
HAL Id: inria-00108996
https://hal.inria.fr/inria-00108996

Submitted on 30 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Supporting Collaborative Writing of XML Documents
Gérald Oster, Hala Skaf-Molli, Pascal Molli, Hala Naja-Jazzar

To cite this version:
Gérald Oster, Hala Skaf-Molli, Pascal Molli, Hala Naja-Jazzar. Supporting Collaborative Writing of
XML Documents. [Research Report] 2006. �inria-00108996�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50419144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00108996
https://hal.archives-ouvertes.fr

SUPPORTING COLLABORATIVE WRITING OF
XML DOCUMENTS

Gérald Oster, Hala Skaf-Molli, Pascal Molli
Nancy-Université, LORIA-INRIA Lorraine, Campus Scientifique, F-54506 Vandœuvre-lès-Nancy, France

oster@loria.fr, skaf@loria.fr, molli@loria.fr

Hala Naja-Jazzar
Faculty of Science 3, Lebanese University, Tripoli, Lebanon

hjazzar@ul.edu.lb

Keywords: CSCW, Collaborative Writing, XML, Change Control

Abstract: Data management is a key issue in cooperative systems. Anyone who uses more than one computer or collab-

orates with other people is aware of the problems posed by having multiple copies of shared documents. Most

existing synchronization tools are specific to a particular type of shared data i.e. text files, calendars, XML

files. Therefore, user should use several tools to maintain their different copies up-to-date. This is not an easy

task. To address this issue, we defined a generic synchronization framework based on the operational trans-

formation approach. This framework allows to synchronise text files, calendars, XML files by using the same

tool. The main objective of this paper is to present this framework and how it is used to support cooperative

writing of XML document. An implementation is illustrated through the revision control system called So6,

which is a part of a distributed collaborative technology called LibreSource.

1 INTRODUCTION

Cooperative writing is becoming increasingly

common; often compulsory in academic and corpo-

rate work. Even the World Wide Web or simply the

Web becomes a global read-write information space

where multiple authors are interacting, in contrast

of the traditional model of one author publishing to

many readers. People involved in cooperative writ-

ing can work across space, time and organizational

boundaries with links strengthened by webs of com-

munication technologies. In spite of this need for col-

laboration, it is surprising to see how poorly computer

systems support group activities. Very often, people

just send the shared document by mail and use a turn

taking strategy to avoid conflicting updates. This is

a serious bottleneck for productive work since people

cannot work in parallel. A good cooperative editor

should allow anyone1 to write any shared data at any

time. The existing popular alternatives to the mail ap-

proach are Wikis and tools such as CVS/Subversion.

Wiki is a kind of cooperative writing environment.

1Any user providing that he has the right permissions to
do so.

It allows anyone to write at any time not any type of

data, but just a Wiki page. A special markup language

that offers a simplified alternative to HTML is used to

write wiki pages. In case of concurrent modification,

Wikis apply the last writer wins rule. Consequently,

modifications done by some users may not appear in

the last visible page. This is a kind of lost updates.

Our requirements to improve a cooperative edi-

tor should be refined as: a good cooperative editor

should allow anyone to write any shared data at any

time without lost updates.

The existing tools such as CVS (Berliner, 1990)

avoid lost updates. However, CVS was originally de-

signed to support cooperative software development.

It considers only text files containing code sources

such as C files, JAVA files for merging. In this con-

text, when conflicting changes are performed, con-

flicts appear inside merged files. A special syntax

is used to clearly help the programmers to locate the

problem. Thus, CVS allows anyone to write any text

files at any time without lost updates.

We want to build a cooperative editor that allows

anyone to write any kind of data, not only text files,

but also XML files, CAD files, calendar files at any

time without lost updates. A generic synchronizer

that enables to merge any data type without lost up-

date is required. We propose to build a generic and a

safe synchronisation framework. This framework al-

lows to synchronise text files, calendars, XML files by

using the same tool while ensuring that conflict reso-

lution will not introduce lost updates.

In previous work, we described how we use the

operational transformation approach (OT) as a the-

oretical foundation to build such a generic and safe

synchronizer (Molli et al., 2003). We defined also the

specific transformation functions to synchronise lin-

ear structure such as text files.

