster and sampled from a uniform probability dis-

tribution, for various minimum relative speeds (0.25, 0.5,

0.75 and 1) and heterogeneity factors (1, 2 and 5). The

upper bound for processor speeds is defined as the product

between the minimum speed and the heterogeneity factor.

For instance a minimum speed of 0.25 and a heterogeneity

factor of 5 mean that every processor of the platform will

have a speed comprised between 0.25 and 2.5 Gflops.

The combination of these parameters allows us to gener-

ate 40 different platform configurations. As each instantia-

tion has random elements (number of processors per cluster,

and processor speeds), we generate five samples for each

configuration, for a total of 200 different platforms.

Our random DAGs can be made of 10, 20 or 50 compu-

tational nodes. To determine the cost of each of these nodes,

we first pick N the data size that will be handled by the task

between 4Kb and 121Kb. The rationale behind this upper

bound is that we assumed a memory capacity of 1GB per

node. With double precision elements, the largest data on

which we can compute is of that size. Then we assign a

complexity to each node: a ·N , a ·NlogN , a ·N3/2, where

a is a factor randomly picked between 26 and 29. All tasks

of a DAG can have the same complexity or we can pick a

different complexity for each task. This allow us to modify

the communication to computation ratio. Finally we assign

to each task its non-parallel part, i.e., the α parameter of the

Amdahl’s law, with a value between 0 and 0.2. This way we

have totally parallel tasks and some tasks for which 20% of

their execution has to be done serially. The cost of each

transfer node is equal to the data amount N handled by the

computational node that produces this transfer.

Four parameters allow us to generate DAGs of different

shapes. First we can vary the width of our DAGs. A small

value (0.1 or 0.2) induces the generation of thin graphs, e.g.,
chains, whereas a larger value (0.8) leads to more compact

graphs, e.g., fork-joins. This parameter acts on the degree

of task parallelism exhibited by a given DAG. We can also

change the regularity of the distribution of tasks between

the different levels of the DAG (0.1, 0.2 or 0.8). Then the

density, i.e., how many dependencies exist between two lev-

els of a DAG, can be tuned. A small value (0.1 or 0.2) will

produce a DAG with a few transfer nodes whereas a larger

one (0.8) leads to heavy collective communication steps be-

tween computations. Finally we can introduce jumps in our

DAGs allowing us to generate DAGs with execution paths

of different lengths (1, 2 or 4). The combination of these pa-

rameters generates 432 different DAG configurations. We

generate three samples of each to handle random elements

for a total of 1296 DAGs. Even if it is recognized that ran-

dom graphs do not refer to a real class of applications, the

diversity they provide seems sufficient for this experiment.

For all platform and application configurations described

above we compare the effectiveness of 5 scheduling algo-

rithms. The first three are CPA, HCPA and S-HCPA that

were described in Sections 3 and 4. We also use a fourth

algorithm, SEQ, which schedules recursively the nodes of

the DAG on the fastest processor of the platform. This algo-

rithm will allow us to compare the efficiency of each heuris-

tic as explained in the next section. Finally we compare our

scheduling heuristic to M-HEFT [1] as this heuristic follows

a totally different approach to allocate processors to a task.

While the CPA-like heuristics aims at reducing the critical

path, M-HEFT has a more local point of view and will re-

duce the completion time of each task without taking the

rest of the application into account. With these five heuris-

tic to compare, we obtain a total of 1,296,000 simulation

runs for our test plan.

It should be noticed that CPA can also be used to sched-

ule DAGs on heterogeneous platforms even though it was

not originally designed for that purpose. To do so, we con-

sidered a homogeneous platform for the scheduling process

of CPA. This platform has the same number of processors

as the heterogeneous one and the speed of each processor is

equal to the average of the processor speeds of the heteroge-

neous platform. But we return to an heterogeneous platform

for the simulation. This implies that CPA is allowed to map

a task on more than one cluster. Due to our model of parallel

tasks based on Amdahl’s law that ignores the overhead due

to the intra-task communication, the impact on performance

will be less than in real life.

To compare the heuristics cited above we decide to use

the following metrics. First we consider the makespan, or

completion time, of an application defined as the difference

between its start and finish dates. Parallel task scheduling

heuristics usually aim at minimizing this makespan. As

sometimes they also aim at balancing makespan and re-

source consumption, as in CPA, we study the product be-

tween the makespan (in sec.) and the maximal amount of

processing power (in GFlop/sec.) used during the schedule.