This paper will focus on the transformation func-

tions for XML data and their implementation in an

open source collaborative technology called Libre-

Source. Our final objective is to build a library for

blocks of text, strings, trees, graphs. Anyone can use

these functions, add new functions or modify exiting

ones according to their needs. The paper is struc-

tured as follows. The next section will introduce the

operational transformation approach which serves as

a theoretical foundation for our generic synchronisa-

tion framework called So6. The section 3 will present

the architecture and the algorithms used in So6. The

Section 4 will define the XML transformation func-

tions and will demonstrate the use of these functions

through an example. The section 5 will discuss re-

lated work. The last section will conclude and point

some future work.

2 BACKGROUND

This section describes the Operational transforma-

tion approach (OT) that is the theoretical foundation

of the generic and safe synchroniser So6. OT (Ellis

and Gibbs, 1989) is an optimistic replication model

used in real-time group editors domain. OT considers

n sites, each site owns a copy of shared data. When a

site performs an update, it generates a corresponding

operation, which is first executed locally then broad-

casted to other sites. Every operation is processed in

four steps: (a) generated on one site, (b) broadcasted

to other sites, (c) received by other sites, (d) executed

on other sites.

The execution context of a received operation opi

may be different from its generation context. In this

case, the integration of opi by other sites may lead to

inconsistencies between replicas.

For instance, we consider two sites site1 and site2

working on a shared data of type string of charac-

ters initially equal to the string e f ect. We consider

that a string of characters can be modified with the

operation ins(p,c) for inserting a character c at posi-

tion p in the string. We assume the position of the

first character in a string is 0. user1 and user2 gen-

erate and execute two concurrent operations respec-

tively op1 = ins(2, f) and op2 = ins(5,s). When op1

is received and executed on site2, it produces the ex-

pected string ”effects”. But, when op2 is received on

site1, since it does not take into account that op1 has

been executed before it, its execution leads to the state

”effecst”. Finally, the copies of site1 and site2 do not

converge.

In the operational transformation (OT) approach,

before being executed, received operations are trans-

formed regarding concurrent operations that were al-

ready executed on the local copy. This transformation

is performed by calling transformation functions.

Definition A transformation function T takes two

concurrent operations. These two operations namely

op1 and op2, must be defined on a same state S. The

function computes a new operation op′1 equivalent to

op1 – i.e. has the same effects – but defined on the

state S′ = S⊙ op2. S′ is the state resulting from the

execution of op2 on state S.

Using OT approach, our previous example is now

executed as follows. When op2 is received on site1,

op2 needs to be transformed regarding op1. The in-

tegration algorithm calls the transformation function

T (op2 = ins(5,s),op1 = ins(2, f)) = ins(6,s) = op′2.

The insertion position of op2 is incremented since op1

has inserted an f before s in state e f ect. After the ex-

ecution of op′2, the state of site1 becomes e f f ects. On

the contrary, when op1 is received on site2, the trans-

formation does not modify op1’s parameters since f

is inserted before s. Thus, op1 is executed as-is and

the state of site2 is e f f ects. On our scenario, OT ap-

proach has ensured that both copies converge to the

same value.

The OT approach distinguishes two main com-

ponents. An integration algorithm. This algorithm

is in charge of reception, diffusion and execution of

operations. When necessary, it calls transformation

functions. This algorithm does not depend on type

of replicated data. A set of transformation functions.

These functions can merge concurrent modifications

in serializing two concurrent operations. These func-

tions are specific to a particular type of replicated data

such as string of characters, XML documents, calen-

dars or file system.

The main criterion in OT approach is Conver-

gence.

Convergence As every optimistic replication algo-

rithms, OT approach tries to ensure eventual consis-

tency i.e. when no updates occurs for a long period

of time, eventually all updates will propagate through

the system and all the copies will converge towards a

same value. In other words, when the system is idle

(no operations in pipes), all copies are identical.

To ensure this criterion, it has been

proved (Suleiman et al., 1998) that the under-

lying transformation functions must satisfy two

properties:

Definition The T P1 property defines a state equiv-

alence. The state generated by the execution of op1

followed by T (op2,op1) must be the same as the

state generated by the execution of op2 followed by

T (op1,op2): op1◦T (op2,op1)≡op2◦T (op1,op2)

Definition The T P2 property ensures that the trans-

formation of an operation regarding a sequence of

concurrent operations does not depend on the order in

which operations of this sequence were transformed:

T (op3,op1◦T (op2,op1))=T (op3,op2◦T (op1,op2))

Therefore, the operational transformation ap-

proach could be used to design a reconciliation frame-

work able to reconciliate divergent copies of any type

of data. In order to build such a framework, the fol-

lowing task have to be completed. First, an integration

algorithm must be chosen ; regarding this algorithm,

T P2 property may be required on underlying trans-

formation functions. Second, operations which could

be performed on shared data types must be defined.

Finally, the required transformation functions for all

combination of operations have to be provided. In

the next sections, we are going to describe our frame-

work.

3 THE SO6 FRAMEWORK

So6 framework is based on SOCT4 integration al-

gorithm (Vidot et al., 2000). Originally, SOCT4 has

been designed for real-time group editors, we adapted

it for asynchronous interaction (Molli et al., 2003).

SOCT4 integration algorithm requires only T P1 prop-

erty on transformation functions. It is based on a con-

tinuous global order of operations. Shared data are

replicated on different sites (workspaces). Each op-

eration generated in a local site is sent with a unique

global timestamp to other sites. An operation from

a site with a given timestamp can be sent to other

sites only if all its preceding operations based on the

timestamp order have been received and executed. By

this way, SOCT4 ensures that concurrent operations

will not be transformed following different transfor-

mation paths. This leverages the need for transfor-

mation functions to satisfy T P2 property. Moreover,

this mechanism looks like the Copy-Modify-Merge

paradigm which is widely used in version control

management systems such as CVS. Regarding this

paradigm, a user can publish her modifications only if

she had read all previously published modifications.

The So6 framework has two main components: a

central timestamper also called So6 queues, and So6

workspaces which are connected to a timestamper.

3.1 So6 Queue

A So6 queue Q is a timestamper that stores a sequence

of operations. An operation is timed when a user

sends it to the queue. A queue maintains a times-

tamp lastTicket equals to the last delivered times-

tamp. When a user creates a queue, the timestamp

lastTicket is initialized to zero and the sequence of

operations is empty.

The publish procedure assigns a new timestamp

to the operation op and stores it in Q.

int publish (Operation op) {
lastTicket ++

Q[lastTicket] = op
return lastTicket

}

3.2 So6 Workspace

Each user owns a So6 workspace in which a user can

work insulated. The workspace stores all the docu-

ments shared by the user. This workspace is gener-

ally connected to a So6 queue. When a user modifies

a document, she generates corresponding operations.

Workspace has the following data structure:

A timestamp siteTicket. It memorises the times-

tamp of the last operation published to or retrieved

from the So6 queue.

Two states currentState and re f erenceState. They

are used to compute the sequence of operations

that have been made locally. currentState is the

state on which the user works. re f erenceState is

the state resulting from the execution of all the

operations integrated by the site.

A sequence of operations Hg. It stores all the oper-

ations integrated by the site. This sequence con-

tains all operations published by the site, and

those retrieved from the timestamper. The opera-

tions are ordered according to their timestamps. If

the sequence of the operations Hg are executed on

an empty state, then it always computes the state

re f erenceState.

Inside a workspace, the following procedures are

defined:

A Commit procedure. During this procedure, the

system detects local operations generated since

last commit. Then, it sends each operation to the

So6 queue in order to be timed and stored.

commit() {
if (timestamper . lastTicket > siteTicket) then

abort ”uptodate check failed ”
Operation [] locals =

computeDifference(referenceState ,
currentState)

for (int i=0; i<locals . length ; i++) {
int ticket =timestamper. publish (locals [i])
execute (locals [i], referenceState)
Hg[ticket] = locals [i]

}
siteTicket = timestamper . lastTicket

}

An Update procedure. Through this procedure, the

system retrieves unconsumed operations from the

So6 queue and merge them with local operations

corresponding to unpublished changes.

update () {
Operation [] remotes
int i=0
while (siteTicket < timestamper. lastTicket) {

siteTicket ++
i++
remotes[i] = timestamper . retrieve (siteTicket)

}
Operation [] locals =

computeDifference(referenceState ,
currentState)

merge(remotes, locals)
}

The update procedure calls two other sub-

procedures computeDifference and merge. The

first one uses a differentiation algorithm to compute

the sequence of operations that have been executed on

the state state1 to obtain the state state2. For instance,

in the case of an XML document, any XML differen-

tiation algorithm can be used. For our prototype, we

used XyDiff (Cobena et al., 2002). The merge pro-

cedure integrates two sequences of concurrent opera-

tions using the set of T transformation functions.