For instance if at most two tasks are executed concurrently

during the schedule, the first on 32 processors of speed 1.6
and the other on 24 processors of speed 2.8, we multiply

the makespan by 32 × 1.6 + 24 × 2.8 = 121.6. This al-

lows us to see if the gain on the makespan achieved by a

given heuristic is not only due to a massive resource us-

age. But this maximal value can be misleading when only

one task is placed on a large set of processors. So we also

study the ratio between the makespan and the average pro-

cessing power used by any task of the application. Another

interesting metric is the parallel speed-up over a sequential

execution on the fastest processor, that is over the schedule

produced by SEQ.
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6 Simulation Results

Here we present and interpret the results of the 1,296,000

simulation runs. As we have 15 runs for each combination

of platform and DAG parameters, we consider the average

of these results for a given {platform, DAG} couple.

In this study we only examine the evolution of our met-

rics depending on the variation of the platform parameters

as we aim at quantifying the efficiency of our heuristics

when heterogeneity is introduced, either by adding more

clusters or by having different processor speeds.

Figure 2 shows the performance achieved by each of the

considered heuristics on 1, 2, 4 and 8 clusters and the av-

erage makespan on all platforms. On top left we have a

comparison on makespans. The top right part of the figure

shows the compromise between completion time and peak

resource utilization. On bottom left is another compromise

between completion time and average resource utilization.

Figure 2. Impact of the number of clusters.

Let first focus on the rightest set of bars showing the

comparison over the whole set of simulations. We can see

that the two heuristics proposed in this paper achieve better

makespan than CPA even if favored by a parallel task model

without intra-task communications.

We can also notice that M-HEFT outperforms our heuris-

tics in terms of completion time but at the price of an higher

resource usage. This means that M-HEFT is efficient with

respect to completion time but not to resource consumption.

This is because the allocation process of M-HEFT is only

focused on the reduction of the finish time of each task. As

staying on the same set of processors takes less time than

moving data, every costly task of a given path will be allo-

cated on the same set of processors which is usually as large

as a cluster. On the contrary our algorithms will allocate

processors to tasks focusing on their impact over the com-

pletion time of the whole application. Only critical tasks are

then placed on many processors.

We can conclude that M-HEFT and HCPA are comple-

mentary and using one or the other depends on the needs

of the end user. If the user has a full access to several

clusters with no restrictions, he/she should use M-HEFT

to reduce the global completion time of the application.

On the contrary, if he/she has access to a shared platform

with accounting, a more rational resource usage becomes

prevalent. HCPA will then guarantee a good tradeoff be-

tween performance and resource consumption. This is il-

lustrated by Figure 3 that shows the comparison of the ratio

between the makespans respectively achieved by M-HEFT

and HCPA and the ratio between the average processing

power usage of HCPA and M-HEFT. If M-HEFT is two

times faster than HCPA over the range of experiments, the

resource consumption of HCPA is 3.4 times better.

Figure 3. Comparison of makespan and re-
source consumption for M-HEFT and HCPA.

The four first sets of bars in Figure 2 show that on a sin-

gle cluster CPA and HCPA produce similar schedules which

it is not surprising as they share the same placement step.

When the number of clusters increases, our algorithms lead

to slightly better makespans. But if we look at the compro-

mise between the makespan and the peak of resource usage

induced by each heuristic, we can see that the resource con-

sumption of CPA worsens with regard to that of our algo-

rithms. Our algorithm gain is then not only on makespan but

also on resource usage. This result is confirmed by the com-

promise between the makespan and the average resource us-

age. This can be explained by the fact that CPA can allocate

processors of different clusters to a task. For some costly

tasks, it may lead to a small gain on makespan but to a high

increase of the resource consumption. We can finally see

on the bottom right part of Figure 2, that the explicit han-

dling of an heterogeneous platform leads to a performance

increase. When we compare to an objective point of com-

parison such as a sequential schedule, we can see that the

gap between the gain of CPA and that of HCPA increases.