merge(Operation[] remotes, Operation [] locals) {
for (int i=0; i<remotes.length; i++) {

Operation opr = remotes[i]
int ticket = remotes[i]. ticket
for (int j=0; j<locals . length ; j++) {

Operation opl = locals [j]
locals [j] = T(opl , opr)
opr = T(opr, opl

}
execute (remotes[i], referenceState)

Hg[ticket] = remotes[i]
execute (opr , currentState)
siteTicket = ticket

}
}

This procedure relies on the SOCT4 integration

mechanism. Each remote[i] operation must be trans-

formed to an operation opr regarding the whole se-

quence of local operations. Then, this operation can

be executed on the current state currentState of the

site. The original operation remote[i] is executed on

the state re f erenceState.

4 XML DOCUMENTS SUPPORT

In the previous section, we presented our generic

framework for reconciliating divergent copies of data.

In this section, we describe how this framework could

be instantiated to support collaboration over XML

documents. In (Molli et al., 2003), we instantiated

our framework to reconciliate a file system and also

text documents.

As usual, we model the XML document as a node-

labelled ordered tree, and each XML element, be it

leaf or non-leaf, corresponds to a node of that tree.

Since we suppose the tree is ordered, the children of

every node are ordered i.e. there is a first child, a

second child, etc. Therefore, each node is uniquely

identified by its path. This path is defined as the se-

quence of child number starting from the root. The

path of the root node is denoted []. For instance, the

XML document presented in Figure 1 is mapped to

the tree depicted by Figure 2. And, the path [0,1,0]
leads to the leaf labelled with the value The abstract

is....

<?xml version=”1.0” encoding=”UTF−8”?>
< article >

<sect1>

< title >Abstract</ title >

<para>The abstract is ... </para>
</sect1>

<sect1>

< title >Introduction</ title >

<para>Optimistic replication ... </para>
</sect1>

</ article >

Figure 1: An example of XML document.

We assume that the tree representation of an XML

document can be changed by the following two oper-

ations:

/. -,
() *+article

[0]

wwppppppppppp

[1]

��/. -,() *+sect1

[0,0]

xxqqqqqqqqqqq

[0,1]

��

/. -,() *+sect1

[1,0]

��
[1,1]

((QQQQQQQQQQQQQQQ

/. -,
() *+title

[0,0,0]

��

/. -,() *+para

[0,1,0]

��

/. -,
() *+title

[1,0,0]

��

/. -,() *+para

[1,1,0]

��/. -,
() *+Abstract

/. -,
() *+T he abstract is...

/. -,
() *+Introduction

/. -,
() *+Optimistic replication...

Figure 2: Mapping document of Fig. ?? to an ordered tree

• addNode(parent,n,val) adds a new node as a child

of the node identified by the path parent. This

node is added as nth child and its value – or label

– is val.

• delNode(parent,n) deletes the nth child of the node

identified by the path parent.

We consider that performing a move operation on

a node of the tree is equivalent to first delete this node

from its old location, then add this node to its new

location.

In order to work with paths of nodes, we define

the following functions. The function length(p) re-

turns the length of the path p, i.e. the number of

nodes in this path. The predicate childO f (p1, p2)
is true if the node identified by the path p1 is a

descendant of the node identified by the path p2.

The function getPos(p,n) returns the (n + 1)th value

of the path p, i.e. getPos([3,2,1,4],2) = 1. The

function incPos(p,n) computes a new path by in-

crementing the (n + 1)th value of the path p, i.e.

incPos([3,2,1,4],2) = [3,2,2,4]. In the same man-

ner, the function decPos(p,n) computes a new path

by decrementing the (n + 1)th value of the path

p, i.e. decPos([3,2,1,4],2) = [3,2,0,4]. Finally,

we define the function codeIn f (val1,val2) which al-

lows to compare two values val1 et val2. It is

always possible to define such a function. For

example, for text nodes, codeIn f () is defined on

the lexicographical order between the values, i.e.

codeIn f (Abstract, Introduction) = true.

As we explained in section 2, a transformation

function computes the result of the integration of

two concurrent operations. So, for one XML tree,

we have to consider all possible combination of

operations defined on that XML tree. Thus, we

have to defined transformation functions for each

couple of operations : (addNode(),addNode()),
(delNode(),delNode()), (addNode(),delNode())
and (delNode(),addNode()). Due to space limita-

tions, we are going to describe in details only the

transformation function T (addNode(),addNode()).
Figure 4 indicates the complete definition of

the transformation function T for two concur-

T (addNode(p1, n1, v1), addNode(p2, n2, v2) =
if (p1 = p2) then

if (n1 <n2) then addNode(p1, n1, v1)
elsif (n2 <n1) then addNode(p1, n1+1, v1)
elsif (codeIn f (v1,v2)) then addNode(p1, n1, v1)
elsif (codeIn f (v2,v1)) then addNode(p1, n1+1, v1)
else Id()
endif

elsif (childO f (p1,p2)) then
if (n2≤getPos(p1, length(p2))) then

addNode(incPos(p1,length(p2)), n1, v1)
else addNode(p1, n1, v1)
endif

else addNode(p1, n1, v1)
endif

Figure 3: Transformation function for addNode−addNode

rent addNode operations. This function trans-

forms op1 = addNode(p1,n1,v1) regarding op2 =
addNode(p2,n2,v2). The main idea of this function

is to compare the insertion position of two concurrent

addition of nodes in the XML tree. It has to consider

the following cases :

• If the two additions operate on the same parent

node, then T compares their insertion positions.

– If op1 inserts a child at a position after the inser-

tion position of op2 then the insertion position

of op1 has to be shifted one position to right.

Therefore, its insertion position is incremented.

– If op1 inserts a child before the insertion posi-

tion of op2, then the insertion position of op1

remains the same.

– If op1 and op2 try to insert at the same posi-

tion, T must decide the serialisation order. In

the above definition, the decision of T is based

on the codeIn f () function, which compares the

lexicographic value of nodes. If lexicographic

values are equals, then op1 and op2 try to in-

sert the same node at the same position, conse-

quently, the function disables effect of op1 by

transforming it into an identity operation. Of

course, this is an arbitrary choice,other solu-

tions are possible such as the insertion of both

nodes.

• If the two additions operate on different parent

nodes, then the previous execution of op2 might

move the parent node of op1. This situation oc-

curs when the parent node of op1 is a child of the

parent node of op2.

To illustrate, consider the initial XML tree

given in the figure 4 and two concurrent op-

erations op2 = addNode([],1,X) and op1 =

��������
[0]

||yy
yy

yy

[1] ""
EE

EE
EE [2]

((RRRRRRRRRRR

��������

||yy
yy

yy

""
EE

EE
EE

�������� ��������
[3,0]
���������� �������� ��������

Figure 4: Initial tree

��������
[0]

||zz
zz

zz
z

[1] [2]
DD

D

""D
DD

[3]

((QQQQQQQQQQQQ

��������

����
��

��
�

AA

AA
AA

AA
76540123X �������� ��������

[3,0]
��

[3,1]

�������� �������� �������� 76540123Y

Figure 5: Concurrent additions on different parents

addNode([2],1,Y). The execution of the opera-

tion op2 moves the parent node on which the op-

eration op1 has to be executed. In other words,

the transformation of the operation op1 regard-

ing of the operation op2 must give the operation

op′1 = addNode([2 + 1],1,Y). To compute this

operation, T has to compare and may update the

position in the path of op1. This is achieved by

using getPos() and incPos() functions. The re-

sulting tree is depicted in figure 5.

In the same way, we wrote transformation func-

tions for couples of operations delNode− delNode,

addNode− delNode. In these cases, there is a criti-

cal point to consider: what to do when an operation

removes a subtree while another concurrent one ap-

pends a node to this subtree? This is clearly a case

of conflict. The solution we choose is to remove the

subtree even if in this case the concurrent changes per-

formed on this subtree are lost. This solution allows

to ensure data convergence. To avoid this lost update,

we assume that the system should provide an undo

feature in order to restore lost changes if the conver-

gent state is not suitable for users. This undo feature

is subject to many research efforts(Sun, 2002).

Writing correct transformation functions regard-

ing the T P1 property is not an easy task. The safety of

the operational transformation approach relies on the

correctness of transformation functions. If transfor-

mation functions do not verify T P1 then the integra-

tion algorithm cannot ensure convergence of copies.