Figure 4 shows the impact of the platform heterogene-

ity on the performance of the heuristics. As for platforms

made of one cluster we can see that on homogeneous plat-
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forms (in terms of computing power) CPA and HCPA still

achieve the same makespan. The decrease of makespans

with the increase of heterogeneity can be explained by the

fact that with a high heterogeneity platform we have more

fast processors that are used by the heuristics. When the

heterogeneity increases HCPA also leads to slightly better

makespans but produce schedules with a better resource us-

age than CPA. We can conclude that in the context for which

CPA has been designed, HCPA produces the same sched-

ules but efficiently extends it to heterogeneous platforms.

Figure 4. Impact of platform heterogeneity.

Finally if we compare the performance of HCPA with

regard to that of S-HCPA, we can see that HCPA seems

to be always better. But if we consider the simulation re-

sults independently, S-HCPA achieves the same or a better

makespan for 30% of the simulations. This means that a list

scheduling focused on the reduction of the critical path does

not always minimizes the makespan of parallel applications

and that other strategies have to be explored.

7 Conclusion and Future Work

Scheduling parallel tasks is a well-known technique for

increasing the scalability of many parallel applications. In

particular, it makes it possible for large-scale applications

to efficiently exploit platforms that comprise several com-

pute clusters. While parallel task scheduling algorithms

have been proposed for homogeneous platforms, almost no

work has been conducted in the case of heterogeneous plat-

forms. In this paper we have addressed the need for effi-

cient scheduling algorithms on heterogeneous platforms for

applications made of parallel tasks. Our approach consists

in adapting a efficient algorithm of the literature, CPA, in

order to handle an heterogeneous platform. This is done

by introducing the concept of reference cluster on which

are made the processor allocations and that stands for the

actual clusters of the platform. We developed two origi-

nal heuristics, HCPA and S-HCPA with different placement

steps. We evaluated the performance of our heuristics for a

variety of platform scenarios and random DAGs. We com-

pared HCPA and S-HCPA to the original CPA algorithm and

to M-HEFT [1]. Our results showed that HCPA achieves

better performance than CPA when platform are heteroge-

neous and we have discussed a number of trends apparent

in our results. While this experimental study has value, our

main contribution is a methodology to handle heterogeneity

in parallel task scheduling algorithms designed for homo-

geneous platforms.

As a future work we aim at simulating more realistic

platforms such as Grid’5000 (www.grid5000.fr). Thus

we can obtain more complex topologies with uncoupled

subgraphs of clusters. We also plan to change our parallel

task model to introduce intra-task communication costs ei-

ther by using more realistic speedup based models [3] or by

using some parallel task profiles depending on computation

and communication complexities.

References

[1] H. Casanova, F. Desprez, and F. Suter. From Heterogeneous

Task Scheduling to Heterogeneous Mixed Parallel Schedul-

ing. In 10th Int. Euro-Par Conference, volume 3149 of

LNCS, pages 230–237, Pisa, Italy, Aug. 2004. Springer.
[2] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman.

Heuristics for Scheduling Parameter Sweep Applications in

Grid Environments. In 9th Heterogeneous Computing Work-
shop (HCW’00), pages 349–363, Cancun, Mexico, 2000.

[3] A. Downey. A Model For Speedup of Parallel Programs.

Technical Report UCB/CSD-97-933, EECS Department,

University of California, Berkeley, 1997.
[4] P.-F. Dutot. Hierarchical Scheduling for Moldable Tasks.

In 11th Int. Euro-Par Conference, volume 3648 of LNCS,

pages 302–311, Lisbon, Portugal, Aug. 2005. Springer.
[5] A. Legrand, L. Marchal, and H. Casanova. Scheduling Dis-

tributed Applications: The SimGrid Simulation Framework.

In 3rd IEEE Symposium on Cluster Computing and the Grid
(CCGrid’03), pages 138–145, Tokyo, May 2003.

[6] R. Lepère, D. Trystram, and G. Woeginger. Approximation

Algorithms for Scheduling Malleable Tasks Under Prece-

dence Constraints. IJFCS, 13(4):613–627, 2002.
[7] A. Radulescu, C. Nicolescu, A. van Gemund, and P. Jonker.

Mixed Task and Data Parallel Scheduling for Distributed

Systems. In 15th International Parallel and Distributed Pro-
cessing Symposium (IPDPS), San Francisco, Apr 2001.

[8] S. Ramaswany. Simultaneous Exploitation of Task and Data
Parallelism in Regular Scientific Applications. PhD thesis,

Univ. of Illinois, Urbana-Champaign, 1996.
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