Proving T P1 property is error prone, time consuming

and part of an iterative process. It is nearly impossi-

ble to do this by hand. In order to achieve this task,

we used our VOTE environment (Imine et al., 2006)

which is based on an automatic theorem prover. The

input of this environment is exactly the definition of

the transformation functions given in this paper. De-

scribing our environment for verifying correctness of

transformation functions is out of the scope of this pa-

per, a more detailed description is available in (Imine

et al., 2006; Imine et al., 2003).

site 1
article

��
sect1

1kkk
uukkk 2

�� 3
TTT

**TTT

title
1
��

para
1 ��

para
1
��

Abstract T his paper We discuss

site 2
article

��
sect1

1kkk
uukkk 2

�� 3
TTT

**TTT

title
1
��

para
1 ��

para
1
��

Abstract T his paper We discuss

op1 = addNode([1],3,”para”)

''OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
op3 = delNode([1],2)

����
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
�

article
��

sect1
1kkk

uukkk 2
�� 3

QQQ

((QQQ 4
XXXXXX

++XXXXXX

title
1
��

para
1 ��

para para
1
��

Abstract T his paper We discuss

article
��

sect1
1nnn

vvnn 2
RRR

))RRR

title
1 ��

para
1 ��

Abstract We discuss

op2 = addNode([1,3],1,”OT approach”)

''OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
op′1 = addNode([1],2,”para”)

article
��

sect1
1kkk

uukkk 2
�� 3

VVVV

**VVVV 4
ZZZZZZZZZ

--ZZZZZZZZZZ

title
1
��

para
1 ��

para
1 ��

para
1
��

Abstract T his paper OT approach We discuss

article
��

sect1
1nnn

vvnn 2
�� 3

RRR

))RRR

title
1 ��

para para
1 ��

Abstract We discuss

op′3 = delNode([1],2) op′2 = addNode([1,2],1,”OT approach”)

article
��

sect1
1jjj

ttjjjj 2
�� 3

UUUU

**UUUU

title
1
��

para
1 ��

para
1
��

Abstract OT approach We discuss

article
��

sect1
1jjj

ttjjjj 2
�� 3

UUUU

**UUUU

title
1
��

para
1 ��

para
1
��

Abstract OT approach We discuss

Figure 6: Collaborative Editing Scenario

In the following, we present a scenario illustrating

how the So6 framework is working. It considers two

users who are cooperating in the writing of an XML

document. They are working in their own workspace

respectively called site1 and site2. Each workspace

contains a copy of the shared XML document. At the

beginning, both copies are identical.

The different steps of this scenario are summa-

rized as follows:

site1 site2

op1 op3

op2

commit (send op3)
update (compute op′3, op′1, op′2)
commit (send op′1, op′2)

update (exec. op′1, op′2)

Users work concurrently to edit the document.

The first user produces operations op1 and op2 while

the second produces the operation op3. The states of

the copies of the document including these modifica-

tions are depicted by the Figure 6. After that, the sec-

ond user commits their modifications i.e. the opera-

tion op3 is sent to the timestamper. Later, the first user

updates their workspace in order to integrate mod-

ifications published by the second user. During the

update, the transformed operations op′3,op′1,op′2 are

calculated. At this step, only the operation op′3 is lo-

cally executed. Then, the first user commits his modi-

fications. During this step, op′1 and op′2 are sent to the

timestamper. When the second user calls the update

procedure op′1 and op′2 are executed as-is on the lo-

cal copy of the workspace site2 (remember that this

user does not perform new operation). At the end of

the execution, both copies of the document converge

towards a unique value.

5 RELATED WORK

Configuration Management (CM) tools (Berliner,

1990) are widely used for asynchronous collaborative

editing. Users work in parallel, produce data diver-

gence and reconciliate later using the Copy-Modify-

Merge paradigm. Reconciliation is performed by

tight cooperation between version manager and merge

tools. When a reconciliation is required, i.e. usually

when a user updates their workspace, version man-

ager provides required versions to merge tools (Mun-

son and Dewan, 1994). Merge is performed lo-

cally in the workspace of the user. Merge tools ex-

tract from different versions concurrent logs of op-

erations using differentiation algorithms (Chawathe

and Garcia-Molina, 1997). These differentiation al-

gorithms are specific to data types. Finally, concur-

rent operations are merged using ad-hoc algorithms

specific to data types. An XML merge tool such as

DeltaXML (Fontaine, 2002) or XyDiff (Cobena et al.,

2002) can be used in conjunction with CM tools for

supporting collaboration on XML data. However, in

this approach, several merge tools are used: one for

file systems, another one fro text files and another one

fro XML files. Each merge tool has its own merge

algorithm. They might not be consistent together if

they do not apply the same strategy. For example, in

CVS, the merge tool used for text files relies allows

compensation contrary to the merge tool used at the

file system level. Thus, whatever are the changes per-

formed on a text file, they will always be merged into

the new file version ; even conflicting changes are put

in the text file – they are delimited with special mark-

ups –. After the merging, a user can compensate what

has been performed by the merge tool by editing the

content of the text file. Whereas the merge tool used

at the file system level does not apply this principle, in

the case it detects a conflict, the reconciliation process

is stopped and the user is asked to solve the conflict.

The operational transformation (OT) model is more

general, more uniform and safer than the model used

in CM tools. In the OT approach, the merge algo-

rithm is shared by all transformation functions. It en-

sures convergence if underlying transformation func-

tions ensure the T P1 property. By this way, we can

extend the reconciliation engine by adding new trans-

formation functions without violating consistency.

Some propositions have been done in the OT

model to work with XML data. Davis and al. (Davis

et al., 2002) defined some transformation functions

for SGML. These functions present some similarities

with our transformations for XML. However, Davis

and al functions do not verify the T P1 property. Thus,

using these transformation functions in our frame-

work will not ensure convergence of copies of shared

data.

In (Shen and Sun, 2002), Shen et al. proposed a

framework similar to our So6 framework. The main

difference is when a conflict occurs between two con-

current operations, the operation coming from the

repository is cancelled, and the local operation is pre-

served. Firstly, this choice is not acceptable since

cancelling an operation means losing some previously

published work. Secondly, the authors do not provide

any information concerning the editing of a tree struc-

ture such as an XML document. In parallel to our

work, Ignat et al. (Ignat and Norrie, 2006) extended

the Shen et al.’s approach to a tree structured docu-

ment. The main idea is to distribute the log of opera-

tions through the tree. Thus, each node is associated

with a log containing the operations performed on its

content, insertion and deletion of child nodes. Using

this model, they are able to use transformation func-

tions defined for a linear structure such as the one pro-

posed for a string of characters by Ressel et al. (Ressel

et al., 1996). Their proposition constitues an alterna-

tive to our approach.

IceCube (Kermarrec et al., 2001) is a generic ap-

proach for reconciliating divergent copies of docu-

ments. It handles reconciliation as a constraints op-

timisation problem: the one of executing an optimal

combination of concurrent changes. IceCube uses se-

mantic constraints between operations that the recon-

ciliation algorithm has to preserve. Basically, Ice-

Cube explores all possible combinations of concur-

rent operations and reject all combinations violating

constraints. This approach is interesting because, Ice-

Cube is looking for the combinations of concurrent

operations that minimize conflicts of reconciliation.

Maybe, on this point, the operational transformation

approach will not find the optimal reconciliation. On

the other hand, IceCube has some intrinsic draw-

backs: Combinatorial explosion can occur during the

first stage of reconciliation.

The Harmony project (Foster et al., 2005) is

a generic framework for reconciliating divergent

copies. In this framework, the reconciliation process

exploits schema of the structures being synchronized

to achieve a better accuracy. This framework relies on

a state-based approach which means three copies of

the document – the two divergent copies and the com-

mon ancestor document – are required for reconcili-

ation. As most state-based synchronizer, the goal of

the reconciliation engine is to make divergent copies

more similar. In other words, convergence of copies

is not achieved in all cases, but changes performed by

a user will never be backed up. Indeed, in case con-

flicting changes are detected between two copies, the

conflicts are marked but the copies remain divergent.

On the contrary, our framework will always ensure

convergence of copies. Simply, in a case of conflict-

ing changes, these changes will be transformed to be

integrated as conflicting changes in the copies. This

allows every participant to solve later the conflict. We

think sharing conflicts is useful, because sometimes

the user who gets the conflict is not the user who has

the knowledge to solve it.

6 CONCLUSION

We have presented the SO6 framework for sup-

porting cooperative writing over documents. This

framework relies on a theoretical model called oper-

ational transformation approach. Our framework is

generic in the sense it could be instantiated to man-

age multiple types of document. In order to illustrate

these feature, we explained how to enable coopera-

tive writing of XML documents. This framework and

the presented transformation functions are integrated

in the SO6 revision management tool included in the

LibreSource (http://www.libresource.org/) col-

laborative platform. This tool is able to reconciliate

copies of a file system containing text documents and

XML documents.

If our framework ensures convergence, the con-

vergence state may violate the DTD. For example

suppose two users add concurrently a ”title” element

in an XML document. From the point of view of an

ordered tree, two title nodes can appear under the root.

However, from the point of view of the DTD, only one

title is allowed. Finally, the SO6 framework is able to

compute a convergence state, but this state may vio-

late the DTD. This is clearly an open issue for the So6

framework and for XML merge tools.

REFERENCES

Berliner, B. (1990). CVS II: Parallelizing Software Devel-
opment. In Proceedings of the USENIX Winter Tech-
nical Conference, pages 341–352.

Chawathe, S. S. and Garcia-Molina, H. (1997). Meaningful
change detection in structured data. In Proceedings of
the ACM SIGMOD’97, pages 26–37.

Cobena, G., Abiteboul, S., and Marian, A. (2002). Detect-
ing changes in XML documents. In Proceedings of
the IEEE ICDE 2002, pages 41–52.

Davis, A. H., Sun, C., and Lu, J. (2002). Generalizing
Operational Transformation to the Standard General
Markup Language. In Proceedings of the ACM CSCW
2002, pages 58–67.

Ellis, C. A. and Gibbs, S. J. (1989). Concurrency Control
in Groupware Systems. 18:399–407.

Fontaine, R. L. (2002). Merging XML files: A new ap-
proach providing intelligent merge of XML data sets.
In Proceeding of XML Europe 2002.

Foster, J. N., Greenwald, M. B., Kirkegaard, C., Pierce,
B. C., and Schmitt, A. (2005). Exploiting Schemas in
Data Synchronization. In Proceedings of DBPL 2005,
volume 3774 of LNCS.

Ignat, C.-L. and Norrie, M. C. (2006). Supporting Cus-
tomised Collaboration over Shared Document Repos-
itories. In Proceedings of CAiSE 2006, volume 4001
of LNCS.

Imine, A., Molli, P., Oster, G., and Rusinowitch, M. (2003).
Proving Correctness of Transformation Functions in
Real-Time Groupware. In Proceedings of ECSCW
2003, pages 277–293.

Imine, A., Rusinowitch, M., Oster, G., and Molli, P. (2006).
Formal Design and Verification of Operational Trans-
formation Algorithms for Copies Convergence. Theo-
retical Computer Science, 351(2):167–183.

Kermarrec, A.-M., Rowstron, A., Shapiro, M., and Dr-
uschel, P. (2001). The IceCube Approach to the Rec-
onciliation of Divergent Replicas. In Proceedings of
the ACM PODC 2001, pages 210–218.

Molli, P., Oster, G., Skaf-Molli, H., and Imine, A. (2003).
Using the Transformational Approach to Build a Safe
and Generic Data Synchronizer. In Proceedings of the
ACM GROUP 2003, pages 212–220.

Munson, J. P. and Dewan, P. (1994). A flexible object merg-
ing framework. In Proceedings of the ACM CSCW’94,
pages 231–242, New York, NY, USA.

Ressel, M., Nitsche-Ruhland, D., and Gunzenhäuser, R.
(1996). An Integrating, Transformation-Oriented Ap-
proach to Concurrency Control and Undo in Group
Editors. In Proceedings of the ACM CSCW’96, pages
288–297.

Shen, H. and Sun, C. (2002). Flexible Merging for Asyn-
chronous Collaborative Systems. In Proceeding of the
CoopIS 2002, volume 2519 of LNCS, pages 304–321.

Suleiman, M., Cart, M., and Ferrié, J. (1998). Concurrent
Operations in a Distributed and Mobile Collaborative
Environment. In Proceedings of the IEEE ICDE’98,
pages 36–45.

Sun, C. (2002). Undo as Concurrent Inverse in Group Ed-
itors. ACM Transactions on Computer-Human Inter-
action, 9(4):309–361.

Vidot, N., Cart, M., Ferrié, J., and Suleiman, M. (2000).
Copies Convergence in a Distributed Real-Time Col-
laborative Environment. In Proceedings of the ACM
CSCW 2000, pages 171–180.

